文档库 最新最全的文档下载
当前位置:文档库 › 场效应管(FET)的工作原理总结

场效应管(FET)的工作原理总结

场效应管(FET)的工作原理总结
场效应管(FET)的工作原理总结

结型场效应管的工作原理

N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。

N 沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS <0),使栅-源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108Ω左右)。在漏-源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。i D 的大小主要受栅-源电压v GS 控制,同时也受漏-源电压v DS 的影响。因此,讨论场效应管的工作原理就是讨论栅-源电压v GS 对沟道电阻及漏极电流i D 的控制作用,以及漏-源电压v DS 对漏极电流i D 的影响。

转移特性:在u DS 一定时, 漏极电流i D 与栅源电压u GS 之间的关系称为转移特性。 ()|D gs ds u i f u ==常数

在U GS(off)≤u GS ≤0的范围内, 漏极电流i D 与栅极电压u GS 的关系为

2()(1)GS

D DDS GS off u i I u =-

2) 输出特性:输出特性是指栅源电压u GS 一定, 漏极电流i D 与漏极电压u DS 之间的关系。

()|D s gs d u i f u ==常数

GS 0

1

2

3

4

5

1.v GS对沟道电阻及i D的控制作用

图2所示电路说明了v GS对沟道电阻的控制作用。为便于讨论,先假设漏-源极间所加的电压v DS=0。当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压称为夹断电压,用V P表示。

上述分析表明,改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。

2.v DS对i D的影响

设v GS值固定,且V P

(为|v GD| ),即加到该处P+N结上的反偏电压最大,这使得沟道两侧的耗尽层从源极到漏极逐渐加宽,沟道宽度不再均匀,而呈楔形,如图3(a)所示。

在v DS较小时,它对i D的影响应从两个角度来分析:一方面v DS增加时,沟道的电场强度增大,i D随着增加;另一方面,随着v DS的增加,沟道的不均匀性增大,即沟道电阻增加,i D应该下降,但是在v DS较小时,沟道的不均匀性不明显,在漏极附近的区域内沟道仍然较宽,即v DS对沟道电阻影响不大,故i D随v DS 增加而几乎呈线性地增加。随着v DS的进一步增加,靠近漏极一端的P+N结上承受的反向电压增大,这里的耗尽层相应变宽,沟道电阻相应增加,i D随v DS上升的速度趋缓。

当v DS增加到v DS=v GS-V P,即v GD=v GS -v DS=V P(夹断电压)时,漏极附近的耗尽层即在A点处合拢,如图3(b)所示,这种状态称为预夹断。与前面讲过的整个沟道全被夹断不同,预夹断后,漏极电流i D≠0。因为这时沟道仍然存在,沟道内的电场仍能使多数载流子(电子)作漂移运动,并被强电场拉向漏极。若v DS继续增加,使v DS>v GS-V P,即v GD<V P时,耗尽层合拢部分会有增加,即自A点向源极方向延伸,如图3(c),夹断区的电阻越来越大,但漏极电流i D却基本上趋于饱和,i D不随v DS的增加而增加。因为这时夹断区电阻很大,v DS的增加量主要降落在夹断区电阻上,沟道电场强度增加不多,因而i D基本不变。但当v DS增加到大于某一极限值(用V(BR)DS表示)后,漏极一端P+N结上反向电压将使P+N结发生雪崩击穿,i D会急剧增加,正常工作时v DS不能超过V(BR)DS。

从结型场效应管正常工作时的原理可知:①结型场效应管栅极与沟道之间的P+N结是反向偏置的,因此,栅极电流i G≈0,输入阻抗很高。②漏极电流受

栅-源电压v GS控制,所以场效应管是电压控制电流器件。③预夹断前,即v DS 较小时,i D与v DS间基本呈线性关系;预夹断后,i D趋于饱和。

P沟道结型场效应管工作时,电源的极性与N沟道结型场效应管的电源极性相反。

金属-氧化物-半导体场效应管

结型场效应管的输入电阻虽然可达106~109Ω,但在要求输入电阻更高的场合,还是不能满足要求。而且,由于它的输入电阻是PN结的反偏电阻,在高温条件下工作时,PN结反向电流增大,反偏电阻的阻值明显下降。与结型场效应管不同,金属-氧化物-半导体场效应管(MOSFET)的栅极与半导体之间隔有二氧化硅(SiO2)绝缘介质,使栅极处于绝缘状态(故又称绝缘栅场效应管),因而它的输入电阻可高达1015Ω。它的另一个优点是制造工艺简单,适于制造大规模及超大规模集成电路。

