文档库 最新最全的文档下载
当前位置:文档库 › 振动 标准 方法

振动 标准 方法

振动  标准  方法
振动  标准  方法

振动一般可以用以下三个单位表示:mm、mm/s、mm/(s^2)。

mm振动位移:一般用于低转速机械的振动评定;

mm/s振动速度(振动烈度):一般用于中速转动机械的振动评定;

mm/(s^2)振动加速度:一般用于高速转动机械的振动评定。

在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。

评判和监测时用mm/s。但也可以用mm(即双振幅)来测量评判:

1、也有些标准给出双振幅质量标准。比如,2970转/分钟的离心泵,轴承处振动合格标准小于等于0.05mm;优秀标准小于等于0.03mm;

2、大型旋转机械在测量评价转轴振动时。比如用电涡流探头测量轴振动,优秀标准小于等于70微米,合格标准小于等于120微米;

3、用那个振动单位和设备使用单位的测量手段和习惯也有关,一般运行巡检,用手持测振仪监测,用mm的也很多。

按轴承振幅的评定标准

1969年际电工委员会(IEC)推荐了汽轮发电机组的振动标准,如表1所示(峰-峰值,μm)。原水电部规定的评定汽轮发电机组等级与IEC标准基本相符,如表2所示(峰-峰值)。

表1 IEC振动标准

转速(r/min)1000 1500 1800 3000 3600 6000 12000

在轴承上测量 75 50 42 25 21 12 6

在轴上测量 150 100 84 50 42 25 12

表2 振动标准

转速(r/min)优良合格

1500 30 50 70

3000 20 30 50

按轴承振动烈度的评定标准

国际标准化组织ISO曾颁布了一系列振动标准,作为机器质量评定的依据。现将有关标准介绍如下:

⑴ ISO2372/1:

该标准于1974年正式颁布,适用于工作转速为600~12000r/min,在轴承盖上振动频率在10~1000Hz范围内的机器振动烈度的等级评定。它将机器分成四类:

Ⅰ类为固定的小机器或固定在整机上的小电机,功率小于15KW。

Ⅱ类为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。

Ⅲ类为刚性或重型基础上的大型旋转机械,如透平发电机组。

Ⅳ类为轻型结构基础上的大型旋转机械,如透平发电机组。

每类机器都有A,B,C,D四个品质级。各类机器同样的品质级所对应的振动烈度范围有些差别的,见表3。四个品质段的含意如下:

表3 ISO2372推荐的各类机器的振动评定标准

振动烈度分级范围各类机器的级别

振动烈度(mm/s)分贝(db)Ⅰ类Ⅱ类Ⅲ类Ⅳ类

0.18-0.28 85-89 A A A A

0.28-0.45 89-93 A A A A

0.45-0.71 93-97 A A A A

0.71-1.12 97-101 B A A A

1.12-1.8 101-105 B B A A

1.8-

2.8 105-109 C B B A

2.8-4.5 109-113 C C B B

4.5-7.1 113-117 D C C B

7.1-11.2 117-121 D D C C

11.2-18 121-125 D D D C

18-28 125-129 D D D D

28-45 129-133 D D D D

45-71 133-139 D D D D

表4 ISO3945评定等级

振动烈度支持类型

振动烈度(mm/s)分贝(db)刚性支承挠性支承

0.46-0.71 93-97 良好良好

0.71-1.12 97-101 良好良好

1.12-1.8 101-105 良好良好

1.8-

2.8 105-109 满意良好

2.8-4.6 109-113 满意满意

4.6-7.1 113-117 不满意满意

7.1-11.2 117-121 不满意不满意

11.2-18 121-125 不允许不满意

18-28 125-129 不允许不允许

28-45 129-139 不允许不允许

A级:优良,振动在良好限值以下,认为振动状态良好。

B级:合格,振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可期运行。

C级:尚合格,振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。

D级:不合格,振动超过停机限值,应立即停机。

振动烈度是以们可感觉的门槛值0.071mm/s为起点,到71mm/s的范围内分为15个量级,相邻两个烈度量级的比约为1.6,即相差4分贝。

⑵ ISO3945:

