文档库 最新最全的文档下载
当前位置:文档库 › 曲线的轨迹方程的求法

曲线的轨迹方程的求法

曲线的轨迹方程的求法
曲线的轨迹方程的求法

曲线的轨迹方程的求法

【 高考要求 】

求曲线的轨迹方程是解析几何的两个基本问题之一 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系 这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点 【 方法归纳 】

求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法 (1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程

(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求

(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程

(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程

求轨迹方程,一定要注意轨迹的纯粹性和完备性 要注意区别“轨迹”与“轨迹方程”是两个不同的概念 【 典型题例 】

例1如图所示,已知P (4,0)是圆x 2+y 2

=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形

APBQ 的顶点Q 的轨迹方程

【分析】命题意图 本题主要考查利用“相关点代

入法”求曲线的轨迹方程

知识依托 利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程

欲求Q 的轨迹方程,应先求R 的轨迹

方程,若学生思考不深刻,发现不了问题的实质,很难解决此题

技巧与方法 对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程

【解析】设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 在Rt △OAR 中,|AR |2=|AO |2

-|OR |2=36-(x 2+y 2)

又|AR |=|PR |=22)4(y x +-

所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0

因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动

设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2

,241+=

+y y x , 代入方程x 2+y 2-4x -10=0,得

2

4

4)2()24(

22+?

-++x y x -10=0 整理得 x 2+y 2=56,这就是所求的轨迹方程

例2设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线

【分析】命题意图 本题主要考查“参数法”求曲线的轨迹方程 直线与抛物线的位置关系 当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论

技巧与方法 将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系

【解法一】设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a

由OM ⊥AB ,得m =-y

x

由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0

所以y 1y 2=-4pa , x 1x 2=22

122

()(4)y y a p =

所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以2

4

4a pa a p =?= 故x =my +4p ,用m =-

y

x

代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点

【解法二】 设OA 的方程为y kx =,代入y 2=4px 得222(

,)p p A k k

则OB 的方程为1

y x k =-

,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2

(2)1k

y x p k

=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外)

故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点

【解法三】设M (x ,y ) (x ≠0),OA 的方程为y kx =,

代入y 2=4px 得222(,)p p A k k

则OB 的方程为1

y x k

=-,代入y 2=4px 得2(2,2)B pk pk -

由OM ⊥AB ,得

M 既在以OA 为直径的圆 222220p p x y x y k k

+-

-=……①上, 又在以OB 为直径的圆 22

2

220x y pk x pky +-+=……②上(O 点

除外), ①2k ?+②得 x 2+y 2-4px =0(x ≠0)

故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点

例3某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?

【分析】命题意图 本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力

圆锥曲线的定义,求两曲线的交点

错解分析 正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键

技巧与方法 研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程

【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切

建立如图所示的坐标系,并设⊙P 的半径为r ,则

|P A |+|PO |=(1+r)+(1 5-r)=2 5

∴点P 在以A 、O 为焦点,长轴长2 5的椭圆上,

其方程为 3

225)41(162

2y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为

(x -21)2+3

4y 2

=1 ② 由①、②可解得)14

12

,149(),1412,149(-Q P ,

∴r =

7

3

)1412()149(2322=+- 故所求圆柱的直径为

7

6

cm 例4 已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线

【解析】建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a 设M (x ,y )是轨迹上任意一点

则由题设,得|||

|MB MA =λ,坐标代入,得

2

2

22)()(y

a x y a x +-++=λ,化简得

(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0

(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴)

(2)当λ≠1时,点M 的轨迹方程是x 2

+y 2

+2

21)

1(2λ

-λ+a x +a 2=0 点M

的轨迹是以(-221

)1(λ-λ+a ,0)为圆心,|

1|22λ-λ

a 为半径的圆

例5已知B 为圆122=+y x 上的一个动点,A (2,0),△ABC 是以

BC ,如图,求点C 的

轨迹方程。

【分析】根据求轨迹方程的一般步骤,求C 点轨迹就有设C (y x ,),B 是所谓的相关点,设为(11,y x ),由AB ⊥AC 和|AB|=|AC|和12

12

1=+y x 可以得到如下解法。

【解法一】设C (y x ,),B (11,y x ),则12

12

1=+y x ,

∵△ABC 是以BC 为斜边的等腰直角三角形, ∴

12

211-=-?-x y

x y ① ∴2

2

2

12

1)2()2(y x y x +-=+- ② 由①得y

x x y )

