文档库 最新最全的文档下载
当前位置:文档库 › 中考数学压轴题专题相似的经典综合题及答案

中考数学压轴题专题相似的经典综合题及答案

中考数学压轴题专题相似的经典综合题及答案
中考数学压轴题专题相似的经典综合题及答案

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上.

求:

(1)AK为何值时,矩形EFGH是正方形?

(2)若设AK=x,S EFGH=y,试写出y与x的函数解析式.

(3)x为何值时,S EFGH达到最大值.

【答案】(1)解:设边长为xcm,

∵矩形为正方形,

∴EH∥AD,EF∥BC,

根据平行线的性质可以得出: = 、 = ,

由题意知EH=x,AD=24,BC=16,EF=x,即 = , = ,

∵BE+AE=AB,

∴ + = + =1,

解得x= ,

∴AK= ,

∴当时,矩形EFGH为正方形

(2)解:设AK=x,EH=24-x,

∵EHGF为矩形,

∴ = ,即EF= x,

∴S EFGH=y= x?(24-x)=- x2+16x(0<x<24)

(3)解:y=- x2+16x

配方得:y= (x-12)2+96,

∴当x=12时,S EFGH有最大值96

【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。

(2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。

(3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。

2.已知线段a,b,c满足,且a+2b+c=26.

(1)判断a,2b,c,b2是否成比例;

(2)若实数x为a,b的比例中项,求x的值.

【答案】(1)解:设,

则a=3k,b=2k,c=6k,

又∵a+2b+c=26,

∴3k+2×2k+6k=26,解得k=2,

∴a=6,b=4,c=12;

∴2b=8,b2=16

∵a=6,2b=8,c=12,b2=16

∴2bc=96,ab2=6×16=96

∴2bc=ab2

a,2b,c,b2是成比例的线段。

(2)解:∵x是a、b的比例中项,

∴x2=6ab,

∴x2=6×4×6,

∴x=12.

【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。

(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。

3.如图,在△ABC中,∠C=90°,AC=8,BC=6。P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.

(1)在△ABC中,AB= ________;

(2)当x=________时,矩形PMCN的周长是14;

(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。

【答案】(1)10

(2)5

(3)解:∵PM⊥AC,PN⊥BC,

∴∠AMP=∠PNB=∠C=90o.

∴AC∥PN,∠A=∠NPB.

∴△AMP∽△PNB∽△ABC.

当P为AB中点时,可得△AMP≌△PNB

此时S△AMP=S△PNB= ×4×3=6

而S矩形PMCN=PM·MC=3×4=12.

所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.

【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,

( 2 )∵PM⊥AC PN⊥BC

∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),

∴,

∵AP=x,AB=10,BC=6,AC=8,BP=10-x,

∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;

【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时

S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.

4.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.

(1)求证:△ABE≌△CDE;

(2)填空:

①当∠ABC的度数为________时,四边形AOCE是菱形;

②若AE=6,BE=8,则EF的长为________.

【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.

∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.

∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)

(2)60;

【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;

理由是:连接AO、OC.

∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.

∵∠ABC=60,∴∠AEC=120°=∠AOC.

∵OA=OC,∴∠OAC=∠OCA=30°.

∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.

∵∠ACB=∠CAD+∠D.

∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.

∵OA=OC,∴?AOCE是菱形;

②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.

∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .

∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= = .

故答案为:①60°;② .

【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;

(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;

②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.

5.在正方形中,,点在边上,,点是在射线上的一个动点,过点作的平行线交射线于点,点在射线上,使始终与直线垂直.

(1)如图1,当点与点重合时,求的长;

(2)如图2,试探索:的比值是否随点的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

(3)如图3,若点在线段上,设,,求关于的函数关系式,并写出它的定义域.

【答案】(1)解:由题意,得 , 在Rt△中,

∴∴

∴△∽△

(2)解:答:的比值随点的运动没有变化

理由:如图,

∵∥

∴ ,

∴△∽△

∵,

∴的比值随点的运动没有变化,比值为(3)解:延长交的延长线于点

∵∥

∵∥ , ∥

∴∥

∵ ,

又 ,

它的定义域是

【解析】【分析】(1)根据正方形的性质得出 A B = B C = C D = A D = 8 , ∠ C = ∠ A = 90 °,在Rt△ B C P 中,根据正切函数的定义得出tan ∠ P B C = P C ∶B C,又 tan ∠ P B C