该标准为大型旋转机械的机械振动─现场振动烈度的测量和评定。在规定评定准则时,考虑了机器的性能,机器振动引起的应力和安全运行需要,同时也考虑了机器振动对人的影响和对周围环境的影响以及测量仪表的特性因素。

该标准所规定的振动烈度评定等级决定于机器系统的支承状态,它分为刚性支承和挠性支承两大类,相当于ISO2372中的Ⅲ与Ⅳ类。对于挠性支承,机器—支承系统的基本固有频率低于它的工作频率,而对于刚性支承,机器─支承系统的基本固有频率高于它的工作频率。

按轴振幅的评定标准

ISO7919/1《转轴振动的测量评定─第一部分总则》于1986年正式颁布。ISO/DIS79110-2《旋转机器轴振动的测量与评定─第二部分:大型汽轮发电机组应用指南》于1987年制订,它规定了50MW以上汽轮发电机组轴振动的限值,见表5和表6,分别适用于轴的相对振动与轴的绝对振动。

表中级段A,B,C的意义与前述相同。轴振动的测量应用电涡流传感器。

表5 汽轮机发电机组轴相对振动的限值(位移峰-峰值,单位μm)

极段转速(r/min)

1500 1800 3000 3600

A 100 90 80 75

B 200 185 165 150

C 300 290 260 240

表6 汽轮机发电机组轴绝对振动的限值(位移峰-峰值,单位μm)

极段转速(r/min)

1500 1800 3000 3600

A 120 110 100 900

B 240 220 200 180

C 385 350 300 290

有关轴承座与轴振动评定标准的几点说明:

⑴ 根据ISO2372及7919的规定,有以下两个准则应注意

准则一:在额定转速下整个负荷范围内的稳定工况下运行时,各轴承座和轴振动不超过某个规定的限值。

准则二:若轴承座振动或轴振动的幅值合格,但变化量超过报警限值的25%,不论是振动变大或者变小都要报警。因振动变化大意味着机组可能有故障,特别是振动变化较大、变化较快的情况下更应注意。

⑵ 根据我国情况,功率在50MW以下的机组一般只测量轴承座振动,不要求测量轴振动。功率在200MW以上的机组要求同时测量轴承座振动和轴振动。功率大于50MW、小于200MW的机组,要求测量轴承座振动,而在有条件情况下或在新机组启动及对机组故障分析时,则测量轴振动。

⑶ 轴承座振动与轴振动之间一般不存在一种固定的比例关系。

是因为两者振动与很多因素有关,如油膜参数,轴承座刚度,基础刚度等,一般可根据统计资料给出一个比例的变化范围。根据ISO资料,机组轴振动与轴承座振动的比例一般为2~6。

德国工程师协会1981年颁布了《透平机组转轴振动测量及评价》,简称VDI—2059,将机组振动状态分为良好、报警、停机三个等级,分别采用三个公式计算,转化后得到的轴相对振动如表7所示。

表7 VDI-2059汽轮发电机组轴相对振动的限值(位移峰-峰值,单位μm)转速(r/min)

