文档库 最新最全的文档下载
当前位置:文档库 › 高考数学第二章函数与导数第2课时函数的定义域和值域

高考数学第二章函数与导数第2课时函数的定义域和值域

高考数学第二章函数与导数第2课时函数的定义域和值域
高考数学第二章函数与导数第2课时函数的定义域和值域

第二章函数与导数第2课时函数的定义域和值域第三章(对应学生用书(文)、(理)9~10页)

1. (必修1P 27练习6改编)函数f(x)=x +1+

1

2-x

的定义域为________. 答案:{x|x≥-1且x≠2}

2. (必修1P 27练习7改编)函数f(x)=(x -1)2

-1,x ∈{-1,0,1,2,3}的值域是________.

答案:{-1,0,3}

解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}.

3. (必修1P 31习题3改编)函数f(x)=2x

5x +1

的值域为____________.

答案:

?

?????y|y ≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠2

5

,∴ 值

域为?

?????

y|y ≠25.

4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0

,g(x)=1x ;

② f(x)=

x x

,g(x)=x ;

③ f(x)=x 2

,g(x)=(x)4

④ f(x)=|x|,g(x)=?

????x ,x ≥0,

-x ,x<0.

答案:④

解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合.

5. (必修1P 36习题13改编)已知函数f(x)=x 2

-2x ,x ∈[a ,b]的值域为[-1,3],则b -a 的取值范围是________.

答案:[2,4]

解析:f(x)=x 2-2x =(x -1)2

-1,因为x∈[a ,b]的值域为[-1,3],所以当a =-1时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4].

1. 函数的定义域

(1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤

① 写出使函数式有意义的不等式(组). ② 解不等式组.

③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零.

② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R .

④ y =a x

,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠kπ+π

2

,k ∈Z }.

⑥ 函数f(x)=x a

的定义域为{x|x≠0}. 2. 函数的值域

(1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域.

(2) 基本初等函数的值域

① y =kx +b(k≠0)的值域是R .

② y =ax 2

+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b

2

4a

,+∞);当a<0时,值域

为? ??

??-∞,4ac -b 2

4a . ③ y =k

x (k≠0)的值域为{y|y≠0}.

④ y =a x

(a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值

一般地,设函数f(x)的定义域为I,如果存在实数M满足:

(1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M);

(2) 存在x0∈I,使得f(x0)=M,那么称M是函数y=f(x)的最大(小)值.[备课札记]

题型1 求函数的定义域

例1 求下列函数的定义域: (1) y =1

2-|x|+lg(3x +1);

(2) y =4-x

2

ln (x +1)

.

解:(1)由?

??

??2-|x|≠0,

3x +1>0?

???

?x≠-2且x≠2,x>-1

3, 解得x>-1

3

且x≠2,

所求函数的定义域为??????x ???x>-1

3且x≠2.

(2) 由?

????ln (x +1)≠0,

4-x 2

≥0?

????x>-1且x≠0,

-2≤x≤2,

解得-1

所求函数的定义域为(-1,0)∪(0,2]. 变式训练

(1) 求函数y =(x +1)

|x|-x

的定义域;

(2) 若函数y =f(x)的定义域是[0,2],求函数g(x)=f (2x )

x -1

的定义域.

解:(1) 由?

????x +1≠0,|x|-x>0,得?????x≠-1,

x<0,

所以x<-1或-1

(2) 由?

???

?x -1≠0,0≤2x ≤2,得0≤x<1,即定义域是[0,1).

题型2 求函数的值域

例2 求下列函数的值域: (1) y =x -3x -2;

(2) y =x 2

-2x -3,x ∈(-1,4]; (3) y =2x -1

x +1,x ∈[3,5];

(4) y =x 2

-4x +5

x -1

(x>1).

解:(1) (换元法)设3x -2=t ,t ≥0,则y =13(t 2+2)-t =13? ????t -322-112,当t =3

2时,

y 有最小值-112,故所求函数的值域为????

??-112,+∞.

(2) (配方法)配方,得y =(x -1)2

-4,因为x∈(-1,4],结合图象知,所求函数的

值域为[-4,5].

(3) (解法1)由y =2x -1x +1=2-3

x +1,结合图象知,函数在[3,5]上是增函数,所以y max

=32,y min =54,故所求函数的值域是????

??54,32.

