文档库 最新最全的文档下载
当前位置:文档库 › 光子晶体的详细讲述

光子晶体的详细讲述

光子晶体的应用及其发展前景

光子晶体的应用及其发展前景 摘要:光子晶体是一种介电常数不同的,是人工设计的由两种或两种以上介质材料排列的一维·二维或三维周期结构的晶体。一维光子晶体已得到实际应用,三维光子晶体仍处于实验室实验阶段。由于光子晶体有带隙和慢光等优良特性,所以具有广泛的应用前景。 关键字:光子晶体物理基础材料制备应用 1、物理基础 (1)1987年,E.Y allonovitch 和S.John在研究抑制自发辐射和光子局域时提出光子这概念。概念提出后,其研究经历了一个从一维、二维到三维的过程,并将带隙不断向短波方向推进。微波波段的逞隙常称为电磁带隙(ElectromagneticBand-Gap,简称为EBG),光子晶体的引入为微波领域提供了新的研究方向。光子晶体完全依靠自身结构就可实现带阻滤波,且结构比较简单,在微波电路、微波天线等方面均具有广阔的应用前景。国外在这一方面的研究已经取得了很多成果,而国内的研究才刚刚起步,所以从事光子晶体的研究具有重要的意义。光子晶体是指具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG结构。所谓的光子带隙是指某一频率范围的波不能在此周期性结构中传播,即这种结构本身存在“禁带”。这一概念最初是在光学领域提出的,现在它的研究范围已扩展到微波与声波波段。由于这种结构的周期尺寸与“禁带”的中心频率对应的波长可比拟,所以这种结构在微波波段比在光波波段更容易实现。相比一维二维光子晶体只能产生方向禁带,三维光子晶体能产生全方向的禁带,具有更普遍的实用性。 2、光子晶体的原理 (1)什么是光子晶体 光子晶体是指具有光子带隙的周期性介电结构材料,所谓光子带隙是由于介电常数不同的材料在空间周期性排列导致介电常数的空间周期性,使得光折射率产生周期性分布,光在其中传播时产生能带结构,在带隙中的光子频率被禁止传播,因此称光子禁带,具有光子禁带特征的材料称光子晶体。 (2)光子晶体的特性 根据固体物理的理论知识,在电子晶体中,由原子排布的晶格结构产生的周期性势场会对其中的运动电子形成调制。类似于电子晶体的一些特性,光子晶体中由于介电常数的空间周期分布带来的调制作用,所以也会形成光波的的带状分布,出现不连续的光子能带,能带的间隙称为光子禁带。禁带中对应频率的光波不能被传播。 光子禁带是光子晶体的两个重要特征之一,它的另一重要特征是光子局域。按照形成光子晶体结构的介电材料的空间周期性,可将其分为一维、二维和三维光子晶体。对于一维的光子晶体来说,由于介电材料只在一个空间方向上周期排列,所以只能在这一方向上产生光子禁带。对于二维光子晶体来说,由于介电常数在两个空间方向上均具有周期分布,所以产生的光子禁带位于这两个方向或这两个波矢交面上。三维光子晶体具有全方位的周期结构,可在所有方向上产生光子禁带。产生的光子禁带又分完全带隙和不完全带隙。在具有完全带隙的光子晶体中,落在光子禁带中的光在任何方向都不能传播,而在具有不完全带隙的光子晶体中,光波只是在某些方向上被禁止。