1500 1800 3000 3600

良好 124 113 88 80

报警 232 212 164 150

停机 341 311 241 220

结构的强迫振动响应分析

第五章 结构的强迫振动响应分析 §5.1 概述 如果结构已经用有限元方法进行了离散化,当一个结构系统受到外激励作用时,其响应就是一个多自由度系统的强迫振动问题的解。求解多自由度系统强迫振动响应的方法之一就是直接积分法。考虑到实际结构的高维数(自由度数很大)而给求解带来的困难,往往在实际求解中采用模态叠加法。直接积分法和模态叠加法这两种方法都可以得到具有相当精度的振动响应解,并且各有其特点。 §5.2 求解强迫振动响应的直接积分法 对动力学基本方程 )}({}]{[}]{[}]{[t P U K U C U M =++ (5-1) 进行直接积分,其含义是指在对方程进行积分之前,不对其进行任何形式的变换,在积分中,实际上是按时间步长逐步积分的。这样做的实质是基于如下考虑: (1) 只在相隔t ?的一些离散时间区间上、而不是在整个时间区间上的任一个 时刻t 上满足方程,即平衡是在求解区间上的一些离散时刻上获得的。 (2) 假定位移、速度、加速度在每一个时间区间t ?内按一定规律变化,也正 是采用不同的变化形式,决定了各种直接积分解的精度、稳定性和求解速度。 首先,设}{}{}{0 00U U U 表示初始时刻(0=t )的位移、速度和加速度为已知向量,要求出从0=t 到T t =的解,则把时间段T 均分为n 个间隔n T t /=?,所用的积分是在T t t ,2,??上求方程的近似解。即要在t t t ,2,??的解已知的情况下,求解t t ?+时刻的解。 【中心差分法】 若基本方程式的平衡关系作为一个常系数微分方程组,则可以用任一种差分格式通过位移来表示速度和加速度。通常采用中心差分格式,这是一个行之有效的求解微分方程的格式。

振动诊断标准

第十章参考标准 为了方便现场诊断查找使用,我们把收集到的各类有代表性的诊断标准,按照国际标准化组织、国际电工委员会、相关国家标准和诊断对象分类列出,同时把属于同类设备的有关标准排列在一起,它们在数值上可能有些差异,我们可以根据诊断对象的具体情况参照选用。在每个标准后面,以“注”的形式简要说明了该标准的主要特点、约束条件及应用范围。 第一节国际标准化组织(ISO)的相关标准文件 一、可予采用的国际标准 ISO 1925机械振动——平衡——名词术语 ISO 1940(全部)机械振动——刚性转子的平衡品质要求 ISO 2017-1机械振动与冲击——弹性安装系统——第一部分:主动与被动隔离的应用 ISO 2041振动与冲击——名词术语 ISO 2954旋转与往复机器的机械振动——对振动烈度测量仪的要求 ISO 5348 机械振动与冲击——加速度计的机械安装 ISO 7919(全部),非往复机械的振动——在转轴上的测量及评价准则 ISO 8528-9由往复式内内燃机驱动的交流发电机组——第九部分:机械振动的测量与评定 ISO 8569机械振动与冲击——振动与冲击对室内敏感设备影响的测量与评价 ISO 10816(全部),机械振动——在非旋转部件上测量和评价机器的机械振动 ISO 11342:1998,机械振动——挠性转子机械平衡的方法与准则 ISO 13372,机器的状态监测及诊断——名词术语 ISO 13373-1,机器的状态监测及诊断——振动状态监测与诊断——第一部分:总则 ISO 13379,机器的状态监测及诊断——数据解释及诊断技术的一般指南ISO 14694,工业风机——平衡品质与振动水平技术要求

AWAB环境振动使用说明

目录 1概述2 2主要性能指标3 3结构特征6外形图6 按键6 输入输出接口7 过载指示9 工作电源9 4常见符号及名词术语10 5工作原理11 6仪器的连接和开关机11连接11 开关机11 7参数设置12参数设置菜单12 预存测点名的输入 14查看预存测点名16 8振动测量16显示界面和选项16 进行测量19 9数据管理20 9,1数据调阅20用微型打印机打印输出22 删除存储的数据23 删除存储的数据23 10频率计权相对响应(ISO8041,2 型)24 11为试验目的规定的信息25附录装箱清单26 1.概述