(解法2)由y =2x -1x +1,得x =1+y 2-y

.

因为x ∈[3,5],所以3≤1+y 2-y ≤5,解得54≤y ≤3

2

即所求函数的值域是????

??54,32. (4) (基本不等式法)令t =x -1,则x =t +1(t>0),

所以y =(t +1)2

-4(t +1)+5t =t 2

-2t +2t =t +2

t -2(t>0).

因为t +2

t

≥2

t ·2

t

=22,当且仅当t =2,即x =2+1时,等号成立, 故所求函数的值域为[22-2,+∞).

备选变式(教师专享) 求下列函数的值域: (1) f(x)=1-x +x +3;

(2) g(x)=x 2

-9

x 2-7x +12;

(3) y =log 3x +log x 3-1.

解:(1) 由?

????1-x≥0,

x +3≥0,解得-3≤x≤1.

∴ f ()x =1-x +x +3的定义域是[]-3,1. ∵ y ≥0,∴ y 2

=4+2()1-x ()x +3,

即y 2

=4+2

-()x +12

+4()-3≤x≤1.

令t ()x =-()x +12

+4()-3≤x≤1.

∵ x ∈[]-3,1,由t ()-3=0,t ()-1=4,t ()1=0, ∴ 0≤t ≤4,从而y 2

∈[]4,8,即y∈[]2,22,

∴ 函数f ()x 的值域是[]2,22.

(2) g ()x =x 2

-9x 2-7x +12=()x +3()x -3()x -3()x -4=x +3x -4=1+

7

x -4

()x≠3且x≠4. ∵ x ≠3且x≠4,∴ g ()x ≠1且g ()x ≠-6.

∴ 函数g ()x 的值域是()-∞,-6∪()-6,1∪()1,+∞. (3) 函数的定义域为{x|x>0且x≠1}. 当x>1时,log 3x>0,y =log 3x +log x 3-1

≥2log 3x ·log x 3-1=1;

当0

例3 已知函数f(x)=x 2

+4ax +2a +6. (1) 若f(x)的值域是[0,+∞),求a 的值;

(2) 若函数f(x)≥0恒成立,求g(a)=2-a|a -1|的值域. 解:(1) ∵ f(x)的值域是[0,+∞), 即f min (x)=0,

∴ 4(2a +6)-(4a )2

4=0,∴ a =-1或32

.

(2) 若函数f(x)≥0恒成立,则Δ=(4a)2

-4(2a +6)≤0,即2a 2

-a -3≤0, ∴ -1≤a≤3

2

∴ g(a)=2-a|a -1|=?

???

?a 2

-a +2,-1≤a≤1,-a 2

+a +2,1

-a +2=? ????a -122

+7

4

∴ g (a)∈????

??74,4; 当1

+a +2=-? ????a -122+94

∴ g (a)∈????

??54,2. ∴ 函数g(a)=2-a|a -1|的值域是????

??54,4. 备选变式(教师专享)

已知函数f(x)=1-2a x -a 2x

(a>1). (1) 求函数f(x)的值域;

(2) 若x∈[-2,1]时,函数f(x)的最小值是-7,求a 的值及函数f(x)的最大值.

解:(1) 由题意,知f(x)=2-(1+a x )2

因为a x

>0,所以f(x)<2-1=1,所以函数f(x)的值域为(-∞,1).

(2) 因为a>1,所以当x∈[-2,1]时,a -2≤a x ≤a ,于是f min (x)=2-(a +1)2

=-7,所以a =2,此时,函数f(x)的最大值为2-(2-2+1)2

=716

.

1. (2013·大纲)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.

答案:?

????-1,-12 解析:由-1<2x +1<0,得-1

????-1,-12.

2. (2013·山东)函数f(x)=1-2x

+1x +3

的定义域为________.

答案:(-3,0]

解析:由题意,?

????1-2x

≥0,

x +3>0,所以-3

3. (2013·北京)函数f(x)=????

?log 12x ,x ≥1,2x ,x<1

的值域为________.

答案:(-∞,2)

解析:当x≥1时,log 12x ≤log 121=0,即f(x)≤0;当x<1时,0<2x <21

,即0

所以函数f(x)的值域为(-∞,2).

4. (2013·徐州三模)已知函数f(x)=????

?x +2,0≤x<1,2x +12,x ≥1,若a>b ≥0,且f(a)=f(b),则

bf(a)的取值范围是________.

