文档库 最新最全的文档下载
当前位置:文档库 › 西安交大概率论2016-2017期末精彩试题解答

西安交大概率论2016-2017期末精彩试题解答

西安交大概率论2016-2017期末精彩试题解答
西安交大概率论2016-2017期末精彩试题解答

概率论与数理统计试题

2016—2017第一学期(期末)试题解答

一、完成下列各题(每小题4分,共24分) 1. 设随机事件A ,B ,C 相互独立,21)()(==B P A P ,4

1

)(=C P ,分别求出)(C B A P 及)(BC A P -的值。

解:)(1)()(1)()(1)(C P C P B P B P A P A P -=-=-=,, ∵C B A ,,相互独立 所以C B A ,,也相互独立

)()()(),()()(),()()(C P B P C B P C P A P C A P B P A P B A P ===

)()()()()()()()(C B A P C B P C A P B A P C P B P A P C B A P +---++=

16

15

=

))()(())(()()(C A B A P C B A P BC A P BC A P ===-

16

7)()()()()()()()()()(=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P 相关知识:

①_)()()()()(1)(AB P B P A P B A P A P A P -+=-= ,(书P11) ②事件的相互独立性:)()()(,B P A P AB P B A =?相互独立

四对事件}B ,A {,}B {A,B},,A {B},{A,中有一对是相互独立的,则另外三对也相互

独立,此结论可推广至n 个事件的情形。(书P20) ③事件的差:B A B A =- ④De Morgan 律:B A AB =

2. 房间内有5个人,每个人在一年中(按12个月计算)每个月出生的概率相等,求5个人中至少有两个人生于同一个月的概率。

解:设人中至少两人生于同月事件5=A

则人中无人同月出生5=A

则144

89

)()(114455

12)(5

5

5512=

-==?=A P A P A C A P 5人中至少两人生于同月概率144

89)(=A P 相关知识:

①正难则反:发现某件事情的概率很难求时,可以考虑其对立事件的概率,再应用

)(1)(A P A P -=来求解。

②乘法原理:做一件事需经过n 个不同的步骤,而第i 步有i m 种方法,则完成它有

∏=n

i i

m

1

种不同的方法。

3. 设随机变量)(~λP X ,且的值。,求)3()2(4)1(≥==≤X P X P X P

解:)!

2(

4)1()1()0()1(2λ

λ

λλ--?=+==+==≤e e

X P X P X P

两边同除λ-e ,得221λλ=+ 解得1=λ或2

1

-=λ(舍去)

因此!

,k )k ()1(~1

-==e X P P X

)2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P

12

51--=e

综上12

51)3(--=≥e X P

相关知识:泊松分布:P37

设随机变量X 有!

)(k e k X P k λ

λ-=

=,则称X 服从参数为λ的泊松分布,记为

)(~λP X 。其中且为常数;02,1,0>=λ k 。

4. 将一颗均匀骰子独立上抛两次,观察出现点数。若两次出现点数和为8或10即可获奖。求获奖概率。

解:设第一次上抛出现点数为X ,第二次上抛出现点数为Y 。

由上表可见,9

2

368))10()8((===+=+Y X Y X P 则获奖概率9

2=

P 5. 设随机变量X 与Y 相互独立且同分布,X 的概率密度为??

?>=-)

(0

)0()(其他x e x f x

λλ,

0>λ,若3)1(-=>e X P ,求)2),(min(≤Y X P 的值。

解:31

1

)()1(--∞+-+∞

==-==

>?

e e e dx x

f X P x

λλ,则3=λ。

)2()2(1)2),(min(1)2),(min(>>-=>-=≤Y P X P Y X P Y X P

因为X ,Y 同分布

所以62

)()2()2(-+∞

==

>=>?

e dx x

f Y P X P

所以121)2),(m in(--=≤e Y X P

相关知识:二维随机变量函数的概率分布(书本P62~P67)

①??+∞

-+∞

--=-=

+=dy y y z f dx x z x f z f Y

X Z z ),(),()(

②dy y yz f y z f Y

X Z z ),(||)(?+∞

-==

)

,min(),,max(Y X m Y X M ==))(1))((1(1)()()()(z F z F z F z F z F z F Y X m Y X M ---==