2)(2(11---

= ③

把③代入②得2

2

1)2(y x =-, ∵0,21>

∴y x -=-21,21+-=y x , 把21+-=y x 代入①得21-=x y ,

从而所求的轨迹方程为1)2()2(2

2

=-+-y x .

解题过程看上去不太麻烦,但有些环节并不是一下子就确定的,例如,有人可能把②展开,然后先利用一下12

12

1=+y x ,得出1x ,这种方法虽然可行,但求1y 时计算量比较大。上述方法是把1y 和21-x 看成两个未知数,应当说是比较简单的。这是一种基本方法,考试中可能最先想到它,要是计算、变形能力差,中途放弃也有可能,但无论如何是我们必须掌握的一种方法。

请看下面的解法:

【解法二】如图2,作PA ⊥x 轴于

A ,且|PA|=2,连结O

B ,则|OA|=|PA|,

由∠BAC =∠PAO =900,得∠PAC =∠OAB , 又|BA|=|CA|,于是△OAB ≌△PAC ,

从而|PC|=|OB|=1,故C 点轨迹是以P 为圆心,1为半径的圆, 由于P 点坐标为(2,2),因此点C 的轨迹方程为1)2()2(2

2

=-+-y x . 这种方法显然简单! 这是有一点,这种方法是如何想到的呢?实际上,有了第一种方法的结论,我们会根据结论去寻找方法,解法2就是这样产生的!因此我们说,解法1是根本,解法2具有启发性。

利用复数中向量的旋转,即乘法的几何意义可以很快得出答案,考虑到很多省市对此不做要求,这里就不进行讨论了。

例6已知P (4,0)是圆362

2

=+y x 内一点,A ,B 是圆上的动点,∠APB =2

π

,求矩形APBQ 的顶点Q 的轨迹方程。

【分析】还是直角三角形问题,Q 点的轨迹实际上可以转化为C 点的轨迹,这是一种常用的方法,另外,圆的问题优先考虑圆心到直线的距离,本题中就是|OC|,这样各个量之间的关系也就找到了。

【解析】设Q (y x ,),连结PQ ,AB ,设线段AB 中点C (11,y x ),

则2

2

2

||||||AC OA OC -=, 因为∠APB =

2

π

, 所以||||PC AC =,

因此2

2

2

||||||AC OA OC -==2

2

||||PC OA - 即])4[(362

12

12

12

1y x y x +--=+, 整理得010412

12

1=--+x y x ①

由中点坐标公式得???

????=+=22

411y y x x ②

把②代入①得Q 点的轨迹方程为562

2

=+y x .

这种方法上把几何性质和代数运算结合在了一起。

有了上述两道题,我们就可以得到一大批常见问题的解法。

【相关问题1】已知P (4,0)是圆362

2

=+y x 内一点,A ,B 是圆

上的动点,若·

0=,动点Q 满足=+,求Q 点的轨迹方程。

虽然以向量的形式出现,但转化之后就会发现与例3是同一道题,只是形式不同而已,答案仍为562

2

=+y x .

【相关问题2】过点A (0,-2)的直线与抛物线x y 42

=相交于P ,Q 两点,点M 满足+=,求动点M 的轨迹方程。

分析:题目中没出现直角,但平行四边形与例2中的矩形很相近,求M 点的轨迹同样转化为求N 点的轨迹,只不过这里不是圆,而是抛物线,处理时细节有些差异,抛物线对计算的要求比较低(这是因为它的方程中有一次项的缘故),因此方法也就灵活一些,用韦达定理这种最常规的方法就能解决。

【解析】由+=,可知四边形OPMQ 是平行四边形,设其对角线交点为N ,M (y x ,),P (11,y x ),Q (22,y x ),

设直线PQ 的方程为2-=kx y ,

由??