MOS管也有N沟道和P沟道之分,而且每一类又分为增强型和耗尽型两种,二者的区别是增强型MOS管在栅-源电压v GS=0时,漏-源极之间没有导电沟道存在,即使加上电压v DS(在一定的数值范围内),也没有漏极电流产生(i D=0)。而耗尽型MOS管在v GS=0时,漏-源极间就有导电沟道存在。

在一块掺杂浓度较低的P型硅衬底上,用光刻、扩散工艺制作两个高掺杂浓度的N+区,并用金属铝引出两个电极,分别作漏极d和源极s。然后在半导体表面复盖一层很薄的二氧化硅(SiO2)绝缘层,在漏-源极间的绝缘层上再装上一个铝电极,作为栅极g。另外在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。显然它的栅极与其它电极间是绝缘的。图1(a)、(b)分别是它的结

构示意图和代表符号。代表符号中的箭头方向表示由P(衬底)指向N(沟道)。P沟道增强型MOS管的箭头方向与上述相反,如图1(c)所示。

1.v GS对i D及沟道的控制作用

MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。从图1(a)可以看出,增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。当栅-源电压v GS=0时,即使加上漏-源电压v DS,而且不论v DS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道,所以这时漏极电流i D≈0。

若在栅-源极间加上正向电压,即v GS>0,则栅极和衬底之间的SiO2绝缘层中便产生一个垂直于半导体表面的由栅极指向衬底的电场,这个电场能排斥空穴而吸引电子,因而使栅极附近的P型衬底中的空穴被排斥,剩下不能移动的受主离子(负离子),形成耗尽层,同时P衬底中的电子(少子)被吸引到衬底表面。当v GS数值较小,吸引电子的能力不强时,漏-源极之间仍无导电沟道出现,如图1(b)所示。v GS增加时,吸引到P衬底表面层的电子就增多,当v GS达到某一数值

时,这些电子在栅极附近的P衬底表面便形成一个N型薄层,且与两个N+区相连通,在漏-源极间形成N型导电沟道,其导电类型与P衬底相反,故又称为反型层,如图1(c)所示。v GS越大,作用于半导体表面的电场就越强,吸引到P衬底表面的电子就越多,导电沟道越厚,沟道电阻越小。我们把开始形成沟道时的栅-源极电压称为开启电压,用V T表示。

由上述分析可知,N沟道增强型MOS管在v GS<V T时,不能形成导电沟道,管子处于截止状态。只有当v GS≥V T时,才有沟道形成,此时在漏-源极间加上正向电压v DS,才有漏极电流产生。而且v GS增大时,沟道变厚,沟道电阻减小,i D 增大。这种必须在v GS≥V T时才能形成导电沟道的MOS管称为增强型MOS管。

2.v DS对i D的影响

如图2(a)所示,当v GS>V T且为一确定值时,漏-源电压v DS对导电沟道及电流i D的影响与结型场效应管相似。漏极电流i D沿沟道产生的电压降使沟道内各点与栅极间的电压不再相等,靠近源极一端的电压最大,这里沟道最厚,而漏极一端电压最小,其值为v GD=v GS - v DS,因而这里沟道最薄。但当v DS较小

(v DS

随着v DS的增大,靠近漏极的沟道越来越薄,当v DS增加到使

v GD=v GS-v DS=V T(或v DS=v GS-V T)时,沟道在漏极一端出现预夹断,如图2(b)所示。再继续增大v DS,夹断点将向源极方向移动,如图2(c)所示。由于v DS的增加部分几乎全部降落在夹断区,故i D几乎不随v DS增大而增加,管子进入饱和区,i D 几乎仅由v GS决定。

3.特性曲线和电流方程

N 沟道增强型MOS 管的输出特性曲线如图1(a)所示。与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止区和击穿区几部分。转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和区(恒流区),此时i D 几乎不随v DS 而变化,即不同的v DS 所对应的转移特性曲线几乎是重合的,所以可用v DS 大于某一数值(v DS >v GS -V T )后的一条转移特性曲线代替饱和区的所有转移特性曲线,与结型场效应管相类似。在饱和区内,i D 与v GS 的近似关系式为