6. 设总体X 服从二项分布n x x x p m b ,,,),,(21 是来自x 的简单随机样本。 试求①参数p 的矩估计量 ②2

p 的无偏估计量。

解:①∑====n

i i X n A mp X E 1

111)(α

由矩估计法可得,)(1

??211n x x x n

p m +++== α 所以有)(1

?21n x x x mn

p

+++= ②)()1(2X D p mp =-=μ

2μ的无偏估计量是)(11

1

22∑=--=

n

i i n X n X n S 2122

21

11???X n n

X n p m p m n i i

---=-=∑=μ 承上题,p

m ?的无偏估计量是X 所以2122

1

11?X n n X n p m X n i i

---=-∑= )11112(1?1

2

22

∑=----=n i i X n X n n m p

相关知识:

①若),(~p m B X ,则)1()(;)(p mp X D mp X E -==。

②求)(2X E : )()()();()()(2222X E X D X E X E X E X D +=-=

③无偏估计量的定义:若θθ=)?(E ,则称θ?是θ的一个无偏估计量。(书本P153)

矩估计法:(书本P145)

二、已知某批产品中90%是合格品,检查时,一个合格品被误认为次品的概率是0.05,次品

误认为是合格品的概率是0.02,试求:

①一个产品经检查后被认为是合格品的概率。

②一个经检查后被认为是合格品的产品确是合格品的概率。

解:①设。某产品被认为是合格品某产品是次品;某产品是合格品;===A B B 21

则21B B ,构成一个互斥完备事件组。 则 1.0)(9.0)(21==B P B P

02.0)|(95.0)|(21==B A P B A P

%

7.85)

|()()|()()(2211=+=B A P B P B A P B P A P

所以某产品被认为是合格品的概率%7.85)(=A P 。 ②承上题,即求)|(1A B P 则%8.99857

855

)|()()|()()|()()()()|(22111111≈=+==

B A P B P B A P B P B A P B P A P AB P A B P

所以经检查后认为是合格品的确实是合格品的概率为%8.99857

855

)|(1≈=A B P 相关知识:

全概率公式与贝叶斯公式(书本P17)

①全概率公式:若事件n B B B ,,21构成互斥完备事件组,则

∑=j

j j B A P B P A P )|()()(。

用法:可以将复杂事件概率分解为若干互斥的简单事件的分概率。 ②贝叶斯公式:∑=

=

j

j j i i i B A P B P B P A P AB P A B P )

|()()

()()()|(。 用法:可以由事情的结果去推测原因。

三、随机变量X 的概率密度?????≤≤-

=其他0

)20(21)(x x

x f ,令12+=X Y ,试求

①X 的分布函数)(x F ②Y 的概率密度 ③)31(<

解:①????

???<≤≤+-<==?∞-)2(1

)20(4

1

)0(0

)()(2x x x x x dx x f x F x

所以????

???<≤≤+-<=)2(1

)20(4

1)0(0

)(2x x x x x x F

②??

???

?

?<≤≤-+-<=-=-≤=≤=)

5(1

)51(169

10)1(0

)21()21()()(2y y y y y y F y X P y Y P y F X Y 所以???????>≤≤+-<==)5(0

)51(8

58)1(0

)()('

y y y y y F y f Y Y

③4

1

431)1()3()31(=-=-=<

1)31(=

<

四、设随机变量21,Y Y 相互独立,都服从参数为P 的(0,1)分布,若2

1

=

P ,且令???≠+-=+=k

Y Y k Y Y X k 212111,2,1=k 。

①求二维随机变量),(21X X 的联合分布律。②分别求出),(21X X 关于21X X ,的边缘分布律。③21X X ,是否相互独立?证明你的结论。

解:①由题意得,???

? ?

?-P P

Y Y 110

~21,;21=P 。

则容易得到???

??

?

???