?=-=x

y kx y 42

2

,得04)1(42

2=++-x k x k (*)

∴,)

1(42

21k

k x x +=

+ 即N 点的横坐标为

,)

1(222

21k

k x x +=+ 由于N 在直线2-=kx y 上,所以其纵坐标为

k k

k k y y 2

2)1(222

21=-+?=+. 又N 是OM 中点,所以

图4

???

???

?=+=k y k k x 4)1(42

, 消去k 得y y x +=

2

4

1, ∵直线PQ 与抛物线x y 42

=相交于P ,Q 两点, ∴方程(*)有两个实根,

即△=0,044)]1(4[2

2

≠>?-+-k k k ,

解得021

<<-

k 或0>k , 由k

y 4

=可知0>y 或8-

故点M 的轨迹方程为y y x +=24

1

(0>y 或8-

这是典型的消参数的方法!

【相关问题3】设A ,B 是抛物线)0(42

>=p px y 上的两个动点(不

与原点重合),且OA ·

0=OB ,OM ·0=AB ,=λ,求动点M 的轨迹方程。

【分析】这道题方法非常多,比如可以设直线OA 的方程为kx y =,与抛物线方程联立,求出A 点坐标(用k 表示),把k 换成k

1

-

,就得到B 点坐标,直线AB 的斜率、方程就写出了,利用OM ⊥和点M 在直线AB 上,得到两个等式,消去k 就求出了M 点的轨迹方程。 考虑到向量频繁出现,我们用向量的方法解决本题,你可以体会其中内涵。

【解析】设M (y x ,),A (121,4y p y ),B (22

2

,4y p

y ), 则=(121,4y p y ),=(22

2

,4y p

y ), =),4(

122122y y p y y --,=),4(12

1y y p

y x --, ∵OA ·

0=OB , ∴

044212

2

21=+?y y p

y p y ,即22116p y y -= ① 又OM ·

0=AB , ∴0)(421212

2=++-y y y x p y y ,即042

1=++y x p

y y ② 由AM =λAB ,可知AM 与AB 共线,

∴0)(4))(4(12

12

21221=-----y y p

y y y y p y x , 即0442121=++-

p

y

y y p y y x ③ 把①,②代入③,得点M 的轨迹方程为)0(042

2

≠=-+x px y x .

还可以求AB 中点的轨迹,你可以试一试。

我们看到,求轨迹主要是根据条件进行转化计算,其中的基本方法最为常用,也最有实战性,应引起注意,另外,数学题虽然浩如烟海,但其本质却大同小异,解决方法差别也不大,从上面的例题能够看成这一点(类似的例题还很多),因此一定要善于总结,这样才能事半功倍。 【 巩固练习 】

1 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )

A 圆

B 椭圆

C 双曲线的一支 抛物线 【解析】∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,

即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆

答案 A

2 设A 1、A 2是椭圆4

92

2y x +

=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )

A 14922=+y x

B 1492

2=+x y

C 14922=-y x

D 14

92

2=-x y

【解析】设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)

∵A 1、P 1、P 共线,∴

300+=--x y

x x y y ∵A 2、P 2、P 共线,∴

3

00-=-+x y

x x y y 解得x 0=149,149,3,92

22

02

00=-=-=y x y x x y y x 即代入得

答案 C

3 △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2

a

,0),且满足

条件sin C -sin B =2

1

sin A ,则动点A 的轨迹方程为_________

【解析】由sin C -sin B =21sin A ,得c -b =2

1

a ,

∴应为双曲线一支,且实轴长为2a

,故方程为)4(1316162

222a x a y a x >=-

答案 )4(1316162

222a

x a

y a x >=- 4 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________

【解析】设P (x ,y ),依题意有

2

2

2

2)5(3)5(5y

x y

x +-=

++,化简得P 点

轨迹方程为4x 2+4y 2-85x +100=0

答案 4x 2+4y 2-85x +100=0

5 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6

⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程 【解析】设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P 由切线的性质知 |BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |

=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,

建立坐标系,可求得动点P 的轨迹方程为72

812

2y x +

=1(y ≠0) 6 双曲线22

22b

y a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,

引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程 【解析】设P (x 0,y 0)(x ≠±a ),Q (x ,y ) ∵A 1(-a ,0),A 2(a ,0)

由条件?????-=±≠-=???