AWA6256B +型环境振动分析仪是一种采用数字信号处理技术的手持式分析仪,它既能测量全身垂向()计权振级(也是环境振级),又能测量全身水平()计权振级,以及不计权振动加速度级。满足GB/T 10071-1988 《环境振动测量方法》标准对振动测量仪器的要求,也符合ISO 8041:1990《人体对振动的响应——测量仪器》。 AWA6256B +型是AWA6256B 型的换代产品,与AWA6256B 型环境振动分析仪相比,主要是频率计权、检波和时间计权是通过数字信号处理技术实现的,因此稳定性更好,动态范围更大,而且以后可升级为符合正在修订中的新的环境振动国家标准要求,外形更加美观。 环境振动对人体的影响与振动的加速度有效值、振动的频率特性、振动的作用时间、振动的方向和部位等等因素有关。评价振动对人体的影响的基本量是频率计权加速度a W 或频率计权加速度级VL W (简称计权振级): 频率计权加速度(指数平均) a W:按公式4-1 进行均方根计算 1t 2 t 12 a W ,(t)a W2exp d (1) 计权振级:均方根计权加速度a w 与基准加速度a0的比值取以10 为底的对数再乘以20,即 VL W=20lg(a w/a0)(dB)(2) 式中:a W 为频率计权加速度有效值(m/s2) a0 为参考加速度(10-6 m/s2)。 本仪器内置有根据ISO 8041:1990 规定的全身垂直频率计权()和全身水平频率计权(),可分别直接测量全身垂直计权振级VL Z 和全身 水平计权振级VL X—Y 。仪器还具有平直频率计权特性,用于测量非计权加速度级VLa 。根据GB/T 10070-1980 《城市区域环境振动标准》,城市区域环境振动采用铅垂向z 振级,也就是全身垂直计权振级VL Z 作为评价量,因此本仪器可直接用于环境振动测量。 由于实际遇到的环境振动大都不是稳定的,而是随时间而变化,

超低频标准振动系统基础设计技术

2007第九届全国振动理论及应用学术会议论文集 2007.10.17~19 https://www.wendangku.net/doc/ac2744077.html, 超低频标准振动系统基础设计技术 韩冬, 何闻 (浙江大学机械与能源工程学院,浙江 杭州 310027) 摘 要:针对超低频标准振动系统易受外界振动干扰的问题,研究了超低频标准振动台与激光测振仪的隔振基础设计技术。首先以振动台台面输出信噪比为出发点,确定了超低频标准振动台基础噪声的基本要求;然后采用有限元分析的数值方法,分别对振动台基础与激光测振仪基础作动力学分析,再对激光测振仪基础作静力学分析。结果表明,振动台基础底面应与地基刚性连接,而激光测振仪基础底面应与地基弹性连接;优化橡胶减震垫的布局可以提高激光测振仪隔震系统的稳定性。 关键词:超低频 标准振动系统 基础 有限元 Design of foundation for ultra-low-frequency standard vibration system HAN Dong, HE Wen (College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027, China) Abstract:Considering the influence of external vibration on ultra-low frequency standard vibration system, the vibration insulating foundation for vibration tables and a laser vibrometer were studied. On the start point of signal-to-noise ratio, the basic requirements of background noise on the foundation was determined, then some dynamic analysis on the foundation of tables and a laser vibrometer, and static analysis on the foundation of the laser vibrometer were done with the finite element analysis method. Research results show that the bottom surface of the tables should be fixed with ground base, and the bottom surface of the foundation of the laser vibrometer should be elastically fixed with ground base. At last, the stability of the laser vibrometer system could be improved by optimizing the distribution of shocking rubber pad. Key words:Ultra-low frequency; standard vibration system; foundation; finite element analysis 引 言 目前对振动传感器进行标定主要有绝对法与相对法两种方法,而两种方法通常是在标准振动台上进行的[1]。随着科学技术的发展,尤其是地震科学技术的发展,传感器越来越要求能够测量超低频振动信号,比如英国Güralp公司生产的CMG-3T地震计、北京港震机电技术有限公司生产的BBVS-120甚宽频带地震计、东方振动与噪声研究所研制的INV9898压电加速度传感器,频率下限已达0.1Hz以下。超低频传感器对标准振动装置提出了要求,然而ISO的TC108委员会推荐的绝对法低频标准振动装置,低频校准频率为0.5Hz[2]。因此研究并开发超低频标准振动计量装置成为各国科技工作者努力的方向。 标准振动台工作于超低频段时,振动台台面输出的加速度非常小,容易受外界环境因素,比如拍岸浪、气旋风暴、地震波、车辆行人等的影响,使输出波形的失真度变大,信噪比和 作者简介:韩冬 (1982-),男,吉林人,硕士研究生,从事振动理论、测试方面的研究工作.E-mail: handongu@https://www.wendangku.net/doc/ac2744077.html,通讯作者:何闻,教授.E-mail:hewens@https://www.wendangku.net/doc/ac2744077.html,