??==+≠+==-==≠+≠+=-=-===+=-====+=+===41

)21()1,1(41)21()1,1(21

)1()1,1(0)21()1,1(2121212121212121212121Y Y Y Y P X X P Y Y Y Y P X X P Y Y P X X P Y Y Y Y P X X P 且且且

③21X X ,不相互独立:

证明:)

1()1()1,1(41)1(,21)1(,0)1,1(21212121==≠===

==

====X P X P X X P X P X P X X P

因此,由事件独立性定义,21X X ,不相互独立。 相关知识:

①二项分布。(书本P34)

②事件独立性定义。(书本P20)

五、二维随机变量),(Y X 概率密度为???<<=-其他0

0),(y

x e y x f y 。

①求边缘密度函数)()(y f x f Y

X 及。②求条件概率密度)|(|y x f Y X 。 ③令Y X Z +=,求Z 的概率密度函数。

解:①???≥<==-+∞

-?)0()

0(

0),()(x e x dy y x f x f x

X

???≥<==

-+∞

-?)0()0(0

),()(y ye y dx y x f y f y Y ②条件概率密度)0()

()

,()|(|≥=

y y f y x f y x f Y Y X

??

???<<<<=)0(0)

0(1

)|(|x y y x y

y x f Y X ③?+∞

--=

dx x z x f z f Z ),()(

当0

当0≥z 时,z z z x

z z y

Z e e

dx e

dx e z f --

+---===?

?

2

2

2

)(

所以???

??≥-<=--)0()0(0)(2z e

e z z

f z z Z

相关知识:

①二维随机变量函数的概率分布。(书本P62)

②边缘概率密度。(书本P49)??+∞

-+∞

-=

=

dx y x f y f dy y x f x f Y X ),()(;

),()(

③条件概率密度。(书本P53))

()

,()|(|y f y x f y x f Y Y X =

六、设总体X 的概率密度函数?????<>=-)0(0)

0(2),(2

x x e x x f x

θθθ,其中0>θ为未知参数,

n X X X ,,,21 为总体X 的简单样本。

①求θ的最大似然估计量2?θ ②2?θ是否为θ的相合(一致)估计量?证明你的结论。

解:①似然函数)0(2

)(1

2

1

≥∑=

=-=∏i X n

n

i i

n

X e

X

L n

i i θ

θ

θ

对数似然函数θ

θθ∑∑==-

-+

=n

i i

n

i i

X

n X

n L 1

21

ln ln 2ln )(ln

当0)

(ln =??θ

θL 时,02

12

=+-∑=θθn

i i

X

n ,∑==n i i X n 1

2

21?θ

所以极大似然估计量:∑==n i i X n 1

2

21?θ

②2?

θ是θ的相合(一致)估计量。

证明:有θθθθ

=====??+∞

-

+∞0

2222

2

2),()()(1)?(dx xe dx x f x X E X nE n

E x

因此)(1)(1)?(;)?(21

2222i n

i i X D n X D n D E ===∑=θθθ 由Chebyshev 不等式(书本P105)知,对0>?ε,有

2

222222)(1)?(1)|)?(?(|)|?(|εεθεθθεθθn X D D E P P -=-><-=<-

所以

1))(1()|?(|1)(1)|?(|122

22

2

2

lim lim →-><-≥-><-≥∞

→∞→εεθθεεθθn X D P n X D P n n

由夹逼准则知,对0>?ε,

1)|?

(|2

lim =<-∞

→εθθP n

故2?

θ是θ的相合(一致)估计量。 相关知识:

①极大似然估计法(书P147):似然函数∏==

n

i i

x f L 1);()(θθ,

固定),,2,1(n i x i

=,

当)(θL 取最大值时,对应),,,(??21n

x x x θθ=成为极大似然估计量。(0)

(=??θθL ) 为了计算简便,通常改求对数似然函数))((ln θL 的极值点。(0))

((ln =??θ

θL )

)(θL 和))((ln θL 通常有相同的极值点

②对0>?ε,如果有1)|?(|lim =<-∞

→εθθ

P n ,则称θ?是θ的相合(一致)估计量。 ③切比雪夫不等式:2

)

(1)|)((|εεX D X E X P -><-。

七、设总体Y X ,相互独立,),(~),,(~222211σμσμN Y N X ,2

22211σμσμ,,,均未知,今分别从两总体中抽取样本,得到观测值如下:

:X 24.3 20.8 23.7 21.3

17.4

:Y 18.2 16.9 20.2 16.7

①利用总体X 的样本观测值,求1μ的置信度为95.01=-α的置信区间。 ②检验假设:)05.0(:1:02

2212

2

2

1=≠=ασσσσH H

(已知上侧分位数点:776.2)4(,98.9)4,3(,10.15)3,4(025.0025.0025.0===t F F )