2()GS T

D DO v i I V 式中I DO 是v GS =2V T 时的漏极电流i D 。

MOS 管的主要参数与结型场效应管基本相同,只是增强型MOS 管中不用夹断电压V P ,而用开启电压V T 表征管子的特性。

从结构上看,N沟道耗尽型MOS管与N沟道增强型MOS管基本相似,其区别仅在于栅-源极间电压v GS=0时,耗尽型MOS管中的漏-源极间已有导电沟道产生,而增强型MOS管要在v GS≥V T时才出现导电沟道。原因是制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这

些正离子产生的电场作用下,漏-源极间的P 型衬底表面也能感应生成N 沟道(称为初始沟道),只要加上正向电压v DS ,就有电流i D 。如果加上正的v GS ,栅极与N 沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D 增大。反之v GS 为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D 减小。当v GS 负向增加到某一数值时,导电沟道消失,i D 趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用V P 表示。与N 沟道结型场效应管相同,N 沟道耗尽型MOS 管的夹断电压V P 也为负值,但是,前者只能在v GS <0的情况下工作。而后者在v GS =0,v GS >0,V P

图1(b)、(c)分别是N 沟道和P 沟道耗尽型MOS 管的代表符号。

在饱和区内,耗尽型MOS 管的电流方程与结型场效应管的电流方程相同,即

2(1)GS D DDS P

V i I V =- 砷化镓金属-半导体场效应管

砷化镓(GaAs )是由化学元素周期表中Ⅲ族元素镓和Ⅴ族元素砷二者组成的单晶化合物,因此,它又叫做Ⅲ-Ⅴ化合物,是一种新型半导体材料。它的特性与周期表中Ⅳ族元素硅类似,但重要的差别之一是,GaAs 的电子迁移率比硅约大5~10倍。用GaAs 制造有源器件时,具有比硅器件快得多的转换速度(例

如在截止、饱和导通间变化)。高速砷化镓三极管正被用于微波电路、高频放大和高速数字逻辑电路中。

由砷化镓制造的场效应管叫做金属-半导体场效应管(MES-FET),它具有速度高等优点,应用广泛。

N沟道MESFET的物理结构和电路符号分别如图1(a)、(b)所示①。图(a)表明,在GaAs衬底上面形成N沟道,然后在N沟道两端利用光刻、扩散等工艺掺杂成高浓度N+区,分别组成漏极d和源极s。当MESFET的栅区金属(例如铝)与N沟道表面接触时,将在金属-半导体接触处形成肖特基势垒区,它和硅JFET 中栅极、沟道间的PN结相似。MESFET的肖特基势垒区也要求外加反偏电压,v GS愈负,肖特基势垒区愈宽,N沟道的有效截面积愈小,沟道电阻越大,因此,漏极电流i D将随v GS变化。MESFET的输出特性与硅JFET相似,属于耗尽型器件,有一夹断电压V p。

(肖特基势垒是指具有整流特性的金属-半导体结,适合用于二极管。肖特基势垒与PN结最大的区别是其典型的低结电压,减小金属的(几乎不存在)耗尽区宽度。

但并不是所有的有整流特性的金属-半导体结都是肖特基势垒. 金属-半导体结没有整流特性的叫做欧姆接触.。整流属性取决于金属的功函、固有半导体的带隙,以及类型和半导体的掺杂浓度。)

由于砷化镓的电导率很低,用作衬底时对相邻器件能起良好的隔离作用。为了减少管子的开关时间,通常MESFET的导电沟道做得短,这样,由于v DS产生的沟道长度调制效应就变得明显,即使在恒流区,i D也随v DS而变,这是与硅JFET 不同之处。具体地说,MESFET遵循下列等式关系:

截止区()

可变电阻区(v DS

恒流区(v DS≥v GS–V P)

其中常数λ叫做沟道长度调制参数,通常在(0.05 ~ 0.2)V–1范围,N沟道MESFET器件V P的典型值是(–0.5 ~–2.5)V。常数K的单位为mA/V2。