=,从而得出PC的长,进而得出RP的长,根据勾股定理得出PB的长,然后判断出△P B C ∽△ P R Q,根据相似三角形对应边成比例得出PB∶RP=PC∶PQ,从而得出PQ的长;(2)RM∶MQ的比值随点 Q 的运动没有变化,根据二直线平行同位角相等得出∠ 1 = ∠ A B P , ∠ Q M R = ∠ A,根据等量代换得出∠ Q M R = ∠ C = 90 °,根据根据等角的余角相等得出∠ R Q M = ∠ P B C ,从而判断出△ R M Q ∽△ P C B,根据相似三角形对应边成比例,得出PM∶MQ=PC∶BC,从而得出答案;

(3)延长 B P 交 A D 的延长线于点N,根据平行线分线段成比例定理得出PD∶AB=ND∶NA,又N A = N D + A D = 8 + N D ,从而得出关于ND的方程,求解即可得出ND,根据勾股定理得出PN,根据平行线的判定定理得出PD∥MQ,再根据平行线分线段成

比例定理得出PD∶MQ=NP∶NQ,又RM∶MQ=3∶4,RM=y,从而得出MQ=y,又 P D = 2 , N Q = P Q + P N = x +,根据比例式,即可得出y与x之间的函数关系式。

6.如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E作EF⊥AB交边AC于点F,射线ED交射线AC 于点G.

(1)求证:△EFG∽△AEG;

(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.

【答案】(1)证明:∵ ED=BD,

∴∠B=∠BED.

∵∠ACB=90°,

∴∠B+∠A=90°.

∵ EF⊥AB,

∴∠BEF=90°.

∴∠BED+∠GEF=90°.

∴∠A=∠GEF.

∵∠G是公共角,

∴△EFG∽△AEG

(2)解:作EH⊥AF于点H.

∵在Rt△ABC中,∠ACB=90°,BC=2,AC=4,

∴tanA= = ,

∴在Rt△AEF中,∠AEF=90°,tanA= = ,

∵△EFG∽△AEG,

∴ ,

∵ FG=x,

∴ EG=2x,AG=4x.

∴ AF=3x.

∵ EH⊥AF,

∴∠AHE=∠EHF=90°.

∴∠EFA+∠FEH=90°.

∵∠AEF=90°,

∴∠A+∠EFA=90°,

∴∠A=∠FEH,

∴ tanA =tan∠FEH,

∴在Rt△EHF中,∠EHF=90°,tan∠FEH= = ,

∴ EH=2HF,

∵在Rt△AEH中,∠AHE=90°,tanA= = ,

∴ AH=2EH,

∴ AH=4HF,

∴ AF=5HF,

∴ HF= ,

∴EH= ,

∴y= FG·EH= x· = 定义域:(0

(3)解:当△EFD为等腰三角形时,

①当ED=EF时,则有∠EDF=∠EFD,

∵∠BED=∠EFH,

∴∠BEH=∠AHG,

∵∠ACB=∠AEH=90°,

∴∠CEF=∠HEF,即EF为∠GEH的平分线,

则ED=EF=x,DG=8?x,

∵anA= ,

∴x=3,即BE=3;

②若FE=FD, 此时FG的长度是 ;

③若DE=DF, 此时FG的长度是 .

【解析】【分析】(1)因为ED=BD,所以∠B=∠BED.根据等角的补角相等可得∠A=∠GEF,而∠G是公共角,所以由相似三角形的判定可得△EFG∽△AEG;

(2)作EH⊥AF于点H.∠AEF=∠ACB=90°,∠A是公共角,所以可得AEF ACB,

所以可得比例式,,由(1)得△EFG∽△AEG,所以可得比例式,

,因为FG=x,所以EG=2x,AG=4x.则AF=3x,由同角的余角相等可得∠A=∠FEH,所以tanA =tan∠FEH,在Rt△EHF中,∠EHF=90°,tan∠FEH=,所以EH=2HF,在Rt△AEH中,同理可得AH=2EH,所以AH=4HF,AF=5HF,HF=x ,则EH= x ,△EFG

的面积y= FG·EH=x· x=,自变量的取值范围是0

(3)当△EFD为等腰三角形时,分三种情况讨论:

①当ED=EF时,则有∠EDF=∠EFD,易得FG=3;

②若FE=FD, 易得FG=;

③若DE=DF, 易得FG=.

7.