解:①由题意得,有)1(~)

(1--=

n t S

X n T μ

在本题中,5.211);4(~)(55

11==-=∑=i i X n X t S X T μ

505.7)5(41251

2

=-=∑=X X S i i

95.0))4()4((025.0025.0=<<-t T t P

解得901.24099.181<<μ

所以求1μ的置信度为95.01=-α的置信区间为)901.24,099.18(。

②由题意得)1,1(~2122

2222

121

1--=

n n F S

S F n n σ

σ

在本题中,)3,4(~2

2222

2121

1F S S F n n σσ=

假设0H 为真,则12221=σσ,)3,4(~22

2

1F S S F =

拒绝域为)3,4()3,4(2

2

1ααF F F

F ><-

100.0)

4,3(1

)3,4(2

2

1==

-

ααF F

10.15)3,4(2

=αF ,|)(|μ-X E

事实上,894.2150

389505

.7==

F 不在拒绝域内,接受0H 。 相关知识:

①假设检验的一般步骤。(书本P179)

②抽样分布,正态总体的抽样分布。(书本P129)

八、设n X X X ,,,21 是来自正态总体),(2

σμN 的简单随机样本,X 为样本均值,令

∑∑====-=n i i i n

i i i i Z a Z Z n Z X Z 112

,1,)(μ,其中0>i a ,n t ,,2,1 =且满足11

=∑=n

i i a 。

①证明Z 是2σ的无偏估计量,且在2

σ的所有形如∑==n

i i

i Z

a Z 1

的无偏估计量中Z 的方差最

小。

②求数学期望)(μ-X E 。

解:①证明:22)()()(σμ==-=X D X E Z E i i

因此21

2)(σσ==

∑=n

i i a Z E ,故Z 是2

σ的无偏估计量,得证。

4

4

2

222

1

22)();

(1

2)(

);1(~)(;

)()(σσ

σ

χσ

μ

σ===-==∑=i i i

i i

n

i i i Z D Z D Z D X Z Z D a Z D

所以)(2)(

22)(4

2214

1

2

4Z D n n n a a a a Z D n n

i i

==?+++≥=∑=σσσ 当且仅当n a a a === 21时取等号。 即Z Z =时,)(Z D 最小。

因此,在所有Z 中,Z 的方差最小。

②令)1,0(~N N

X Y σ

μ

-=

,则π

2

)(2)(0

=

=?+∞

dy y yf Y E

因此,π

σ

σ

μn Y E n

X E 2

)()(==

-。 相关知识:

①均值不等式:平方平均数≥算术平均数≥几何平均数≥调和平均数

即n

n n n a a a n a a a n a a a n a a a 1112121212

2221+++≥

≥+++≥+++ ②若)1,0(~N Y ,则2

2

21)(y Y e y f -=π

概率论期末试卷

填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 2014-2015学年《概率论与数理统计》期末考试试卷 (B) 一、填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 3.设随机变量 X 的分布函数为,4 ,1 42 ,7.021 ,2.01 ,0 )(???? ?? ?≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为 X 1 2 3 p k 0.5 0.3 a 则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ . 5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论期末考试试题