????-=-?--=+?+y a x y a x x x a x y a x y a x y a x y 2

2000000

0)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2

即b 2

(-x 2

)-a 2

(y

a x 22-)2=a 2

b 2

化简得Q 点的轨迹方程为 a 2x 2-b 2y 2=a 4(x ≠±a

7 已知双曲线22

22n

y m x -=1(m >0,n >0)的顶

点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、

Q (1)求直线A 1P 与A 2Q 交点M 的轨迹方程; (2)当m ≠n 时,求所得圆锥曲线的焦点坐标、

准线方程和离心率

【解析】(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-

m ,0),A 2(m ,0),则A 1P 的方程为 y =

)(11

m x m

x y ++ ①

A 2Q 的方程为 y =-

)(11

m x m

x y --

①3②得 y 2

=-

)(222

2

12

1

m x m

x y --

又因点P 在双曲线上,故).(,122

1222122

122

1m x m n y n y m x -==-即

代入③并整理得22

22n

y m x +=1 此即为M 的轨迹方程

(2)当m ≠n 时,M 的轨迹方程是椭圆

(ⅰ)当m >n 时,焦点坐标为(

±2

2n m -,0),准线方程为x =±

2

2

2n

m m -,

离心率e =m

n m 2

2-;

(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±

222

m

n n -,离心率e =n m n 2

2-

8 已知椭圆22

22b

y a x +=1(a >b >0),点P 为其

上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R

(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;

(2)设点R 形成的曲线为C ,直线l y =k (x +2a )与曲线C 相交于A 、

B 两点,当△AOB 的面积取得最大值时,求k 的值 【解析】(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|

又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0)

|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2

又???

???

?=+=221

010y y c x x 得x 1=2x 0-c ,y 1=2y

∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2 故R 的轨迹方程为 x 2+y 2=a 2(y ≠0)

(2)如右图,∵S △AOB =2

1|OA |2|OB |2sin AOB =22

a sin AOB

当∠AOB =90°时,S △AOB 最大值为2

1

a 2

此时弦心距|OC |=

2

1|

2|k ak +

在Rt △AOC 中,∠AOC =45°,

.3

3

,2245cos 1|2|||||2±=∴=?=+=∴

k k a ak OA OC

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

第四十讲曲线和方程(轨迹问题)(文)

名师作业练全能 第四十讲 曲线和方程(轨迹问题)(文) 班级 __________ 姓名____________ 考号 ____________ 日期 ___________ 得分____________ 括号内.) 1. 设线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,且|AB|= 5, oM = |O )A +-5OB , 则点M 的轨迹方程为 2 2 x y , A — + ——=1 9 + 4 2 2 C z + 乞=1 C. 25+ 9 答案:A 2. 方程 x (x? + — 4) = 0 与 x + (x? + y — 4)2 = 0 表示的曲线是( ) A .都表示一条直线与一个圆 B .前者是两个点,后者是一条直线和一个圆 C .都表示两个点 D .前者是一条直线和一个圆,后者是两个点 解析:x(x 2 + y 2— 4)= 0? x = 0 或 x 2 + y 2= 4; x 2 + (x 2 + y 2 — 4)2= 0? x = 0 且 x 2 + y 2 — 4 = 0. 答案:D 3. 设动点P 在直线x = 1上,O 为坐标原点,以 0P 为直角边、点 0为直角顶点作等 腰Rt △ OPQ ,则动点 Q 的轨迹是( ) 2 2 r y X ’ B.勺 + = 1 9 4 2 2 D .2I +討 i 解析: 如图,设 M(x 、 (x , y)= |(X O ,O) +1(0, 3 x = |x o y o ),则 2 y =|y o y o =fy 由 |AB|= 5,得 2 !|x/+ gy)= 52 化简得;+ x o =1