设备振动标准

“刚性连接”中,相对的连接件之间不得有位移,在大多数的紧固中都是这样的连接。 “挠性连接”中,相对的连接件既有约束或传递动力的关系,又可以有一定程度的相对位移。 如常见的联轴器,刚性联轴器将两个部分用螺栓紧固,这样的安装要求同心度极高,稍有误差,机械就会震动,而且寿命不长。 挠性联轴器就有措施,在联轴器的两部分之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备的使用要求。 刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联 两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。属于刚性联轴器的 有套筒联轴器、夹壳联轴器和凸缘联轴器等。其它联轴器都是挠性联轴器了. 企业设备振动故障诊断 相对标准的建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际情况,从安全性、经济性出发,叙述建立适合现代企业设备管理维修的动设备振动故障诊断相对标准的方法,以及相对标准应用效果。 一、设备振动故障诊断标准 1.标准的类型及理论依据 标准有绝对标准和相对标准两大类型。绝对标准就是人们常说的国际标准。各种转动机械的振源主要来自结构设计,制造、安装质量,调试情况和环境本身。振动的存在必然不同程度引起设备自身及其附属管线的结构疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz以下),以位移作为振动标准;中频域(10Hz~1kHz),以速度作为振动标准;而高频域(1kHz以上)则以加速度作为标准。 理论已经证明,振动部件的疲劳与振动速度成正比,振动所产生的能量与振动速度的平方成正比,能量传递的结果必然造成磨损或其它缺陷。因此,在振动判断标准中,无论从疲劳损伤还是磨损等缺陷来说,以振动速度标准最为适宜。 )标准mm/s 表1 电动机器振动(v rms

AWAB环境振动使用说明

目录 1 概述 2 2 主要性能指标 3 3 结构特征 6 3.1 外形图 6 3.2 按键 6 3.3 输入输出接口7 3.4 过载指示9 3.5 工作电源9 4 常见符号及名词术语10 5 工作原理11 6 仪器的连接和开关机11 6.1 连接11 6.2 开关机11 7 参数设置12 7.1 参数设置菜单12 7.2 预存测点名的输入14 7.3 查看预存测点名16 8 振动测量16 8.1 显示界面和选项16 8.2 进行测量19 9 数据管理20 9,1 数据调阅20 9.2 用微型打印机打印输出22 9.3 删除存储的数据23 9.3 删除存储的数据23 10频率计权相对响应(ISO8041,2型)24 11 为试验目的规定的信息25 附录装箱清单26