1.全概率公式 贝叶斯公式 1.某保险公司把被保险人分成三类:“谨慎的”、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.3。并且它们分别占投保总人数的20%,50%和30%。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少? 解:设A i 、A 2、A 3分别表示“谨慎的” “一般的”和“冒失的”保险户,B 表示“发生事故”,由贝叶斯公式知 057 .030 .03.015.05.005.02.005 .02.0) |()()|()()|()() |()()|(332211111≈?+?+??= ++=A B P A P A B P A P A B P A P A B P A P B A P 2.老师在出考题时, 平时练习过的题目占60%. 学生答卷时, 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对的概率为30%, 求: (1) 考生在考试中答对第一道题的概率; (2) 若考生将第一题答对了, 那么这题是平时没有练习过的概率. 3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3。在三地拉到一级菜的概率分别为10%,30%,70%。 1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。 解:1、 解:设事件A 表示拉到一级菜,1B 表示从甲地拉到,2B 表示从乙地拉到, 3B 表示从丙地拉到 则1()0.2P B =,2()0.5P B =;3()0.3P B = 1()0.1P A B =,2()0.3P A B =, 3()0.7P A B = 则由全概率公式得 3 1 ()()(/)i i i P A P B P A B ==?∑=0.20.10.50.30.30.70.38?+?+?=—(7分) (2)拉的一级菜是从乙地拉得的概率为 222()()0.50.3 ()0.3947()0.38 P B P A B P B A P A ??= ==—————————(10分) 2.一维随机变量 5.设随机变量X 在区间[0,1]上服从均匀分布,求随机变量 2X Y=e 的密度函数. 6. ).1,0(~-X Y ),,N(~X 2N σμ = σμ用分布函数法证明:已知 证明: 设 b aX Y x f X x +=),(~, 则0≠a 时,Y~ )(y f Y =a 1)(a b y Y f - {}{}) 1,0(~21 2)()()()()()(2 2)(22 2 N Y e e y f y F y F y f y F y X P y X y Y P y F y y X X Y Y X Y ∴π = σ πσ =σμ+σ=μ+σ'='=μ+σ=μ+σ≤=? ?? ???≤ σ μ -=≤=- σμ-μ+σ- 7.设随机 7.变量X 的密度函数

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的 概率为__________. 答案: 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率统计期末试卷.docx

浙 江 工 业 大 学 概 率 统 计 期 末 试 卷 ( A ) (2009 ~ 2010 第 一 学 期) 2010-1-14 任课教师 学院: 班级: 上课时间:星期 ____,_____节 学号: 姓名: 一、选择题(每题 2 分 , 共 10 分) 1. n 个 随 机 变 量 X i (i 1,2,3, , n) 相 互 独 立 且 具 有 相 同 的 分 布 , 并 且 E( X i ) a , D( X i ) b , 则这些随机变量的算术平均值 X 1 n 的数学期望和方差分别 X i n i 1 为 ( ) ( A ) a , b ( B ) a , b ( C ) a , b ( D ) a , b 2 2. n n 2 n n 设 X 1 , X 2 , , X 500 为独立同分布的随机变量序列 , 且 X 1 ~ B(1, p) , 则下列不正确的为 ( ) 1 500 500 ~ B(500, p) (A) X i p (B) X i 500 i 1 i 1 500 ( ) ( ) P a X i b (C) i 1 500 b 500 p a 500 p (D) P a X i b Φ Φ . i 1 500 p(1 p) 500 p(1 p) 3. 设0 P( A) 1,0 P(B) 1, P(A | B) P( A | B ) 1, 则 ( ) (A) P( A | B) P(A) (B) B A (C) AB (D) P( AB) P( A)P(B) 4. 如果随机变量 X ,Y 满足 D( X Y) D ( X Y ) , 则必有 ( ) (A) X 与 Y 独立 (B) X 与Y 不相关 (C) DY 0 (D) DX 5. 设 A 和 B 是任意两个概率不为零的不相容事件 , 则下列结论中肯定正确的是 ( ) (A) A 与 B 不相容 (B) A 与 B 相 容 (C) P( AB) P( A)P(B) ; (D) P( A B) P( A) P(B) 二、填空题(每空 3 分 , 共 30 分) 1. 设 X ~ N (1, 1/ 2), Y ~ N (0, 1/ 2) , 且相互独立 , Z X Y , 则 P(Z 0) 的值为 ( 结果用正态分布函数 表示 ).

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

《概率论与数理统计》期末考试试题及解答(DOC)