答案:????

??54,3

解析:画出分段函数的图象,从图象可知,12≤b<1,1≤a

2

,f(a)=f(b),得bf(a)

=bf(b)=b(b +2)=(b +1)2

-1在??????12,1上单调增,故bf(a)的取值范围是????

??54,3.

1. 设函数g(x)=x 2

-2(x∈R ),f(x)=

?

????g (x )+x +4,x <g (x ),

g (x )-x ,x ≥g (x ),则f(x)的值域是________. 答案:????

??-94,0∪(2,+∞)

解析:由题意f(x)=?

????x 2

+x +2,x <g (x ),

x 2-x -2,x ≥g (x )

=?

????x 2

+x +2,x ∈(-∞,-1)∪(2,+∞),

x 2-x -2,x ≥g (x ),x ∈(-1,2),下面分段求值域,再取并集. 2. 已知二次函数f(x)=ax 2

-x +c(x∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值

为________.

答案:10

解析:由二次函数的值域是[0,+∞),可知该二次函数的图象开口向上,且函数的最小值为0,因此有a >0,4ac -14a =0,从而c =14a >0.又c +2a +a +2c =? ????2a +8a +? ????1

4a 2+4a 2≥

2×4+2=10,当且仅当?????2a =8a ,1

4a 2

=4a 2

即a =1

2时取等号,故所求的最小值为10.

3. 已知函数f(x)=log 13(-|x|+3)的定义域是[a ,b](a 、b∈Z ),值域是[-1,0],

则满足条件的整数对(a ,b)有________对.

答案:5

解析:由f(x)=log 13(-|x|+3)的值域是[-1,0],易知t(x)=|x|的值域是[0,2],

∵ 定义域是[a ,b](a 、b∈Z ),

∴ 符合条件的(a ,b)有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.

4. 已知二次函数f(x)=ax 2

+bx(a 、b 为常数,且a≠0)满足条件:f(x -1)=f(3-x),且方程f(x)=2x 有等根.

(1) 求f(x)的解析式;

(2) 是否存在实数m 、n(m <n),使f(x)定义域和值域分别为[m ,n]和[4m ,4n]?如果存在,求出m 、n 的值;如果不存在,说明理由.

解:(1) f(x)=-x 2

+2x.

(2) 由f(x)=-x 2+2x =-(x -1)2

+1,知f max (x)=1,∴ 4n ≤1,即n≤14<1.

故f(x)在[m ,n]上为增函数,

∴ ?????f (m )=4m ,f (n )=4n ,解得?

????m =-1,n =0, ∴ 存在m =-1,n =0,满足条件.

1. 函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础,因此,我们一定要树立函数定义域优先意识.

2. 函数的值域常常化归为求函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.

3. 求函数值域的常用方法有:图象法、配方法、换元法、基本不等式法、单调性法、分离常数法、导数法等,理论上一切函数求值域或最值均可考虑“导数法”,但在具体的解题中要与初等方法密切配合.

请使用课时训练(A)第2课时(见活页).

[备课札记]

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第13课时函数模型及其应用

第二章 函数与导数第13课时 函数模型及其应用 第三章 (对应学生用书(文)、(理)33~36页 ) , 1. (必修1P 110练习1)某地高山上温度从山脚起每升高100 m 降低0.6 ℃.已知山顶的温度是14.6 ℃,山脚的温度是26 ℃,则此山的高为________m. 答案:1 900 解析:(26-14.6)÷0.6×100=1 900. 2. (必修1P 71习题10改编)已知某种产品今年产量为1 000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件. 答案:1 331 解析:1 000×(1+10%)3 =1 331. 3. (必修1P 35练习3改编)已知等腰三角形的周长为20,底边长y 是关于腰长x 的函数,则该函数的定义域为________. 答案:(5,10) 4. (必修1P 110复习10)在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系式为v =2 000ln ? ?? ??1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可以达到12 km/s. 答案:e 6 -1 解析:由2 000ln ? ?? ??1+M m =12 000,得1+M m =e 6,所以M m =e 6 -1. 5. (必修1P 100练习3改编)某商品在近30天内每件的销售价格P(元)与时间t(天)的函 数关系为P =? ????t +20,0