1.概述 AW A6256B+型环境振动分析仪是一种采用数字信号处理技术的手持式分析仪,它既能测量全身垂向(W.B.z)计权振级(也是环境振级),又能测量全身水平()计权振级,以及不计权振动加速度级。满足GB/T 10071-1988 《环境振动测量方法》标准对振动测量仪器的要求,也符合ISO 8041:1990《人体对振动的响应——测量仪器》。 AW A6256B+型是AW A6256B型的换代产品,与AW A6256B型环境振动分析仪相比,主要是频率计权、检波和时间计权是通过数字信号处理技术实现的,因此稳定性更好,动态范围更大,而且以后可升级为符合正在修订中的新的环境振动国家标准要求,外形更加美观。 环境振动对人体的影响与振动的加速度有效值、振动的频率特性、振动的作用时间、振动的方向和部位等等因素有关。评价振动对人体的影响的基本量是频率计权加速度a W或频率计权加速度级VL W (简称计权振级): 频率计权加速度(指数平均) a W:按公式4-1进行均方根计算 (1) 计权振级:均方根计权加速度a w与基准加速度a0的比值取以10为底的对数再乘以20,即 VL W=20l g(a w/a0) (dB) (2) 式中:a W为频率计权加速度有效值(m/s2) a0为参考加速度(10-6 m/s2)。 本仪器内置有根据ISO 8041:1990规定的全身垂直频率计权(W.B.z)和全身水平频率计权(),可分别直接测量全身垂直计权振级VL Z和全身水平计权振级VL X—Y。仪器还具有平直频率计权特性,用于测量非计权加速度级VLa。根据GB/T 10070-1980《城市区域环境振动标准》,城市区域环境振动采用铅垂向z振级,也就是全身垂直计权振级VL Z作为评价量,因此本仪器可直接用于环境振动测量。 由于实际遇到的环境振动大都不是稳定的,而是随时间而变化,因此常常需要测量等效连续振级VL eq,它定义为在某一测点上,用某一段时间能量平均方法,将变化的振级以一个恒定的振级来表示该段时间内的振级大小,并称这个振级为此段时间的等效连续振级,即:

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

传递矩阵法在结构振动响应分析中的应用

传递矩阵法在结构振动响应分析中的应用 【摘要】传递矩阵法因其简便、快捷,已被广泛应用于机械、航空和航天等领域。本文以航空发动机低压转子临界转速分析为例,对传递矩阵法在结构振动响应分析中的应用方法和分析步骤进行了详细的介绍,并给出了某型发动机低压转子在不同支承刚度下的临界转速。 【关键词】传递矩阵;振动响应;临界转速;转子动力学 0 引言 经典传递矩阵法是20 世纪20 年代建立起来的用于研究弹性构件组成的一维线性系统振动问题的方法。经过多年的发展和完善,已经可以用于求解多圆盘轴的扭转振动问题、梁的弯曲振动模态、轴的横向振动问题、系统的静态响应和扭矩载荷响应问题、以及一维结构的振动特性分析和复合梁的振动特性等结构动力学问题。并且,由于传递矩阵法建模灵活、计算效率高等优点,已在包括光学、声学、电子学、机器人学、机械、兵器、航空、航天等诸多现代工程技术领域中得到了广泛应用[1]。 应用传递矩阵法进行分析的一般步骤为:1)结构离散化;2)建立系统传递矩阵;3)特征方程求解。 1 结构离散化 航空发动机低压转子结构简化模型见图1: 其主要组件为压气机、涡轮和低压轴。低压转子通过前、中、后3个支点与发动机转子系统相连[2]。 将该结构进行离散化处理[3-5],并将各支点简化为线弹性体后,得到图2所示模型。 离散化处理后,整个低压转子的质量将被转换为分布式质量节点。表1给出了离散化后各质量节点的质量分布情况。 2 建立系统传递矩阵 将连续结构进行离散化处理后,实体结构将被简化成等刚性无质量梁单元及分布质量点。 3 特征方程求解 以转子转速做为变量,在不同刚度参数下对特征值进行求解。在某一给定刚