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

概率统计期末试卷 答案

2013年下学期概率统计模拟卷参考答案 1. 设A, B, C 是三个随机事件. 事件:A 不发生, B , C 中至少有一个发生表示为(空1) . 2. 口袋中有3个黑球、2个红球, 从中任取一个, 放回后再放入同颜色的球1个. 设B i ={第i 次取到黑球},i =1,2,3,4. 则1234()P B B B B =(空2) . 解 用乘法公式得到 )|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P = .32a r b a r a r b r a r b a b r b b +++?++?+++?+= =3/70 3. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927 . 则每次试验成 功的概率为(空3) .. 解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是27 19,那么一次都没有成功的概率是278. 即278)1(3 = -p , 故 p =3 1 . 4. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 2 2 ()()2E X E Y ==, 则2 [()]E X Y +=(空4) . 解 2 2 2 [()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++ 42420.52 6.XY ρ=+=+??= 5. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||}P X E X -()≥3=(空5) . 解 由切比雪夫不等式, 对于任意的正数ε, 有 2() {()}D X P X E X εε -≥≤, 所以 2 {||}9 P X E X -()≥3≤ . 6. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X 的样本, 2 12()k X X -为2σ的无 偏估计. 则常数k =(空6) . 解 由于2 2 2 121122[()][(2)]E k X X kE X X X X -=-+ 22211222[()2()()]2k E X E X X E X k σσ=-+==, 所以k = 1 2 为2σ的无偏估计. 1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) P (A )=0或P (B )=0.. (D) 以上答案都不对.

概率论期中考试试卷及答案

1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 解: 把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有 30 2415=C C 种方法 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故 12572 625360)(= =B P 2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设x,y 分别为两船到达码头的时刻。 由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。设A 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 () x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求: (1) 该件商品是次品的概率。 (2) 该件次品是由第一厂家生产的概率。 解: 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

概率统计期末考试真题经管类

2007级经管类《概率统计》期末试卷 一、1设B A ,是两随机事件,且()0.3,P A B -=(1)若B A ,互不相容,求()P A ;(2)若(|)0.4P B A =,求()P A ;(3)若()0.7P A B ?=,求)(B P 。 2.钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别为40%、35%、25%,而掉在上述三处地方被找到的概率分别为、和. (1)求找到钥匙的概率;(2)找到了钥匙,求它恰是在宿舍找到的概率 二、1.随机变量 X ~?? ? ??≤<-≤≤=他其,021,21 0,)(x x x x x f 求:(1) X 的分布函数)(x F ;(2)(0.25)P X > 2. 袋装食盐每袋净重为随机变量,规定每袋标准重量为500克,标准差为10克,一箱装100袋.求一箱食盐净重超过50250克的概率. 三、1. 随机向量),(Y X 的联合分布如下表所示,求: (1)关于X 、Y 的边缘分布; (2)ov(,)0.08,()C X Y D X Y =-已知求 . 2 设随机变量X 服从[1,2]上的均匀分布,Y 服从(5,4)N ,且X 与Y 相互独立。(1)写出随机变量X 的密度函数)(x f X 与Y 的密度函数)(y f Y ;(2)写出随机向量()Y X ,的联合密度函数(,)f x y ;(3) ()1,5P X Y >> 四、 1. 已知总体X 的概率密度函数为

?? ?<<=-其他 1 0),(1 x x x f θθθ 其中θ为未知参数,对给定的样本观察值n x x x ,...,,21,求θ的最大似然估计。 2. 某洗涤剂厂有一台瓶装洗涤精的罐装机,在正常生产时,每瓶洗涤精的净重服从正态分布),(2 σμN ,均值454g μ=,标准差g 12=σ,为检查近期机器是否正常,从生产的产品中随机抽出16瓶,称得其净重的平均值456.64X g =.假定总体的标准差σ没有变化,试在显著性水平05.0=α下检验罐装机是否正常。 五、1、总体X ~),(2 σμN ,321,,X X X 是取自总体的简单随机样本。∑==3 1 131?i i X μ ,;414121?3212X X X ++=μ 32135 1 5152?X X X ++=μ,3411?4i i X μ==∑为总体均值μ的四个估计量.其中哪些是μ的无偏估计量,哪一个较有效,为什么 2、用机器自动包装某种产品总体服从正态分布,要求每盒重量为100克,今抽查了9盒,测得平均重量102克,样本标准差为4克,求总体方差2 σ 的95%的置信区间 六、为确定价格与销售量的关系的统计资料如下表: 数据分析结果为 回归统计 Multiple R R Square Adjusted R Square 标准误差 观测值 9 方差分析 df SS MS F Significanc

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

《概率论》期末考试试题A卷及答案

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3 )(===k a k X P k 则a = 3 2 . 解答:32233 111310 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++