光子晶体基本原理

光子晶体 2.1光子晶体的基本原理 大家都知道,许多研究都因类似的现象作出的假设。这是因为宇宙具有相同的模式,其中有一个高度一致的内部规则,即使拥有千变万化的外观。光子晶体也是这样,这是第一先假设光子也具有类似于电子的传输性质,不同的是电子是在普通晶体中传输,而光子是在光子晶体中传输,然后在半导体的基础上发展起来的。 另外,晶体的原子是周期性的,有序排列的,由于这个周期势场,电子的运动收到周期性布拉格散射效应,从而形成一个能带结构,带隙存在于带与带之间。如果电子波带隙能量落到带隙中,就不能继续传播。事实上,无论什么电磁波,只要受到周期性调制,就会产生一个能带结构,也有可能出现带隙。 简而言之,由于半导体中离子的周期性排列引起了能带结构的产生,而能带控制着载流子(半导体中的电子或者空穴)在半导体中运动。同样的,在光子晶体由周期性变化所产生的光的光带隙结构,从而由光带隙结构控制着光在光子晶体中的移动。 2.2光子晶体的制备 人们已广泛认识到光子晶体具有的巨大应用前景, 这是光子晶体得以应用的必要条件———光子晶体的制备工艺得到世界上众多研究人员的深入研究,在此后的时间里,关于光子晶体的理论研究和实际应用的探索得到突飞猛进的发展,已然成为国际信息科技领域的一个热点问题。 从光子晶体的维数上看,光子晶体可以分为一维光子晶体, 二维光子晶体和三维光子晶体。一维光子晶体,顾名思义,就是在一个维度上周期性排布的光子晶体,它是由两种介质块构成的,而且这两种介质块须具有不同的介电常数,并在空间上交替排列。二维光子晶体是不同介电常数的介质柱(或其他规则介质)在二维空间上周期性排列的结构,如石墨结构,在某一平面上具有周期性,而在垂直这个平面的方向上是连续不变的。三维光子晶体是在三个方向上均具有周期性结构,因此与一维、二维光子晶体在某一个或两个方向上具有光子带隙不同,它在三个方向也都具有光子禁带,也被称为全方位光子带隙。

半导体能带理论(精)

一. 前言 光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。 二.晶体知识. 晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以 上的电压下电流可急剧移动,反向则无! 三.能带理论能级(Enegy Level) 在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中 自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。 四.其它知识原理.

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

一维光子晶体的能带结构研究开题报告

科研文献调研报告 题目:一维光子晶体的能带结构研究 学院:__理学院_ 专业:__光信息科学与技术__ 班级:_2008级 学号:_ 080701110083 学生姓名:__李辉_____指导教师:__徐渟_____ 2012年3月14日

一维光子晶体的能带结构研究 摘要: “光子晶体"的概念是1987年S.John和E.Yabloncvitch分别提出来的。而在当今世界,科学家们在不断研究电子控制的同时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子。与此同时随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光的控制。因此近年来光子晶体得到深入广泛的研究与应用。 关键字:光子晶体能带结构半导体器件 The Investigation on the Band Structures of one-dimensional photonic crystal Abstract: The concept of"Photonic crystals" was put forward byS.John and E.Yabloncvitch in 1987.But nowScientists constantly study electronic control and find that the integration of semiconductor devices has been the limit because of the characteristics of the electronic.And the photon has the advantage of high speed,no interaction, which electron does not have.So scientists want to get

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

论光子晶体光纤技术的现状和发展

论光子晶体光纤技术的现状和发展 摘要: 光子晶体光纤,又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。光子晶体光纤在外观上和传统的普通单模光纤非常相似,但微观上光子晶体光纤的横截面完全不同。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤的研究工作。本文阐述了PCF的一些独特光学性质、制作技术及其一些重要应用,介绍了PCF的发展以及最新成果。关键词:光子晶体,光子晶体光纤,非线性 1 引言 1987年Yabnolovitch 在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John 在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫做光子能带。光子能带之间可能出现带隙,即光子带隙。具有光子带隙的周期性介电结构就是光子晶体,或叫做光子带隙材料,也有人把它叫做电磁晶体。 光子晶体光纤(photonic crystal fiber,PCF),又称多孔光纤或微结构光纤,以其独特的光学特性和灵活的设计成为近年来的热门研究课题。这类光纤是由在纤芯周围沿着轴向规则排列微小空气孔构成,通过这些微小空气孔对光的约束,实现光的传导。独特的波导结构,灵活的制作方法,使得PCF与常规光纤相比具