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

同济第六版《高等数学》教案WORD版-第02章-导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s ??=??, 这个比值可认为是动点在时间间隔t ?t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t ?t 0→0, 取

比值 0) ()(t t t f t f ??的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t ??=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000) ()(tan x x x f x f x x y y ??=??=?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x ??=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 令, x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x ??→ . , 当自变量x 在x 0处取得增量?x (点x 0+?x ?y =f (x 0+?x )?f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ???+=??='→?→?)()(lim lim )(00000,

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第2课时 函数的定义域和值域

第二章 函数与导数第2课时 函数的定义域和值域 第三章 (对应学生用书(文)、(理)9~10页 ) 1. (必修1P 27练习6改编)函数f(x)=x +1+12-x 的定义域为________. 答案:{x|x≥-1且x≠2} 2. (必修1P 27练习7改编)函数f(x)=(x -1)2-1,x ∈{-1,0,1,2,3}的值域是 ________. 答案:{-1,0,3} 解析:f(-1)=f(3)=3,f(0)=f(2)=0,f(1)=-1,则所求函数f(x)的值域为{-1,0,3}. 3. (必修1P 31习题3改编)函数f(x)=2x 5x +1 的值域为____________. 答案:? ?????y|y≠25 解析:由题可得f(x)=2x 5x +1=25-25(5x +1).∵ 5x +1≠0,∴ f (x)≠25 ,∴ 值域为? ?????y|y≠25. 4. (原创)下列四组函数中的f(x)与g(x)表示同一函数的有________.(填序号) ① f(x)=x 0,g(x)=1x ; ② f(x)=x x ,g(x)=x ; ③ f(x)=x 2,g(x)=(x)4; ④ f(x)=|x|,g(x)=? ????x ,x ≥0,-x ,x<0.

答案:④ 解析:两个函数是否为同一函数,主要是考查函数三要素是否相同,而值域是由定义域和对应法则所唯一确定的,故只须判断定义域和对应法则是否相同,④符合. 5. (必修1P 36习题13改编)已知函数f(x)=x 2-2x ,x ∈[a ,b]的值域为[-1,3],则 b -a 的取值范围是________. 答案:[2,4] 解析:f(x)=x 2-2x =(x -1)2-1,因为x∈[a,b]的值域为[-1,3],所以当a =-1 时,1≤b ≤3;当b =3时,-1≤a≤1,所以b -a∈[2,4]. 1. 函数的定义域 (1) 函数的定义域是指使函数表达式有意义的输入值的集合. (2) 求定义域的步骤 ① 写出使函数式有意义的不等式(组). ② 解不等式组. ③ 写出函数定义域(注意用区间或集合的形式写出). (3) 常见基本初等函数的定义域 ① 分式函数中分母不等于零. ② 偶次根式函数、被开方式大于或等于0. ③ 一次函数、二次函数的定义域为R . ④ y =a x ,y =sinx ,y =cosx ,定义域均为R . ⑤ y =tanx 的定义域为{x|x≠k π+π2,k ∈Z }. ⑥ 函数f(x)=x a 的定义域为{x|x≠0}. 2. 函数的值域 (1) 在函数y =f(x)中,与自变量x 的值对应的y 的值叫函数值,函数值的集合叫函数的值域. (2) 基本初等函数的值域 ① y =kx +b(k≠0)的值域是R . ② y =ax 2+bx +c(a≠0)的值域:当a>0时,值域为[4ac -b 24a ,+∞);当a<0时,值域为? ???-∞,4ac -b 24a . ③ y =k x (k≠0)的值域为{y|y≠0}. ④ y =a x (a>0且a≠1)的值域是(0,+∞). ⑤ y =log a x(a>0且a≠1)的值域是R . ⑥ y =sinx ,y =cosx 的值域是[-1,1]. ⑦ y =tanx 的值域是R . 3. 最大(小)值 一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x∈I,都有f(x)≤M(f(x)≥M); (2) 存在x 0∈I ,使得f(x 0)=M ,那么称M 是函数y =f(x)的最大(小)值. [备课札记]

第二章 导数与微分习题汇总

第二章 导数与微分 【内容提要】 1.导数的概念 设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ?=+?-.若0→?x 时,极限x y x ??→?0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数, 记为 )(0x f '或)(0x y '或0|x x y ='或 0|d d x x x y =或0|d d x x x f = +→?0x 时,改变量比值的极限x y x ??+ →?0 lim 称f(x)在x 0处的右导数,记为)(0x f +'。 -→?0x 时,改变量比值的极限x y x ??- →?0 lim 称f(x)在x 0处的左导数,记为)(0x f -'。 2.导数的意义 导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。 导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。 3.可导与连续的关系 定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。 此定理的逆命题不成立,即连续未必可导。 4.导数的运算 定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u '±'='±)( 定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则 v u v u uv '+'=')( 定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则 2v v u v u v u ' -'= ' ?? ? ??