故障诊断的参考标准

故障诊断的参考标准 为了获得最佳的诊断效果,在机械设备诊断的过程中应该建立设备的故障报警门限参考标准,现将国际上通用的标准列出如下: 1、ISO2372 机械振动强烈度的范围,它将振动速度有效值从0.11mm/s(人体刚有振动的感觉)到71mm/s 的范围内分为15个量级,相邻两个烈度量级的比约为1:1.58,即相差4dB。这是由于对于大多数机器的振动来说4dB之差意味着振动响应有了较大的变化。有了振动烈度量级的划分就可以用它表示机器的运行质量。为了便于实用,将机器运行质量分成四个等级:A级——机械设备正常运转时的振级,此时称机器的运行状态“良好”。 B级——已超过正常运转时的振级,但对机器的工作量尚无显著的影响,此种运行状态是“容许”的。 C级——机器的振动已经到了相当剧烈的强度,导致机器只能勉强维持工作,此时机器的运行状态称为“可容许”的。 D级——机器的振动能已达到使机器不能运转工作,此种机器的振级是不允许的。 显然,不同的机械设备由于工作要求、结构特点、动力特性、功率容量、尺寸大小以及安装条件等方面的区分,其对应于各等级运行状态的振动烈度范围必然是各不相同的。所以对各种机械设备是不能用同一标准来衡量的,但也不可能对每种机械设备专门制定一个标准。为了便于实用,ISO2372将常用的机械设备分为六大类,令每一类的机械设备用同一标准来衡量其运行质量。机械设备分类情况如下: 第一类:在其正常工作条件下与整机连接成整体的发动机和机器的零件(如15kw以下的发动机)。

第二类:设有专用基础的中等尺寸的机器(如15—75kw的发电机)及刚性固定在专用基础上的发动机和机器(300kw以下)。 第三类:安装在测振方向上相对较硬的、刚性的和重的基础上的具有旋转质量的大型原动机和其它大型机器。 第四类:安装在测振方向上相对较软的基础上具有旋转质量的大型原动机和其它大型机器(如透平发电机)。 第五类:安装在测振方向相对较硬的基础上具有不平衡损性力的往复式机器和机械驱动系统。 第六类:安装在测振方向相对较软的基础上具有不平衡惯性力的拄复式机器和机械驱动系统等。 通过大量的实验得到了前四类机械设备的运行质量与振动烈度量级的对应关系,如上表。 至于第五类、六类的机械设备,特别是往复式发动机由于结构不同,其振动特性变化很大,往往允许有较强烈的振动(如V rms=20-30mm/s)而不影响其运行质量。而安装在弹性基础上的机器受到隔振作用,由安装点传到周围物体的作用力是很小的,在这种情况下机器的振动将大于安装在刚体基础上的振动,加大转速的电机上测得的振速度有效值可达50mm/s或更大。在上述情况下用振动绝对量级来衡量机器的运行质量显然是不恰当的;就是对于第一致经四类机器,由于实际情况是千变万化的,表中所示的机器运行质量与振动 烈度的关系也只能作为参考。实践表明;比较可靠准确的办法是用振动烈度的相对变化来表示机器的运行质量。可以考虑以机器“良好”运行状态的量级为参考值,在此基础上若增大2.5倍(8dB),表明机器的运行状态已有重要变化,此时机器虽尚能进行工作,实际上已处于不正常状态;若从参考状态的基础上增大10倍(20dB),就说明该机器已需进行修理;再继续增大,机器就将处于不允许状态。上述振动烈度相对变化与机器运行质量间关系常用于以振动信号进行故障诊断时的判据。 2、ISO2373和DIN45665电动机振动标准 2 电动机状态分为三个等级:正常,良好,特佳。 3 本标准是指电动机在空转状态下的阈值。 4 诊断参数为速度有效值。 3、汽轮机及汽轮发电机组振动标准 水电部汽轮发电机组振动标准(轴承双振幅允许值)