使用场效应管的注意事项

1.从场效应管的结构上看,其源极和漏极是对称的,因此源极和漏极可以互换。但有些场效应管在制造时已将衬底引线与源极连在一起,这种场效应管的源极和漏极就不能互换了。

2.场效应管各极间电压的极性应正确接入,结型场效应管的栅-源电压v GS 的极性不能接反。

3.当MOS管的衬底引线单独引出时,应将其接到电路中的电位最低点(对N沟道MOS管而言)或电位最高点(对P沟道MOS管而言),以保证沟道与衬底间的PN结处于反向偏置,使衬底与沟道及各电极隔离。

4.MOS管的栅极是绝缘的,感应电荷不易泄放,而且绝缘层很薄,极易击穿。所以栅极不能开路,存放时应将各电极短路。焊接时,电烙铁必须可靠接地,或者断电利用烙铁余热焊接,并注意对交流电场的屏蔽。

1.场效应管的源极s、栅极g、漏极d分别对应于三极管的发射极e、基极b、集电极c,它们的作用相似。

2.场效应管是电压控制电流器件,由v GS控制i D,其放大系数g m一般较小,因此场效应管的放大能力较差;三极管是电流控制电流器件,由i B(或i E)控制i C。

3.场效应管栅极几乎不取电流(i g≈0);而三极管工作时基极总要吸取一定的电流。因此场效应管的输入电阻比三极管的输入电阻高。

4.场效应管只有多子参与导电;三极管有多子和少子两种载流子参与导电,因少子浓度受温度、辐射等因素影响较大,所以场效应管比三极管的温度稳定性好、抗辐射能力强。在环境条件(温度等)变化很大的情况下应选用场效应管。

5.场效应管在源极未与衬底连在一起时,源极和漏极可以互换使用,且特性变化不大;而三极管的集电极与发射极互换使用时,其特性差异很大, β值将减小很多。

6.场效应管的噪声系数很小,在低噪声放大电路的输入级及要求信噪比较高的电路中要选用场效应管。

7.场效应管和三极管均可组成各种放大电路和开关电路,但由于前者制造工艺简单,且具有耗电少,热稳定性好,工作电源电压范围宽等优点,因而被广泛用于大规模和超大规模集成电路中。

4.3.4各种场效应管特性比较

各类FET的特性如下表所示。

场效应管工作原理 1

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场

MOS管的结构和工作原理

在P 型衬底上,制作两个高掺杂浓度的N 型区,形成源极(Source )和漏极(Drian ),另外一个是栅极(Gate ).当Vi=VgsVgs 并且在Vds 较高的情况下,MOS 管工作在恒流区,随着Vi 的升高Id 增大,而Vo 随这下降。 常用逻辑电平:TTL 、CMOS 、LVTTL 、LVCMOS 、ECL (Emitter Coupled Logic )、PECL (Pseudo/Positive Emitter Coupled Logic )、LVDS (Low Voltage Differential Signaling )、GTL (Gunning Transceiver Logic )、BTL (Backplane Transceiver Logic )、ETL (enhanced transceiver logic )、GTLP (Gunning Transceiver Logic Plus );RS232、RS422、RS485(12V ,5V , 3.3V );TTL 和CMOS 不可以直接互连,由于TTL 是在0.3-3.6V 之间,而CMOS 则是有在12V 的有在5V 的。CMOS 输出接到TTL 是可以直接互连。TTL 接到CMOS 需要在输出端口加一上拉电阻接到5V 或者12V 。 cmos 的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl 的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos 可直接驱动ttl;加上拉电阻后,ttl 可驱动cmos. 1、当TTL 电路驱动COMS 电路时,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V ),这时就需要在TTL 的输出