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

2014年全国高考数学分类详解 第二章 函数与导数

第二章 函数与导数 一、函数及其表示 14.、[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上 的解析式为f (x )=? ????x (1-x ),0≤x ≤1,sin πx ,1

(完整版)第二章.导数和微分答案解析

第二章 导数与微分 一 导数 (一) 导数的概念(见§2.1) Ⅰ 内容要求 (ⅰ)理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。 (ⅱ)了解导数作为函数变化率的实际意义,会用导数表达科学技术中一些量的变化率。 Ⅱ 基本题型 (ⅰ)用导数定义推证简单初等函数的导数公式 1. 用导数定义求证下列导数公式,并记忆下列公式(每题4分) (1)0)(='C (2)21 )1(x x - =' (3)x x 21)(=' (4)x x sin )(cos -=' (5)a a a x x ln )(=' (6)1 )(-='μμμx x (ⅱ)确定简单基本初等函数在某点处的切线方程和法线方程 2.(6分)求x y ln =在)0,1(点处的切线方程及法线方程。 解:x y 1' = ,1)1(' ==k y ,所以 切线方程为1-=x y 法线方程为1+-=x y 3.(6分)求x x y = 在)1,1(点处的切线方程。 解:4 3 x y =,41 ' 43-=x y ,4 3)1(' ==k y 切线方程为1)1(43+-= x y ,即4 143+=x y (ⅲ)科技中一些量变化率的导数表示 4.填空题(每题4分) (1)若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体的温度随时间的变化 速度为 )(' t T (2)若某地区t 时刻的人口数为)(t N ,则该地区人口变化速度为 )(' t N Ⅲ 疑难题型 (ⅰ)分段函数在分段点处的导数计算 5. 讨论下列函数在0=x 处的连续性与可导性 (1)(7分)|sin |x y =

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

高考数学第二章 函数与导数第12课时 导数在研究函数中的应用

第二章 函数与导数第12课时 导数在研究函数中的应用 第三章 (对应学生用书(文)、(理)30~32页 ) , 1. (选修22P 28例1改编)函数f(x)=x 3 -15x 2 -33x +6的单调减区间为______________. 答案:(-1,11) 解析:f′(x)=3x 2 -30x -33=3(x -11)(x +1),由(x -11)(x +1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间. 2. (选修22P 34习题3改编)若函数f(x)=e x -ax 在x =1处取到极值,则a =________. 答案:e 解析:由题意,f ′(1)=0,因为f′(x)=e x -a ,所以a =e. 3. (选修22P 34习题8)函数y =x +sinx ,x ∈[0,2π]的值域为________. 答案:[0,2π] 解析:由y′=1+cosx ≥0,所以函数y =x +sinx 在[0,2π]上是单调增函数,所以值域为[0,2π]. 4. (原创)已知函数f(x)=-12x 2 +blnx 在区间[2,+∞)上是减函数,则b 的取值范 围是________. 答案:(-∞,4] 解析:f′(x)=-x +b x ≤0在[2,+∞)上恒成立,即b≤x 2 在[2,+∞)上恒成立. 5. (选修22P 35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大. 答案:10 解析:设容器的高为xcm ,即小正方形的边长为xcm ,该容器的容积为V ,则V =(90- 2x)(48-2x)x =4(x 3-69x 2+1080x),00;当10

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

高考数学第二章函数与导数第3课时函数的单调性

第二章函数与导数第3课时函数的单调性第三章(对应学生用书(文)、(理)11~12页) 1. (必修1P54测试4)已知函数y=f(x)的图象如图所示,那么该函数的单调减区间是

________. 答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ① y =1-3x ;② y=-1x ;③ y=x 2 +1;④ y=|x +1|. 答案:②③④ 3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)2a , 解得-1≤a<1. 4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________. 答案:???? ??0,32 解析:y =(x -3)|x|=?????-x (x -3),x<0,x (x -3),x ≥0, 画图可知单调递减区间是??????0,32. 5. (必修1P 54测试6改编)已知函数f(x)=mx 2 +x +m +2在(-∞,2)上是增函数,则 实数m 的取值范围是________. 答案:???? ??-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须?????m<0,-12m ≥2,解得-1 4≤m<0.综 上,实数m 的取值范围是-1 4 ≤m ≤0.