有许多奇异的特性,有效地扩展和增加了光纤的应用领域[1]。在光纤激光器这一领域内,PCF经专门设计可具有大模面积且保持无限单模的特性,有效地克服了常规光纤的设计缺陷。以这种具有新颖波导结构和特性的光纤作为有源掺杂的载体,并把双包层概念引入到光子晶体光纤中,将使光纤激光器的某些性能有显著改善。近年来,国内外的很多大学和科研单位都在积极开展光子晶体光纤激光器的研究工作[2]。目前,国外输出功率达到几百瓦的光子晶体光纤激光器已有报道。本文阐述了PCF的一些独特光学性质、制作技术及其理论研究方法,介绍了PCF 的发展以及最新成果。 2 光子晶体光纤概述 2.1 光子晶体光纤导光原理 光子晶体光纤的概念基于光子晶体,按其传导机制可分为带隙型光子晶体光纤(PBG-PCF)和折射率引导型光子晶体光纤(TIR-PCF)两类[3]。 带隙型光子晶体光纤是一种具有石英-空气光子晶体包层的空芯石英光纤,其包层横截面的折射率具有规则的周期分布,通过包层光子晶体的布拉格衍射来限制光在纤芯中传播的在满足布拉格条件时出现光子带隙,对应波长的光不能在包层中传播,而只能限制在纤芯中传播,见图2-1(a)。 折射率引导型光子晶体光纤的导光机制与传统光纤类似,包层由石英-空气周期介质构成,中心为SiO2构成的实芯缺陷。由于纤芯折射率高于包层平均折射率,光波在纤芯中依靠全内反射传播。由于包层含有气孔,与传统光纤的实芯熔融硅包层不同,因而这种导光机制叫做改进的全内反射,见图2-1(b)

光子晶体应用于化学及生物传感器的研究进展

光子晶体应用于化学及生物传感器的研究进展 段廷蕊 李海华 孟子晖3 刘烽 都明君 (北京理工大学化工环境学院 北京 100081) 摘 要 光子晶体是由两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料,它具有尺度为光波长量级的重复结构单元,通过对这些结构单元的合理设计,可以调控光子晶体 的光学性质。近年来,光子晶体不仅在药物释放、光学开关、金属探针领域取得了广泛的应用,也为化学及生 物传感器领域提供了新的检测原理和手段。本文概述了光子晶体的制备方法及近年来该技术在化学及生物 传感器领域中的应用研究。 关键词 光子晶体 水凝胶 化学传感器 生物传感器 分子识别 Application of Photonic Crystals in Chemical and Bio2sensors Duan T ingrui,Li Haihua,Meng Z ihui3,Liu Feng,Du Mingjun (School of Chemical&Environmental Engineering,Beijing Institute of T echnology,Beijing100081) Abstract Photonic crystals are periodical materials which are made by periodically arrangement of m ore than tw o materials with different reflective index.Photonic crystals have periodical and repeated unit structure with nanometer scale, and its optical properties can be tuned by reas onably designing of the structure units.Photonic crystals have been applied not only in clinical diagnosis,drug delivery,optical s witches,ion probe,but als o in biosens ors and chemical sens ors.Here the preparation methods and applications in sens ors field of photonic crystals are summarized. K eyw ords Photonic crystals,Hydrogel,Chemical sens or,Biosens ors,M olecular recognition 1 光子晶体的概念及其结构特性 光子晶体(photonic crystals)是1987年Y ablonovitch和John等在研究自辐射和光子局域化时分别提出的。光子晶体是由两种以上具有不同折光指数的材料在空间按照一定的周期顺序排列所形成的有序结构材料。电磁波在这种具有周期性结构的材料中传播时会受到由电介质构成的周期势场的调制,从而形成类似于半导体能带结构的光子能带(photonic band)。光子能带之间可能会出现带隙,即光子带隙(photonic bandgap,简称P BG)。具有P BG的周期性介电结构即光子晶体,或称作光子带隙材料,也有人把它叫做电磁晶体。 光子晶体中,周期性排列的重复结构单元的尺度是光波长量级,根据重复结构循环的维数,可分为一维、二维和三维光子晶体(图1)。就像半导体中原子点阵可以控制电子传播一样,光子晶体中不同折光指数的周期性排列结构可以控制一定频率的光的传播。光子带隙或禁带是指一个频率范围,频率在此范围的电磁波不能在光子晶体里传播,而频率位于导带的电磁波则能在光子晶体里几乎无损地传播。带隙的宽度和位置与光子晶体的折光指数、周期排列的结构尺寸及排列规则都有关系。但与电子相比,光子具有更多的信息容量、更高的效率、更快的响应速度以及更低的能量损耗。光子晶体作为一种新型的信息传导材料,已成为学术界的一个研究热点[1~5],王玉莲、顾忠泽等[6~8]发表过相关的综述和文章,宋延林等[9,10]近年来报道的具有荧光特性的光子晶体在光学器件领域显示了良好的应用前景。 国家自然科学基金项目(20775007)和863计划项目(2007AA10Z433)资助 2008206230收稿,2008209229接受