(1)【探索发现】如图1,△ABC中,点D,E,F分别在边BC,AC,AB上,且AD,BE,CF相交于同一点O.用”S”表示三角形的面积,有S△ABD:S△ACD=BD:CD,这一结论可通过以下推理得到:过点B作BM⊥AD,交AD延长线于点M,过点C作CN⊥AD于点N,可得

S△ABD:S△ACD=,又可证△BDM~△CDN,∴BM:CN=BD:CD,∴S△ABD:S△ACD=BD:CD.由此可得S△BAO:S△BCO=________;S△CAO:S△CBO=________;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC=________.

(2)【灵活运用】如图2,正方形ABCD中,点E,F分别在边AD,CD上,连接AF,BE 和CE,AF分别交BE,CE于点G,M.

若AE=DF.判断AF与BE的位置关系与数量关系,并说明理由;

(3)若点E,F分别是边AD,CD的中点,且AB=4.则四边形EMFD的面积是多少?(4)【拓展应用】如图3,正方形ABCD中,AB=4,对角线AC,BD相交于点O.点F是边CD的中点.AF与BD相交于点P,BG⊥AF于点G,连接OG,请直接写出S△OGP的值.

【答案】(1)AE:EC;AF:BF;1:6

(2)解:结论:AF=BE,AF⊥BE.

理由:如图2中,

∵四边形ABCD是正方形,

∴AB=AD,∠BAE=∠ADF=90°,

∵AE=DF,

∴△BAE≌△ADF(SAS),

∴BE=AF,∠ABE=∠DAF,

∵∠ABE+∠AEB=90°,

∴∠DAF+∠AEB=90°,

∴∠AGE=90°,

∴AF⊥BE.

(3)解:如图2﹣1中,连接DM.

根据对称性可知△DME,△DMF,关于直线DM对称,

∴S△DME=S△DMF,

∵AE=DE,

∴S△AEM=S△DME=S△DMF,

∵S△ADF= ×4×2=4,

∴S△AEM=S△DME=S△DMF=,

∴S四边形EMFD= .

故答案为 .

(4)拓展应用:如图3中,

∵四边形ABCD是正方形,

∴AB=BC=CD=AD=4,AC=BD=4 ,OA=OB=OD=OC=2 ,∵DF=FC,

∴DF=FC=2,

∵DF∥AB,

∴,

∴OP:OB=OP:OA=1:3,

∵BG⊥PA,AO⊥OB,

∴∠AGB=∠AOB=90°,

∵∠OAP+∠APO=90°,∠PBG+∠BPG=90°,

∴∠PAO=∠PBG,

∵∠APO=∠BPG,

∴△AOP∽△BGP,

∴,∵∠GPO=∠BPA,

∴△GPO∽△BPA,

∴,

∴S△ABP= S△ABD=,

∴S△GOP= .

【解析】【解答】(1)探索发现:由题意:S△BAO:S△BCO=AE:EC;S△CAO:S△CBO=AF:BF;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC=1:6,

故答案为:AE:EC,AF:BF,1:6.

【分析】【探索发现】利用等高模型,解决问题即可.【灵活运用】(1)结论:AF=BE,AF⊥BE.证明△BAE≌△ADF(SAS)即可解决问题.(2)根据对称性可知△DME,△DMF,关于直线DM对称,推出S△DME=S△DMF,由AE=DE,推出S△AEM=S△DME=S△DMF,求出

△ADF的面积即可解决问题.【拓展应用】由△GPO∽△BPA,推出即可解决问题.

8.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.

(1)求线段AB的长度;

(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.

①当⊙N与x轴相切时,求点M的坐标;

②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x

轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.

【答案】(1)解:当x=0时,y=4,

∴A(0,4),

∴OA=4,

当y=0时,- x+4=0,

x=3,

∴B(3,0),

∴OB=3,

由勾股定理得:AB=5

(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,

tan∠OAB= ,

∴设EM=3x,AE=4x,则AM=5x,

∴M(3x,-4x+4),

由旋转得:AM=AN,∠MAN=90°,

∴∠EAM+∠HAN=90°,

∵∠EAM+∠AME=90°,

∴∠HAN=∠AME,

∵∠AHN=∠AEM=90°,

∴△AHN≌△MEA,

∴AH=EM=3x,

∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,

∴NG=OH,

则5x=3x+4,

2x=4,

x=2,

∴M(6,-4);

②如图2,由①知N(8,10),

∵AN=DN,A(0,4),

∴D(16,16),

设直线DM:y=kx+b,

把D(16,16)和M(6,-4)代入得:

解得:,

∴直线DM的解析式为:y=2x-16,

∵直线DM交x轴于E,

∴当y=0时,2x-16=0,

x=8,

∴E(8,0),

由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,

∵∠QAP=∠OAB=∠DCE,

∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:

i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,

∵∠QNA=∠DNF,

∴∠NFD=∠QAN=90°,

∵AO∥NE,

∴△ACO∽△NCE,

∴,

∴,

∴CO= ,

连接BN,

∴AB=BE=5,

∵∠BAN=∠BEN=90°,

∴∠ANB=∠ENB,

∵EN=ND,

∴∠NDE=∠NED,

∵∠CNE=∠NDE+∠NED,

∴∠ANB=∠NDE,

∴BN∥DE,

Rt△ABN中,BN= ,

sin∠ANB=∠NDE= ,

∴,

∴NF=2 ,

∴DF=4 ,

∵∠QNA=∠DNF,

∴tan∠QNA=tan∠DNF= ,

∴,

∴AQ=20,

∵tan∠QAH=tan∠OAB= ,

设QH=3x,AH=4x,则AQ=5x,

∴5x=20,

x=4,

∴QH=3x=12,AH=16,

∴Q(-12,20),

同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);

ii)当△DCE∽△PAQ时,如图3,

∴∠APN=∠CDE,

∵∠ANB=∠CDE,

∵AP∥NG,

∴∠APN=∠PNE,

∴∠APN=∠PNE=∠ANB,

∴B与Q重合,

∴AN=AP=10,

∴OP=AP-OA=10-4=6,

∴P(0,-6);

综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)

【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB

的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;

②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:

i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:

tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);

ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).

9.如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.

(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是________;

(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;

(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”,请写出AD长度的所有可能值.

【答案】(1)30°

(2)解:如图3中,△APD是AC边上的“等腰邻相似三角形”,

理由:作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,

∴∠BAP=∠PAD=∠DPA,∠CPD=∠B,

∴DP=DA,

∵∠CAB=2∠C,

∴∠BAP =∠C,

∴△APD是等腰三角形且△APB与△CDP相似,

∴△APD是AC边上的“等腰邻相似三角形”

(3)解:如图3′中,当DA=DP时,设∠APD=∠DAP=x,

①若∠BPD=∠CAP=90°-x,∠BDP=∠CPA=2x,

∴90°-x+2x+x=180°,

∴x=45°,

∴三角形都是等腰直角三角形,易知AD=1;

②若∠PDB=∠CAP时,设∠APD=∠DAP=x,

得到∠PDB=∠CAP=2x,易知x=30°,

设AD=a,则AP=

∵△BPD∽△CPA,

∴,即,

解得,

如图4中,当PA=PD时,易知∠PDB是钝角,∠CAP是锐角,

∴∠PDB=∠CPA,则△BPD≌△CPA,

设AD=a,则BD=2-a,,AC=2,

解得a= ,

如图5中,当AP=AD时,设∠APD=∠ADP=x,则∠DAP=180°-2x,易知∠PDB为钝角,∠CAP为锐角,

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

中考数学压轴题解题方法大全和技巧

中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

中考数学压轴题专题复习——旋转的综合含详细答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF. (1)求证:四边形ABEF是菱形; (2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示). 【答案】(1)详见解析;(2)FE·sin(-90°) 【解析】 【分析】 (1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得 ∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论; (2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可. 【详解】 (1)∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠FAE=∠BEA, 由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF, ∴∠BAE=∠FEA, ∴AB∥FE, ∴四边形ABEF是平行四边形, 又BE=EF, ∴四边形ABEF是菱形; (2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.

∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B ∴∠1=∠2 又AM=NM,AB=MG ∴△ABM≌△MGN ∴∠B=∠3,NG=BM ∵MG=AB=BE ∴EG=AB=NG ∴∠4=∠ENG= (180°-)=90°- 又在菱形ABEF中,AB∥EF ∴∠FEC=∠B= ∴∠FEN=∠FEC-∠4=- (90°-)=-90° ②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN. 同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90° 综上所述,∠FEN=-90° ∴当点M在BC上运动时,点N在射线EH上运动(如图3) 当FN⊥EH时,FN最小,其最小值为FE·sin(-90°) 【点睛】 本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值. 2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<

中考数学压轴题归类复习(十大类型附详细解答)