《概率论》期末考试试题

《概率论》期末考试试题 1. 一本书共有1,000,000个印刷符号, 排版时每个符号被排错的概率为0.0001, 校对时每个排版错误被改正的概率为0.9, 求在校对后错误不多于15个的概率. 2. 某赌庄有资产100,000元. 另有一赌徒拥有无穷大的赌资, 试图使该赌庄破产. 他每次压注1000元, 每次赢钱的概率为0.49而输钱的概率为0.51. 问该赌徒能使赌庄破产的概率为多大? 3. 考虑[0,∞]上的Poisson 过程, 参数为λ. T 是与该Poisson 过程独立的随机变量,服从参数为μ的指数分布. 以T N 表示[0,T ]中Poisson 过程的增量, 求T N 的概率分布. 4. 设ξ1ξ2……ξn 是独立同分布随机变量, 且三阶中心矩等于零, 四阶矩存在,求∑==n k k n 11ξξ和21)(1ξξ-∑=n k k n 的相关系数. 5. 设X 是连续型随机变量,密度函数f X (x)= (1/2)exp(-|x|), -∞< x < ∞. a. 证明特征函数φX (t) = 1/(1+t 2). b. 利用上述结果和逆转公式来证明 dt t e dt t e e ixt ixt x ) 1(1)1(122||+=+= ??∞∞-∞ ∞---ππ 6. 设随机变量序列ξn 依概率收敛于非零常数a, 而且ξn ≠0. 证明1/ξn 依概率收敛于1/a. 7. 假设X 与Y 是连续型随机变量.记Var[Y|X=x]为给定X=x 的条件下Y 的方差. 如果E[Y|X=x]=μ与X 无关, 证明EY=μ而且VarY=?∞ ∞-=dx x f x X Y Var X )(]|[. 8. 设{ξn }为独立随机变量序列, 且ξn 服从( -n, n)上的均匀分布, 证明对{ξn }中心极限定理成立. 9. 设X,Y 和Z 的数学期望均为0, 方差均为1. 设X 与Y 的相关系数为ρ1, Y 与Z 的相关系数为ρ2, X 与Z 的相关系数为ρ3. 证明 213ρρρ≥211ρ--22 1ρ-. 10. 用概率方法证明如下Weierstrass 定理:对区间[0,1]上任何连续函数f(x), 必存在多项式序列{b n (x)}, 使在区间[0,1]上一致地有b n (x) → f(x). 附: 常用正态分布函数值: Φ(1.28)= 0.9, Φ(2)= 0.977, Φ(2.33)= 0.99, Φ(2.58)= 0.995 Φ(1.64)= 0.95, Φ(1.96)= 0.975,

北民大概率论期末考试试题分析

北方民族大学试题 课程代码:24100082 课程:概率论与数理统计(A 卷) 一、填空题:(每小题3分,共30分) 1.设8.0)(,5.0)(==A B P A P ,则=)(AB P ______ 。 2.设在一次试验中,事件A 发生的概率为p,现进行n 次独立试验,则A 至少发生一次的概率为 ______ 。 3.设X 的分布律为 则分布函数值=)2 5 (F ______ 。 4.设随机变量X ~N(0,1),)x (Φ为其分布函数,则)()x x -Φ+Φ(=______ 。 5.已知连续型随机变量X 的分布函数为 2200,1),1(31 ,31)(≥<≤

9. 设随机变量X 与Y 相互独立,且,2)(,1)(==Y D X D 则=-)(Y X D ______ 。 10.若4321,,,X X X X 为来自正态分布N(0,4)的样本,则∑=4 1 241i i X ~__ ____ 分布 。 二、设有N 件产品,其中有D 件次品,今从中任取n 件,问其中恰有k(D k ≤)件次品的概率。(10分) 三、设随机变量X 的概率密度函数为, 其他 10,0,3)(2<≤???=x x x f 求: (1)X 的分布函数;(2)? ?? ???≤<-212 1 X P .(10分) 四、设随机变量X 具有概率密度, 其他 ,0,)(>???=-x e x f x 求随机变量2X Y =的概率密度。(10分) 五、设二维离散型随机变量(X,Y )的联合分布律为 若随机变量X 与Y 相互独立,求:常数βα,.(10分) 六、已知二维随机变量(X,Y )的联合密度函数为 , 其他,,, 10,10,0,)1(4)(<<<

相关文档
相关文档 最新文档