光子晶体的应用与研究

光子晶体的应用与研究 IsSN1009—3044 Compu~rKnowledgeandTechnology电脑知识与技术 V o1.7,No.22.August2011. 光子晶体的应用与研究 陆清茹 (东南大学成贤学院,江苏南京210000) E—mail:kfyj@https://www.wendangku.net/doc/ac17302268.html,.ell https://www.wendangku.net/doc/ac17302268.html, Tel:+86—551~56909635690964 摘要:光子晶体是指具有光子带隙(PhotonicBand~Gap,简称为PBG)g~性的人造周期性电介质结构.有时也称为PBG光子晶体结 构.该文系统的阐述了光子晶体的产生,制备及应用. 关键词:光子晶体;光子频率禁带;激光全息: 中图分类号:TN364文献标识码:A 光子晶体激光器:微波天线 文章编号:1009—3044(2011)22—5468—02 进入2O世纪后半叶以来,全球迎来了电子时代,电子器件被极其广泛的应用于工作和生活的各个领域,尤其是促进了计算机 和通讯行业的发展.但是进入21世纪以后,伴随着电子器仲不断深入的小型化,低耗能,高速度,其进一步的提升也越来越困难.人 们感到了电子器件发展的瓶颈,开始把目光转向了光子,有人提出了使用光子代替电子作为新一代信息载体的设想.电子器件的基 础是电子在半导体中的运动,类似的,光子器件的基础是光子在光子晶体中的运动.光子的性质决定了光子器件的主要特点是能量 损耗小,运行速度快,所以工作效率高.光子器件在高效率发光二极管,光子开关,光波导器件,光滤波器等方面都具备巨大的应用

潜力.近年来,光子晶体相关的理论研究,实验科学以及实际应用都已经得到了迅速的发展,光子晶体领域已经成为现在世界范围 的研究热点.1999年l2月17日,《科学》杂志就已经把光子晶体的研究列为全球十大科学进展之一. 1光子晶体的由来 1987年S.John和E.Yablonovitch等人分别提出了光子晶体的概念:光子晶体是指具有光子带隙(PhotonicBand—Gap,简称为 PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构.它是根据电子学上的概念类比得出的.我们知道,在固体物理 学的研究中,晶体中的呈周期性排列的原子产生的周期性电势场会对其中电子有特殊的约束作用.在介电常数周期性分布的介质 中的电磁波的一些频率是被禁止的,光子晶体也类似.通常这些被禁止的频率区间为光子带隙,也叫光子频率禁带,而将具有"光子 频率禁带"的材料称作为光子晶体 2光子晶体的分类与结构 我们可以根据光子晶体的结构进行分类根据其能隙空间分布的不同,我们把光子晶体分为一维光子晶体,二维光子晶体,三 维光子晶体. 3光子晶体的制造 光子晶体在自然界中几乎不存在,它是一种人造做结构,其制备工艺主要有以下几种: 3.1机械加工法 机械加工法又叫精密机械加工法.这种加工法是存光子晶体的早期研究中发展起来的方法.机械加工法通过在集体材料上进 行机械接卸钻孑L,利用空气介质和集体材料的折射率差束获得光子晶体,这种方法可以用于制备制作起来比较容易的晶格常熟在 厘米至毫米量级的微波波段光子晶体. 3.2半导体微制造法 半导体制备技术中的"激光刻蚀","反应离子束刻蚀","电子束刻蚀"以及"化学汽相