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

(完整版)对场效应管工作原理的理解

如何理解场效应管的原理,大多数书籍和文章都讲的晦涩难懂,给初学的人学习造成很大的难度,要深入学习就越感到困难,本人以自己的理解加以解释,希望对初学的人有帮助,即使认识可能不是很正确,但对学习肯定有很大的帮助。 场效应管的结构 场效应管是电压控制器件,功耗比较低。而三极管是电流控制器件,功耗比较高。但场效应管制作工艺比三极管复杂,不过可以做得很小,到纳米级大小。所以在大规模集成电路小信号处理方面得到广泛的应用。对大电流功率器件处理比较困难,不过目前已经有双场效应管结构增加电流负载能力,也有大功率场管出现,大有取代三极管的趋势。场效应管具有很多比三极管优越的性能。 结型场效应管的结构 结型场效应管又叫JFET,只有耗尽型。 这里以N沟道结型场效应管为例,说明结型场效应管的结构及基本工作原理。图为N沟道结型场效应管的结构示意图。在一块N型硅,材料(沟道)上引出两个电极,分别为源极(S)和漏极(D)。在它的两边各附一小片P型材料并引出一个电极,称为栅极(G)。这样在沟道和栅极间便形成了两个PN结。当栅极开路时,沟道相当于一个电阻,其阻值随型号而不同,一般为数百欧至数千欧。如果在漏极及源极之间加上电压U Ds,就有电流流过,I D将随U DS的增大而增大。如果给管子加上负偏差U GS时,PN结形成空间电荷区,其载流子很少,因而也叫耗尽区(如图a中阴影区所示)。其性能类似于绝缘体,反向偏压越大,耗尽区越宽,沟道电阻就越大,电流减小,甚至完全截止。这样就达到了利用反向偏压所产生的电场来控制N型硅片(沟道)中的电流大小的目的。 注:实际上沟道的掺杂浓度非常小,导电能力比较低,所以有几百到几千欧导通电阻。而且是PN结工作在反向偏置的状态。刚开机时,如果负偏置没有加上,此时I D是最大的。 特点:1,GS和GD有二极管特性,正向导通,反向电阻很大 2:DS也是导通特性,阻抗比较大 3:GS工作在反向偏置的状态。 4:DS极完全对称,可以反用,即D当做S,S当做D。 从以上介绍的情况看,可以把场效应管与一般半导体三极管加以对比,即栅极相当于基极,源极相当于发射极,漏极相当于集电极。如果把硅片做成P型,而栅极做成N型,则成为P沟道结型场效应管。结型场效应管的符号如图b所示。

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点 场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P 沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide SemIConductor FET)。 MOS场效应管 有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟 道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底(substrat),用符号B表示。 一、工作原理 1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。 在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。 转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也 称为跨导。 跨导的定义式如下: gm=△ID/△VGS| (单位mS) 2.Vds对沟道导电能力的控制 当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟 道的影响如图所示。 根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,

场效应管工作原理

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表 材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数: 1、I DSS — 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS =0时的漏源电流。 2、U P — 夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、U T — 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、g M — 跨导。是表示栅源电压U GS — 对漏极电流I D 的控制能力,即漏极电流I D 变化量与栅源电压U GS 变化量的比值。g M 是衡量场效应管放大能力的重要参数。 5、BU DS — 漏源击穿电压。是指栅源电压U GS 一定时,场效应管正常工作所能承受的最大漏源电压。这是一 项极限参数,加在场效应管上的工作电压必须小于BU DS。

场效应管工作原理

场效应管工作原理

场效应管工作原理 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)的结构和工作原理 1. JFET的结构和符号 N沟道JFET P沟道JFET 2. 工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0. 栅极—沟道间的PN结反偏,栅极电流i G≈0,栅极输入电阻很高(高达107Ω以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。

主要讨论V GS对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS< 0 ,漏源间加正电压V DS > 0。则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS =V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。

MOS管工作原理动画示意图也有N沟道和P沟道两类

MOS管工作原理动画示意图也有N沟道和P沟道两类 绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。 与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。 根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S 间形成电流。 当栅极加有电压时,若0VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID

N沟道和P沟道MOS管工作原理

MOS/CMOS集成电路简介及N沟道MOS管和P沟道MOS管 在实际项目中,我们基本都用增强型mos管,分为N沟道和P沟道两种。 我们常用的是NMOS,因为其导通电阻小,且容易制造。在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 1.导通特性 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低

端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 2.MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越高,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 3.MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极

场效应管工作原理

场效应管工作原理 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor (金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P 沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N 型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P 型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS=0时的漏源电流。 2、UP 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、gM 对漏极电流I D的控制能力,即漏极电流I D变化量与栅源电压UGS变化量的比值。gM 是衡量场效应管放大能力的重要参数。