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

高考数学解析几何-轨迹方程的求法专题复习(专题训练)

专题八、解析几何(三) 点的轨迹方程 1.求点的轨迹方程的常用方法: (1)定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可根据已知条件和曲线的固有定义,求出轨迹方程。 (2)直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以用点P 的坐标(x ,y )表示出那些等量关系,化简即可得到轨迹方程。 (3)参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),再通过消去参数t ,得到关于x ,y 的轨迹方程F (x ,y )=0。 (4)代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 (5)几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标即可得到轨迹方程。 (6)点差法:圆锥曲线中与弦的中点有关的问题可用点差法。 (7)交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题先求解两动曲线方程组,得出它们的交点(含参数)坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法、点差法并用。 2.求轨迹方程的注意事项:求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。 (一)用定义法求点的轨迹方程 例1. 一动圆与圆22650x y x +++=外切,同时与圆22 6910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

数学百大经典例题-曲线和方程

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹.

2016年专项练习题集-定义法求轨迹方程

2016年专项练习题集-定义法求轨迹方程 选择题 1、点p (x ,y 10=,则点 p 的轨迹方程是( ) A .22 1259 x y += B .22 1259 x y -= C .22 1925 x y += D .22 1925 x y -= 分值:5 答案:A 【考查方向】本题考查椭圆的定义,熟练掌握椭圆的定义是解题的关键。 x,y )和点(4,0)之间的距离。 【解题思路】利用椭圆的定义即可得出. 【解析】∵点p (x ,y 10=, ∴点p 到两定点F (4,0),F′(-4,0)的距离之和满足:|PF|+|P F′|=1o >8. 故点P 的轨迹是以点F ,F′为焦点,10为长轴长的椭圆. 易知,c=4,a=5,∴b=3,∴椭圆的方程为22 1259 x y +=,故选A . 2、已知圆1c :(x+3)2+y 2=4,圆2c (x ﹣3)2+y 2=100,动圆c 与圆1c 、圆2c 都内切,则动圆圆心的轨迹是( ) A .椭圆

B .双曲线 C .抛物线 D .圆 【分值】5 【答案】A 【考查方向】本题主要考查椭圆的定义、轨迹方程、圆与圆的位置关系及其判定。菁优网版权所有 【易错点】找不出1cc +2cc 为定值这一关系。 【解题思路】设动圆的半径为r ,由相切关系建立圆心距与r 的关系,进而得到关于圆心距的等式,结合椭圆的定义即可解决问题. 【解析】设动圆的半径为r ,动圆圆心为c (x ,y ), 因为动圆与圆1c :(x+3)2+y 2=4及圆2c (x ﹣3)2+y 2=100都内切, 则1cc =r ﹣2,2cc =10﹣r . ∴1cc +2cc =8>12c c =6 因此动圆圆心为c 的轨迹是焦点为1c 、2c ,中心在( 0,0)的椭圆. 故选A . 3、设动圆M 与y 轴相切且与圆C :x 2+y 2﹣4x=0相外切,则动圆圆心M 的轨迹方程为( ) A .y 2=8x B .y 2=﹣8x C .y 2=8x 或y=0(x <0) D .y 2=8x 或y=0 【分值】5

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知 识推出等量关系,求方程时可用直接法。 例1长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB 中点P的轨迹方程。 /解:设点P的坐标为(x, y),\ 则A(2x,0),B(0,2y),由|AB|=2a 得\、(2x 0)2(0 2y)2=2a 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2动点P到直线x+4=0的距离减去它到M (2, 0)的距离之 差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M (2,0)的距离等于这点到直 线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则/ |x+4|- (x 2)2 y2=2