反蛋白石光子晶体的研究进展_韩国志

反蛋白石光子晶体的研究进展 韩国志1 孙立国2 (1南京工业大学应用化学系 南京 210009; 2黑龙江大学化学化工与材料学院 哈尔滨 150080) 2008-07-02收稿,2008-09-24接受摘 要 反蛋白石晶体是一类重要的光子晶体,由于其制备材料的广泛性以及容易实现对光子禁带的 多重调制而受到广泛关注。本文介绍了目前反蛋白石晶体结构的主要制备技术和方法,详细阐述了反蛋白石 晶体结构的最新研究进展。 关键词 反蛋白石 光子晶体 胶体晶体 应用 Advance in Inverse Opal Photonic Structure Han Guozhi 1 Sun Liguo 2(1Department of Applied Chemistry ,Nanjing Universit y of Technology ,Nanjing 210009;2School of Chemistry and Materials ,Heilongjian g Univers ity ,Harbin 150080) A bstract Inverse opal crystals are an important structure for photonic crystal .Comparing with opal crystals ,it is advantageous in universality of materials for fabricating and easy to realize multi -tunablity of stop -band and structure function .In this paper ,current preparation and advance in application of inverse opal structures are reviewed . Keywords Inverse opal ,Photon ic crystal ,Colloidal crystal ,Application 图1 反蛋白石晶体的结构Fig .1 SEM image of invers e opal 蛋白石(opal )是一种存在于自然界中的、在数百nm 尺度 上有规整排列的含水非晶质二氧化硅。它拥有色彩缤纷的外 观,电子显微镜下观察表明,结晶蛋白石具有周期排列的六方 晶格,为面心立方结构。广义而言,蛋白石是一种三维光子晶 体,具备选择性布拉格反射,所以在不同的角度,显示不同的 颜色[1~4]。目前人工蛋白石主要采用胶体晶体自组装方法制 备。将表面带同种电荷的胶体颗粒(如非晶二氧化硅微球、聚 苯乙烯微球等)按一定的浓度分散于溶剂中,由于颗粒表面之 间的电荷相互作用,随着溶剂的蒸发,胶体粒子自动排列成六 方密堆积的胶体晶体,当胶体晶体中微球的直径与光波长相 当时,该晶体即可产生带隙,具有与蛋白石相似的光学特性。 反蛋白石晶体就是在蛋白石晶体的空隙中填充某种介 质,然后通过焙烧、溶解或化学腐蚀等方法除去蛋白石晶体的原材料后所形成的多孔结构,即空气小球以面心立方的形式分布于介质中,每个空气小球在之前胶体粒子接触点以小的圆柱形通道连接(图1)。如果介质折射率与空气不同,就产生布拉格反射,反射波长可由下式计算: λ=2(2 3)1 2d (n 2a -sin 2θ)1 2其中,λ表示反射波长,d 表示晶面间距,n a 表示材料平均折射率,θ表示入射光线与晶面的夹角。这种结构只要填充材料的折射率跟周边的介质(空气)的比值达到一定的数值(>2.8)时,就会出现完全光子带隙。 与蛋白石晶体相比,反蛋白石晶体最大的优势在于制备材料的选择性广泛、材料折射率的差异容易