5、BUDS 最大耗散功率。也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于PDSM并留有一定余量。 7、IDSM UGS=0时的漏极电流。UP —夹断电压,使ID=0对应的UGS的值。P沟道场效应管的工作原理与N沟道类似。我们不再讨论。下面我们看一下各类绝缘栅场效应管(MOS场效应管)在电路中的符号。§3 场效应管的主要参数场效应管主要参数包括直流参数、交流参数、极限参数三部分。 一、直流参数 1、饱合漏极电流IDSSIDSS是耗尽型和结型场效应管的一个重要参数。定义:当栅、源极之间的电压UGS=0,而漏、源极之间的电压UDS大于夹断电压UP时对应的漏极电流。 2、夹断电压UPUP也是耗尽型和结型场效应管的重要参数。定义:当UDS一定时,使ID减小到某一个微小电流(如1μA, 50μA)时所需UGS的值。 3、开启电压UTUT是增强型场效应管的重要参数。定义:当UDS一定时,漏极电流ID达到某一数值(如10μA)时所需加的UGS 值。 4、直流输入电阻RGSRGS是栅、源之间所加电压与产生的栅极电流之比,由于栅极几乎不索取电流,因此输入电阻很高,结型为106Ω以上,MOS管可达1010Ω以上。 二、交流参数

MOS管工作原理及其驱动电路

功率场效应晶体管 MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

p沟道mos管工作原理

P通道为空穴流,N通道为电子流,所以场效应三极管也称为单极性三极管。FET 乃是利用输入电压(Vgs)来控制输出电流(Id)的大小。所以场效应三极管是属于电压控制元件。它有两种类型,一是结型(接面型场效应管)(JFET),一是金氧半场效应三极管,简称MOSFET,MOSFET又可分为增强型与耗尽型两种。 N沟道,P沟道结型场效应管的D、S是由N(或P)中间是栅极夹持的通道,这个通道大小是受电压控制的,当然就有电流随栅极电压变化而变。可以看成栅极是控制电流阀门。 增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。栅极电压高低决定电场的变化,进而影响载流子的多少,引起通过S、D电流变化。 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好)。增强型MOS管的漏极d和源极s之间有两个背靠背的PN结。 主板上的PWM(Plus Width Modulator,脉冲宽度调制器)芯片产生一个宽度可调的脉冲波形,这样可以使两只MOS管轮流导通。当负载两端的电压(如CPU需要的电压)要降低时,这时MOS管的开关作用开始生效,外部电源对电感进行充电并达到所需的额定电压。当负载两端的电压升高时,通过MOS管的开关作用,外部电源供电断开,电感释放出刚才充入的能量,这时的电感就变成了“电源”,当栅-源电压vGS=0时,即使加上漏-源电压vDS,而且不论vDS的极性如何,总有一个PN结处于反偏状态,漏-源极间没有导电沟道。 MOS管 MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。因此,MOS管有时被称为场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。而在主板上的电源稳压电路中,MOSFET扮演的角色主要是判断电位,它在主板上常用“Q”加数字表示。 一、MOS管的作用是什么? 目前主板或显卡上所采用的MOS管并不是太多,一般有10个左右,主要原因是大部分MOS管被整合到IC芯片中去了。由于MOS管主要是为配件提供稳定的电压,所以它一般使用在CPU、AGP插槽和内存插槽附近。其中在CPU与AGP插槽附近各安排一组MOS管,而内存插槽则共用了一组MOS管,MOS管一般是以两个组成一组的形式出现主板上的。 二、MOS管的性能参数有哪些? 优质的MOS管能够承受的电流峰值更高。一般情况下我们要判断主板上MOS 管的质量高低,可以看它能承受的最大电流值。影响MOS管质量高低的参数非常多,像极端电流、极端电压等。但在MOS管上无法标注这么多参数,所以在MOS 管表面一般只标注了产品的型号,我们可以根据该型号上网查找具体的性能参数。 还要说明的是,温度也是MOS管一个非常重要的性能参数。主要包括环境温度、管壳温度、贮成温度等。由于CPU频率的提高,MOS管需要承受的电流也随

最新场效应管工作原理68703

场效应管工作原理 68703

场效应管工作原理 时间:2007-06-15 来源: 作者: 点击:7148 字体大小:【大中小】 1.什么叫场效应管? FET是Field-Effect-Transistor的缩写,即为场效应晶体管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。FET应用范围很广,但不能说现在普及的双极型晶体管都可以用FET替代。然而,由于FET的特性与双极型晶体管的特性完全不同,能构成技术性能非常好的电路。 2. 场效应管的工作原理: (a) JFET的概念图