当x > -4 时,x+4- (x 2)2 y2=2 化简得

当时,y2=8x 当x V -4 时,-X-4- .. (x 2)2 y2=2 无解 所以P点轨迹是抛物线y2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显, 解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、代入法 如果轨迹点P(x,y)依赖于另一动点Q(a, b),而Q(a, b)又在某已知曲线上,则可先列出关于x、y、a、b的方程组,利用x、y表示出a、b,把a、b代入已知曲线方程便得动点P的轨迹方程,此法称为代入法。 2 2 例3 P 在以F1、F2为焦点的双曲线16七1上运动,则厶F1F2P 、k2 (x2 y2) ? . x2 y2=12 ??? k (x2+y2) =12,又点M在已知圆上, ??? 13k2x2+13k2y2-15kx-36ky=0 由上述两式消去x2+y2得 5x+12y-52=0 点评:用参数法求轨迹,设参尽量要少,消参较易。 五、交轨法 若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,

动点轨迹方程的常见求法

动点轨迹方程的常见求法 湖南省临澧县第一中学 朱福文 胡鸥 415200 一、待定系数法; 它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。 其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。 例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点, 且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。 求椭圆和双曲线的方程。 解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22b y = 1,双曲线的方程为22 m x -22n y = 1。 2c = 213 , ∴c = 13 . a – m = 4 , m c : n c = 7 3 , ∴a = 7 , m = 3 . b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 = 4 . ∴椭圆方程为492x +36 2 y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得: ∴椭圆方程为492y +36 2 x = 1,双曲线的方程为92y -42x = 1 。 二、直译解析法; 该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。它主要通过建系、设点、 列式、化简、讨论等步骤得到所求的曲线轨迹方程。 例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。 解: 以点A 为坐标原点,射线AB 为x 轴的正半轴, 建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y), ∠PAB = α , 则∠PBA =2α 3 -x y = K PB = tg(π-2α) = - tg2α

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

最全地圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (3) 一.直接法 (5) 二. 相关点法 (10) 三. 几何法 (16) 四. 参数法 (19) 五. 交轨法 (22)

六. 定义法 (25)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ , 求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0, 设OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=4 1 (x ≠0),即 点P 的轨迹方程是(x -21)2+y 2=4 1 (0<x ≤1)。 二.定义法 ∵∠OPC =90°,∴动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原 点O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=4 1 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ∴x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ∴(2x -1)2+2y 2=1,又x 1≠0, ∴x ≠0,即(x - 21)2+y 2=4 1 (0<x ≤1)

四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,∴.12 2 21k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1(0<x ≤1)

求曲线轨迹方程专题(2)

轨 迹 方 程 问 题 常见的有六种求轨迹方程的方法: ①待定系数法:由几何量确定轨迹方程; ②定义法:根据曲线的定义,求轨迹方程; ③直接法:给出某些条件(几何、三角或向量表达式等)求轨迹方程; ④“代入法”求轨迹方程; ⑥参数法(包括解决中点弦问题的点差法)求轨迹方程. ⑤“交轨法”求轨迹方程; 1.直接法求轨迹方程.给出某种条件:平面几何、三角函数、解析几何、向量形式等.求解程序:①设动点P 的坐标为P(x ,y);②按题目的条件写出关系式;③整合关系式;④注明范围. 例1.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点 (,)M x y 的轨迹为E .求轨迹E 的方程,并说明该方程所表示曲线的形状; 解:因为a b ⊥,(,1)a mx y =+,(,1)b x y =-,所以a ·b =2210mx y +-=, 即 221mx y +=. 当m =0时,方程表示两条直线:1±=y ; 当1m =时,方程表示的是圆:221x y +=; 当m >0且1≠m 时,方程表示的是椭圆; 当m <0时,方程表示的是双曲线. 2.根据圆锥曲线的定义,求轨迹方程