近两年光子晶体研究的进展

近两年光子晶体研究的进展 许文贞 vincent.xu.chn@https://www.wendangku.net/doc/ac17302268.html, 光子晶体以及光子能带结构等概念早在1987年分别由E. Yablonovitch和S. John分别独立地提出,并且在随后的1990年和1991年分别实现了理论预言和成功实验制备第一个有完整光子带隙的光子三维晶体,发展至今光子晶体在理论、实验和应用研究方面取得了很大的进展。光子晶体(Photonic Crystals)是一种介电常数(或折射率)周期性排列的有序结构物质,也即一种在高折射率材料的某些位置周期性出现低折射率的材料。其最根本的特征是正由于那些周期性的折射率结构产生了光子禁带,因此频率处于禁带内的光子将无法传播,就像半导体材料中的电子在周期性势场作用下形成能带结构,因此光子晶体实现了对光子的控制。 光子晶体的应用主要是基于它的两个基本特性:抑制自发辐射和光子局域态。正由于光子晶体的这两个优势,而且光子与电子相比具有更多的信息容量、更高的效率、更快的响应速度、更强的互连能力和并行能力、更大的存储量、更低的能量损耗,所以,在半导体器件的进一步小型化和在减小能耗下提高运行速度成为难题后,人们提出了用光子作为信息载体替代电子的设想。因此当今有关光子晶体的研究得到了广泛的关注,它在零阈值激光器、光波导、发光二极管、偏振片、滤波器等方面显示了巨大的应用价值。发展至今,光子晶体这研究领域中比较热门的方向有三维光子晶体及薄膜的制备技术、可调光子晶体、光子晶体光纤、纳米光子晶体、磁性光子晶体等。本文主要集中在对三维光子晶体、光子晶体光纤两方面近两年来进展的介绍。 1. 三维光子晶体 光子晶体根据能隙空间分布的特点可分为一维(1D)光子晶体、二维(2D) 光子晶体和三维(3D) 光子晶体。光子晶体是一种人造晶体,自然界里几乎不存在。蛋白石是迄今为止发现的唯一的天然光子晶体,它是属于三维光子晶体。而且三维光子晶体能产生全方向的完全禁带,相比一维、二维光子晶体仅能产生方向禁带,因此三维光子晶体具有更普遍的实用性,占据了光子晶体研究中很大的份额。 由于天然光子晶体的稀缺,因此在光子晶体的研究中光子晶体的制备是主要的,而且是最难的一方面。因为对于光子晶体来说,光在晶体中的传输就要求晶体的周期性晶格尺寸达到亚微米量级,因此这给了晶体制备带来了很大的难题,尤其是近红外到可见光波段的三维光子晶体的制备。目前,一般三维光子晶体的制备的一种简单切实可行的方法是利用单分散的胶体颗粒悬浮液的自组装特性来制备胶体晶体。这种方法的制备可通过以下几种途径组装制备(4):重力场下的组装、垂直沉降法、离心力场下的组装、电场下的组装、模板法等。但是这种晶体生成方法主要还是生成简单媒质简单周期的光子晶体。经过多年的研究,光子晶体制备技术上以器件化为指导,逐步由简单媒质简单周期向复杂媒质复合周期结构方向发展,由胶体模板自组装等纯化学制备手段向物理化学方法相融合的多元技术扩展,而且应用领域也不断扩宽,由光电子器件、集成光路进一步拓展到光电对抗、光学探测、传感等。

光子晶体研究进展(资剑)

光子晶体研究进展 资剑 复旦大学表面物理国家重点实验室,上海200433 Jzi@https://www.wendangku.net/doc/ac17302268.html, 摘要 光子晶体是八十年代末提出的新概念和新材料,迄今取得异常迅猛的发展,是一门正在蓬勃发展的有前途的新学科。光子晶体不仅具有理论价值,更具有非常广阔的应用前景,这个领域已经成为国际学术界的研究热点。本文回顾光子晶体的发展历史,介绍光子晶体的特性、制作方法、理论研究以及应用前景。 关键词:光子晶体,光子能带,光子带隙,光子局域态,自发辐射,Maxwell方程组 我们所处的时代从某种意义上来说是半导体时代。半导体的出现带来了从日常生活到高科技革命性的影响。大规模集成电路、计算机、信息高速公路等等这些甚至连小学生都耳熟能详的东西是由半导体带来的。几乎所有的半导体器件都是围绕如何利用和控制电子的运动,电子在其中起到决定作用。半导体器件到如今可以说到了登峰造极的地步。集成的极限在可以看到的将来出现。这是由电子的特性所决定的。而光子有着电子所没有的优势:速度快,没有相互作用。因此,下一代器件扮演主角的将是光子。 光子晶体是1987年才提出的新概念和新材料[1,2]。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动[3-5]。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得无法想象。 1. 2. 光子晶体简介 3. 众所周知,电子在周期势场中传播时,由于电子波会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。电子波的能量如果落在带隙中,传播是禁止的。其实,不管任何波,只要受到周期性调制,都有能带结构,也都有可能出现带隙。能量落在带隙中的波是不能传播的。电磁波或者光波也不会例外。不过人们真正清楚其物理含义已经是八十年代末了。 1987年Yabnolovitch [1]在讨论如何抑制自发辐射时提出了光子晶体这一新概念。几乎同时,John [2]在讨论光子局域时也独立提出。如果将不同介电常数的介电材料构成周期结构,电磁波在其中传播时由于布拉格散射,电磁波会受到调制而形成能带结构,这种能带结构叫