(b) JFET的符号 图1(b)门极的箭头指向为p指向 n方向,分别表示内向为n沟道JFET,外向为p沟道JFET。图1(a)表示n沟道JFET的特性例。以此图为基础看看JFET的电气特性的特点。 首先,门极-源极间电压以0V时考虑(VGS =0)。在此状态下漏极-源极间电压VDS 从0V增加,漏电流ID几乎与VDS 成比例增加,将此区域称为非饱和区。VDS 达到某值以上漏电流ID 的变化变小,几乎达到一定值。此时的ID 称为饱和漏电流(有时也称漏电流用IDSS 表示。与此IDSS 对应的VDS 称为夹断电压VP ,此区域称为饱和区。其次在漏极-源极间加一定的电压VDS (例如0.8V),VGS 值从0开始向负方向增加,ID 的值从IDSS 开始慢慢地减少,对某VGS 值ID =0。将此时的VGS 称为门极-源极间遮断电压或者截止电压,用VGS (off)示。n沟道JFET的情况则VGS (off) 值带有负的符号,测量实际的JFET对应ID =0的VGS 因为很困难,在放大器使用的小信号JFET时,将达到ID =0.1-10μA 的VGS 定义为VGS (off) 的情况多些。关于JFET为什么表示这样的特性,用图作以下简单的说明。

场效应管(FET)的工作原理总结共11页文档

结型场效应管的工作原理 N沟道和P沟道结型场效应管的工作原理完全相同,现以N沟道结型场效应管为例,分析其工作原理。 N沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS<0),使栅-源极间的P+N结反偏,栅极电流i G≈0,场效应管呈现很高的输入电阻(高达108左右)。在漏-源极间加一正电压(v DS>0),使N沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D。i D的大小主要受栅-源电压v GS控制,同时也受漏-源电压v DS的影响。因此,讨论场效应管的工作原理就是讨论栅-源电压v GS对沟道电阻及漏极电流i D的控制作用,以及漏-源电压v DS对漏极电流i D 的影响。 转移特性:在u DS一定时, 漏极电流i D与栅源电压u GS之间的关系称为转移特性。 在U GS(off)≤u GS≤0的范围内, 漏极电流i D与栅极电压u GS的关系为2) 输出特性:输出特性是指栅源电压u GS一定, 漏极电流i D与漏极电压u DS之间的关系。 1.v GS对沟道电阻及i D的控制作用 图2所示电路说明了v GS对沟道电阻的控制作用。为便于讨论,先假设漏-源极间所加的电压v DS=0。当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增

大,如图2(b)所示。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压称为夹断电压,用V P表示。 上述分析表明,改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS 的控制,|v GS|增大时,沟道电阻增大,i D减小。上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 2.v DS对i D的影响 设v GS值固定,且V P

场效应管(FET)的工作原理总结

结型场效应管的工作原理 N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。 N 沟道结型场效应管工作时,需要外加如图1所示的偏置电压,即在栅-源极间加一负电压(v GS <0),使栅-源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108Ω左右)。在漏-源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。i D 的大小主要受栅-源电压v GS 控制,同时也受漏-源电压v DS 的影响。因此,讨论场效应管的工作原理就是讨论栅-源电压v GS 对沟道电阻及漏极电流i D 的控制作用,以及漏-源电压v DS 对漏极电流i D 的影响。 转移特性:在u DS 一定时, 漏极电流i D 与栅源电压u GS 之间的关系称为转移特性。 ()|D gs ds u i f u ==常数

在U GS(off)≤u GS ≤0的范围内, 漏极电流i D 与栅极电压u GS 的关系为 2()(1)GS D DDS GS off u i I u =- 2) 输出特性:输出特性是指栅源电压u GS 一定, 漏极电流i D 与漏极电压u DS 之间的关系。 ()|D s gs d u i f u ==常数 GS 0 1 2 3 4 5

1.v GS对沟道电阻及i D的控制作用 图2所示电路说明了v GS对沟道电阻的控制作用。为便于讨论,先假设漏-源极间所加的电压v DS=0。当栅-源电压v GS=0时,沟道较宽,其电阻较小,如图2(a)所示。当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个P+N结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大,如图2(b)所示。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断,如图2(c)所示。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压称为夹断电压,用V P表示。

MOS管工作原理详细讲解

详细讲解MOSFET管驱动电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS 的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P 沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

场效应管工作原理精编版

场效应管工作原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子

相关文档
相关文档 最新文档