1. 增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1f(x2),那么就说函数f(x)在区间D上是单调减函数.(如图(2)所示) 2. 单调性与单调区间 如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间). 3. 判断函数单调性的方法 (1) 定义法:利用定义严格判断. (2) 利用函数的运算性质. 如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1 f(x) 为减函数(f(x)>0); ③ f(x)为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

2015届高考数学总复习第二章 函数与导数第1课时 函数及其表示课时训练

第二章 函数与导数第1课时 函数及其表示 1. 下列对应f 是从集合A 到集合B 的函数有________个. ① A =N ,B =N *,f :x →y =|x -2|; ② A ={1,2,3},B =R ,f(1)=f(2)=3,f(3)=4; ③ A =[-1,1],B ={0},f :x →y =0. 答案:2 2. 已知函数y =f(x),集合A ={(x ,y)|y =f(x)},B ={(x ,y)|x =a ,y ∈R },其中a 为常数,则集合A ∩B 的元素有________个. 答案:0或1 解析:设函数y =f(x)的定义域为D ,则当a ∈D 时,A ∩B 中恰有1个元素;当a ?D 时,A ∩B 中没有元素. 3. 若f(x +1)=x +1,则f(x)=___________. 答案:x 2-2x +2(x ≥1) 解析:令t =x +1,则x =(t -1)2,所以f(t)=(t -1)2+1. 4. 已知函数φ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且φ????13=16,φ(1)=8,则φ(x)=________. 答案:3x +5 x (x ≠0) 解析:由题可设φ(x)=ax +b x ,代入φ????13=16,φ(1)=8,得a =3,b =5. 5. 已知函数f(x)=3x -1,g(x)=? ????x 2-1,x ≥0,2-x ,x<0.若x ≥1 3,则g(f(x))=________. 答案:9x 2-6x 解析:当x ≥1 3 时,f ()x ≥0,所以g(f(x))=(3x -1)2-1=9x 2-6x. 6. 工厂生产某种产品,次品率p 与日产量x(万件)间的关系为p =? ?? 1 6-x ,0c (c 为常数,且0c 解析:当x>c 时,p =23,所以y =????1-23·x ·3-23·x ·32=0;当0

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

2第二章 导数与微分答案

第二章 导数与微分答案 第一节 导数概念 1.填空题. (1) ()'f 0= 0; (2) (2, 4) (3) 1 . (4) =a 2 ,=b -1 . 2.选择题. (1)B ; (2)B ; (3) C ; (4)D ; (5) B ; (6)B 3.解 令)(t v 表示在t 时刻的瞬时速度,由速度与位移的关系知 ()().5)21(lim 2 ) 22(lim 22lim )2()2(22222' =++=-+-+=--==→→→t t t t t s t s s v t t t 4.设()? x 在x a =处连续,()()()f x x a x =-?, 求()'f a ;若)(||)(x a x x g ?-=,()x g 在x a =处可导吗? 解(1)因为()? x 在x a =处连续, 故)()(lim a x a x ??=→,所以 ()()()).()(lim 0 )(lim lim )('a x a x x a x a x a f x f a f a x a x a x ???==---=--=→→→ (2)类似于上面推导知 ()()()),(0 )(lim lim )(' a a x x a x a x a g x g a g a x a x ??=---=--=++ →→+ ()()()).(0)(lim lim )(' a a x x a x a x a g x g a g a x a x ??-=----=--=--→→- 可见当()0=a ?时,()0)(' ==a a g ?;当()0≠a ?时,())(' ' a g a g -+≠, 故这时()x g 在x a =处不可导。 5.求曲线y x =-43在点()12,-处的切线方程和法线方程. 解 根据导数的几何意义知道,所求切线的斜率为 ,4|4|131'1=====x x x y k 从而所求切线方程为 ),1(4)2(-=--x y 即 64-=x y .

相关文档
相关文档 最新文档