光子晶体理论与器件课程背景

光子晶体理论与器件课程背景 关键词:光子晶体,禁带,晶体,材料,光子学 Key words : photonic crystals, band gap, crystals, materials, photonics 1 光子晶体概念的历史由来 光子晶体的概念首先由光子晶体的概念是在1987年分别由S. John [1] 和E. Yablonovitch [2] 各自独立提出。20多年来,光子晶体的理论和应用研究在全世界掀起了一股热潮,取得了一系列重要进展,已经发展成为一个世人瞩目的学科。光子晶体作为一种新型的光子器件材料,能够控制光子的运动,在提高发光二极管的发光效率,改善太阳能电池的光电转换效率,制作体积仅为光波波长的立方的数量级的微型激光器,实现无阈值激光振荡,控制原子的自发辐射,制造高增益、低损耗的天线,高增益光子频率滤波器,光子晶体空间波滤波器,光子晶体功率分配器/合成器,光子晶体相位补偿器、相移器,光子晶体偏振分离集成光路,光子晶体传感器,光子晶体负折射率器件,光子晶体自准直器件,光子晶体光束成形,光子晶体微透镜,光子晶体光脉冲压缩器件,光子晶体平板波导,光子晶体定向耦合器,光子晶体光纤,光子晶体非线性器件,光子晶体超连续谱产生,光子晶体混频器,光子晶体倍频器,光子晶体光开关,波分复用集成光路器件,光调制/解调集成光路,光二极管集成光路,光隔离器集成光路,光环行器集成光路,光子逻辑集成光路,光子存储、光子频率变换,光子信息处理,光子晶体光声器件,光子晶体光力器件、光子晶体太赫兹器件等方面均有着广泛的应用,因此引起了国际上广泛的注意。[1-77] 光子晶体的概念是根据传统的晶体概念类比而来的。在固体物理研究中发现,晶体中的周期性排列的原子所产生的周期性电势场结构对电子会产生一个特殊的约束作用。在这样的空间周期性电势场中的电子的运动所遵守的规律是由如下的薛定谔方程决定的: 0),())]((2[22=ψ-+?t r r V E m (1) 其中)(r V 是电子的势能函数,它具有空间周期性。求解以上方程式(1)可以发现,电子的能量E 只能取某些特殊值,在某些能量区间内该方程无解,也就是说电子的能量不可能落在在这样的能量区间,通常称之为能量禁带。研究发现,电子在这种周期性结构中的德布罗意波长与晶体的晶格常数具有大致相同的数量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电磁场所服从的规律是如下所示的Maxell 方程: 0),(]))(([022 2=???-++?t C εεω (2) 其中,0ε为平均相对介电常数,)(r ε为相对介电常数的调制部分,它随空间位置做周期性变化,C 为真空中的光速,ω为电磁波的频率,),(t r E 是电磁波的电场矢量。可以看到方程式(1)和(2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区间该方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常称这些被禁止的频率区间为“光子频率禁带”(Photonic Band Gap ),而将具有“光子频率禁带”的材料称作为光子晶体。

相关文档