P M N 例2.如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点) ,使得PM =试建立适当的坐标系,并求动点 P 的轨迹方程. 解:如图,以直线12O O 为x 轴,线段12O O 的垂直平分线为y 轴,建立平面直角坐标系,则两圆心 分 别 为 12(2,0),(2,0) O O -.设 (,) P x y , 则,同理 222(2)1PN x y =-+-.2222211(2)1PM O P O M x y =-=++- ∵PM =, ∴2222(2)12[(2)1]x y x y ++-=-+-, 即221230x x y -++=,即22(6)33x y -+=. 这就是动点P 的轨迹方程. 注:动圆圆心轨迹问题 ①动圆与两外离定圆均外切(含相交);②动圆过定点且定圆外切;③动圆过定点且定直线相切;④动圆与两定圆一个外切,一个内切;⑤动圆过定点且定圆相切. 3.参数法求轨迹方程: 例3.动圆P 过点A (0,1)且与直线y=-1相切,O 是坐标原点,动圆P 的圆心轨迹是曲线C. (1)求曲线C 的方程; (2)过A 作直线l 交曲线C 于,D E 两点,求弦DE 的中点M 的轨迹方程; (3)在(2)中求ODE ?的重心G 的轨迹方程。 解:(1)点P 到点A 的距离等于点P 到直线y= -1的距离,故点P 的轨迹C 是以点A 为焦点,直线y=-1为准线的抛物线,所以曲线C 的方程 x 2=4y. 2222 A , 1 4440,+=4,(+)2, 1, 2 1 2()1,1.2221l x y x x kx k x k y x x k y y x y =====+=?=?+=+?=+? 1122212122 (2)设M(x,y),D(x ,y ),E(x ,y ),依题意知过的直线的斜率存在,设该直线的方程为:y=kx+1 与联立,消整理得:--则x x 则x x kx+1=2k 2k 即,消去得:即为所求的方程k 另解:(2)

求曲线方程专题训练

曲线与方程专题训练 一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 解题步骤为: (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式.(5)说明以化简后的方程的解为坐标的点都在曲线上. 例1.在正三角形ABC 内有一动点P ,已知P 到三顶点的距离分别为|PA |、|PB |、|PC |,且满足|PA |2=|PB |2+|PC |2,求P 点的轨迹方程. 解:以BC 的中点为原点,BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立平 面直角坐标系(图略), 设点P (x ,y ),B (-a,0),C (a,0),A (0,3a ), 用点的坐标表示等式|PA |2=|PB |2+|PC |2, 有x 2+(y -3a )2=(x +a )2+y 2+(x -a )2+y 2, 化简得x 2+(y +3a )2=(2a )2, 即所求的轨迹方程为x 2+(y +3a )2=4a 2(y >0) 练习1.平面上有三点A (-2,y )、B (0,y 2 )、C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为________. 2. 已知A (-1,0),B (1,0),且MA →·MB →=0,则动点M 的轨迹方程是

圆锥曲线轨迹方程问题

圆锥曲线轨迹方程问题 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高, 主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目. 分析原因除了这类题目的入手确实不易之外,主要是学生没 有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是 ft东卷高 考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生 心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其 实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类 问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同 时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨 迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型 (定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处 理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问 题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理 解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要 等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;② 简化条件式; ③转化化归。 解题方法荟萃

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种 方法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。 例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。 解:设点P的坐标为(x,y), 则A(2x,0),B(0,2y),由|AB|=2a得 2) 2 x- 2(y + -=2a 2 0( )0 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则 |x+4|-2 2 -=2 x+ (y )2

当x ≥-4时,x+4-22)2(y x +-=2化简得 当时,y 2=8x 当x <-4时,-x-4-22)2(y x +-=2无解 所以P 点轨迹是抛物线y 2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、 代入法 如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。 例3 P 在以F 1、F 2为焦点的双曲线19 1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。 解:设P (x 0,y 0),G (x ,y ),则有 ??? ????++=+-=)00(31)4(3100y y x x x 即???==y y x x 3300,代入 191622=-y x 得19 91692 2=-y x 即116 922 =-y x 由于G 不在F 1F 2上,所以y ≠0

圆锥曲线之轨迹问题例题习题(精品)

专题:圆 锥 曲 线 之 轨 迹 问 题 一、临阵磨枪 1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。这种求轨迹的方法称之为直接法。 2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。 3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。 5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、小试牛刀 1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析: MN PM PN =- ∴点P 的轨迹一定是线段MN 的延长线。 故所求轨迹方程是 0(3)y x =≥ 2.已知圆O 的方程为22 2 =+y x ,圆O '的方程为01082 2 =+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x = 3.已知椭圆)0(122 22>>=+b a b y a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1 MF 的中点P 的轨迹方程为 析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

相关文档
相关文档 最新文档