中考数学压轴题辅导(十大类型) 目录 动点型问题 (3) 几何图形的变换(平秱、旋转、翻折) (6) 相似不三角函数问题9 三角形问题(等腰直角三角形、等边三角形、全等三角形等) (13) 不四边形有关的二次函数问题 (16) 刜中数学中的最值问题 (19) 定值的问题 (22) 存在性问题(如:平行、垂直,动点,面积等) (25) 不圆有关的二次函数综合题... .. (29) 其它(如新定义型题、面积问题等) (33) 参考答案 (36)

中考数学压轴题辅导(十大类型) 数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方 法的综合性,多数为函数型综合题和几何型综合题。 函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再迚行图形的研究,求点的坐标戒研究图形的某些性质。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。 几何型综合题:是先给定几何图形,根据已知条件迚行计算,然后有动点(戒动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系迚行探索研究。一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,戒探索两个三角形满足什么条件相似等,戒探究线段乊间的数量、位置关系等,戒探索面积乊间满足一定关系时求 x 的值等,戒直线(圆) 不圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量乊间的 等量关系(即列出含有 x、y 的方程),变形写成 y=f(x)的形式。找等量关系的途径在刜中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求函数的自变量 的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。而最后的探索问题千 变万化,但少丌了对图形的分析和研究,用几何和代数的方法求出 x 的值。 解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点不数即坐标乊间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。关键是掌握几种常用的数学思想方法。 一是运用函数不方程思想。以直线戒抛物线知识为载体,列(解)方程戒方程组求其解 析式、研究其性质。 二是运用分类讨论的思想。对问题的条件戒结论的多变性迚行考察和探究。 三是运用转化的数学的思想。由已知向未知,由复杂向简单的转换。中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此,可把压轴题分离为相对独立而又单一的知识戒方法组块去思考和探究。 解中考压轴题技能技巡: 一是对自身数学学习状况做一个完整的全面的认识。根据自己的情况考试的时候重心定位准确,防止“捡芝麻丢西瓜”。所以,在心中一定要给压轴题戒几个“难点”一个时间上 的限制,如果超过你设置的上限,必须要停止,回头认真检查前面的题,尽量要保证选择、填空 万无一失,前面的解答题尽可能的检查一遍。 二是解数学压轴题做一问是一问。第一问对绝大多数同学来说,丌是问题;如果第一小问丌会解,切忌丌可轻易放弃第二小问。过程会多少写多少,因为数学解答题是按步骤给分的,写上去的东西必须要规范,字迹要巟整,布局要合理;过程会写多少写多少,但是丌要说废话,计算中尽量回避非必求成分;尽量多用几何知识,少用代数计算,尽量用三角函数,少在直角三角形中使用相似三角形的性质。 三是解数学压轴题一般可以分为三个步骤。认真审题,理解题意、探究解题思路、正确 解答。审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。解数学压轴题要善于总结解数学压轴题中所隐含的重

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

中考数学压轴题精选含详细答案

目 录 2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题 例2 2012年连云港市中考第26题 例3 2010年上海市中考第25题 例1 2012年上海市徐汇区中考模拟第25题 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域. 图1 图2 图3 动感体验 请打开几何画板文件名“12徐汇25”,拖动点O 在AB 上运动,观察△OMP 的三个顶点与对边的垂直平分线的位置关系,可以体验到,点O 和点P 可以落在对边的垂直平分线上,点M 不能. 请打开超级画板文件名“12徐汇25”, 分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y 关于x 的函数关系. 思路点拨 1.∠B 的三角比反复用到,注意对应关系,防止错乱. 2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单. 3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形. 满分解答

(1) 在Rt △ABC 中,AC =6,53sin =B , 所以AB =10,BC =8. 过点M 作MD ⊥AB ,垂足为D . 在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65 MD =. 因此MD >MP ,⊙M 与直线AB 相离. 图4 (2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况. ②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形. 在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425 OA =. ③如图6,当OM =OP 时,设底边MP 对应的高为OE . 在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658 OA =. 图5 图6 (3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y . 在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45 BF y =. 在Rt △ONF 中,4105 OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55 x y x y y +=--+. 整理,得2505040 x y x -=+.定义域为0<x <5. 图7 图8 考点伸展 第(2)题也可以这样思考: 如图8,在Rt △BMF 中,BM =2,65MF =,85 BF =.

数学中考数学压轴题(讲义及答案)附解析

一、中考数学压轴题 1.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s . (1)a =______cm ,b =______cm ; (2)t 为何值时,EP 把四边形BCDE 的周长平分? (3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2. 2.在平面直角坐标系中,抛物线2 4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且 :3:4??=ABC BCE S S . (1)求点A ,点B 的坐标; (2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式. 3.如图1,抛物线2 (0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式; (2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标. (3)如图3,点M 的坐标为( 3 2 ,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

中考数学压轴选择题绝对经典(含答案)

法:从题目的已知条件出发,经过演算、推理或证明,得出与选择题的某一选项相同的结论,这种决定选择项的方法,称为直接法。 hh 例1.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值围是()A.3≤OM≤5 B.4≤OM≤5C.3<OM<5 D.4<OM<5 例2:若X是4和9的比例中项,则X的值为() A、6 B、-6 C、±6 D、36 剖析:此题考查比例中项的概念,由于4和9的比例中项为X,即X2=4×9=36,所以,X=±6都符合比例中项的定义,即 62= 36 及(-6 )2 = 36,故4和9的比例中项应为±6,故应选择C。 2.图像法:在解答某些单项选择题时,可先根据题设作出相应的图形(或草图),然后根据图形的作法和性质,经过推理判断或必要的计算,选出正确的答案。 例3.若点(-2,y1)、(-1,y2)、(1,y3)都在反比例函数y=-的图象上,则()A.y1>y2>y3 B.y2>y1>y3C.y3>y1>y2 D.y1>y3>y2 3.排除法:经过推理判断,将四个备选答案中的三个迷惑答案一一排除,剩下一个答案是正确的答案,排除法也叫筛选法。 例4、若a>b,且c为实数,则下列各式中正确的是()A、ac>bc B、acbc2 D、ac2≥bc

例5、在下列四边形中,是轴对称图形,而不是中心对称图形的是( ) A 、矩形 B 、菱形 C 、等腰梯形 D 、一般平行四边形 4.赋值法:有些选择题,用常规方法直接求解较困难,若根据答案所提供的信息,选择某些 特殊值进行计算,或再进行判断往往比较方便。 例6在同一坐标系,直线l 1:y =(k -2)x +k 和l 2:y =kx 的位置可能为( ) 例7. 已知一次函数y 选=kx+(1-k),若k<1,则它的图象不经过第( )象限。 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 选择题!!!!!!! 1、在实数123.0,330tan ,60cos ,7 22,2121121112.0,,14.3,64,3,80032----Λπ中,无理数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列运算正确的是( ) A 、x 2 x 3 =x 6 B 、x 2+x 2=2x 4 C 、(-2x)2 =4x 2 D 、(-2x)2 (-3x )3=6x 5 3、算式22222222+++可化为( ) A 、42 B 、28 C 、82 D 、16 2 4、“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产 总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示 应为( ) A 、11.69×1410 B 、1410169.1? C 、 1310169.1? D 、14101169.0? 5、不等式2)2(2-≤-x x 的非负整数解的个数为( ) A 、1 B 、2 C 、3 D 、4 6、不等式组? ??-≤-->x x x 28132的最小整数解是( ) A 、-1 B 、0 C 、2 D 、3 7、为适应国民经济持续协调的发展,自2004年4月18日起,全国铁路第五次提速,提速 后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1326千米,提速前 火车的平均速度为x 千米/小时,提速后火车的平均速度为y 千米/时,则x 、y 应满足的关 系式是( )

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

中考数学二轮复习中考数学压轴题知识点及练习题附解析(1)

一、中考数学压轴题 1.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF = 1 3 ,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由. 2.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3(). (1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点 D 作D E //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时, PDE ABMC 1 S S 9 =四边形. 3.如图1,在平面直角坐标系中,抛物线239 334 y x x = --x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点 C . (1)过点C 的直线5 334 y x = -x 轴于点H ,若点P 是第四象限内抛物线上的一个动

点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值: (2)如图2, 将ABC ?绕点B 顺时针旋转至A BC ''?的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连 接AE C E '、, 将AC E ?'沿直线C E '翻折为A C E ?'', 是否存在点E , 使得BAA ?'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由. 4.如图1,正方形CEFG 绕正方形ABCD 的顶点C 旋转,连接AF ,点M 是AF 中点. (1)当点G 在BC 上时,如图2,连接BM 、MG ,求证:BM =MG ; (2)在旋转过程中,当点B 、G 、F 三点在同一直线上,若AB =5,CE =3,则MF = ; (3)在旋转过程中,当点G 在对角线AC 上时,连接DG 、MG ,请你画出图形,探究DG 、MG 的数量关系,并说明理由. 5.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”. (1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:

相关文档
相关文档 最新文档