泵类振动标准

泵类振动标准 泵类也是状态监测与故障诊断工作中接触较多的设备,我国国家标准GB-10889-1989“泵的振动测量与评价方法”等效采用ISO2373-1974来评定泵的振动烈度等级,见表19和表20。 表19 GB 10889-1989泵的分类 注:1.卧式泵的中心高规定为由泵的轴线到泵的底座上平面间的距离。 2.立式泵本来没有中心高,为了评价它的振动级别,取一个相当尺寸当做立式泵的中心高:即把立式泵的出口法兰密封面到泵轴线间的投影距离规定为它的相当中心高。 表20 GB 10889-1989泵的振动标准 分类 中心高/mm ≤225 >225-550 >550 转速/(r/min ) 第一类 ≤180 ≤1000 - 第二类 >1800-4500 >1800-1800 >600-1500 第三类 >4500-12000 >1800-4500 >1500-3600 第四类 - >4500-12000 >3600-12000

该标准适用于除潜液泵、往复泵以外的各种形式的泵和泵用调速液力耦合器,转速范围为600-1200r/min。标准规定将主要测点上在三种不同的流量工况下测得的振动速度有效值中的最大的一个定为泵的振动烈度。 对石油化工用离心式压缩机及汽轮机,API617、API612标准规定,在制造厂进行机械运转试验时,转子振动位移的峰峰值不应超过A 值或μm 中的较小值,A=(12000/n)1/2,n为最大连续工作转速。对石化大机组,转子实际运行中振幅的许可值应该遵照制造商的规定。在无制造商规定时,也可以认为: 小于A值时为优良状态,A为(12000/n)1/2 或μm中的较小值; 大于A值、小于B值时为合格状态,B=~A,转速较低时取大值,转速高时取小值,B值可设为低报警值;

区域环境振动作业指导书

区域环境振动监测 作业指导书 依据标准: GB10071-199-88 1.0 适用范围 本方法适用于: ⅰ 城市区域环境振动总体水平监测、环境背景振动调查、环境振动无人的时间与空间规律监测等; ⅱ 项目竣工验收“三同时”振动监测; ⅲ 工厂企事业振动扰民监测; ⅳ 建立工厂企事业振动监测档案; ⅴ 各类振动委托监测等。 2.0名词术语 2.1 振动加速度级VAL 加速度与基准加速度之比的以10未底的对数乘以20,记为VAL.单位为分贝,dB. 按定义此量为:V AL = 20lg 0 a a (dB) 式中: a — 振动加速度有效值, m/s 2; a 0; —基准加速度,a 0 = 10-6m/s 2 2.2 振动级VLz 按ISO2631/1—1985规定的全身振动Z 不同频率计权因子修正后得到的振动加速度级,简称振级,记为VL.单位为分贝。 2.3 Z 振动VLz

按ISO2631/1—1985规定的全身振动Z计权因子修正后得到的振动加速度级,记为VLz.单位为分贝,gB. 2.4累计百分Z振级VLzn 在规定的测量时间T内,有N%时间的Z振级超过某一个VLz值,这个VLz 值叫做累计百分Z振级,记为VLzn.单位为分贝,gB. 2.5稳态振动 观测时间内振级变化不大的环境振动。 2.6冲击振动 具有突发性振级变化的环境振动。 2.7 无规振动 未来任何时刻不能预先确定振级的环境振动。 3.0技术依据 1 GB10071-1988《城市区域环境振动噪声测量方法》 4.0 操作步骤 4.1测量仪器准备 4.1.1测量仪器性能必须符合ISO/D8041-1984有关条款的规定。 4.1.2测量系统每年至少送上海市计量测试技术研究院计量一次。 4.1.3拾振器盒监测仪器的携带盒安放应避免较大冲击,同时做好放水、防潮等仪器维护保养工作,保证仪器的正常工作状态。 4.2 现场测量 4.2.1 测量位置 测点置于各类区域建筑物室外0.5m以内的振动敏感处。必要时测量点置于建筑物室内地面中央。测量交通振动,必要时应记录车流量。 4.3 拾振器的安装 4.3.1 确保拾振器平稳地安放在平坦、坚实的地面上,避免置于如地毯、草地、沙地或雪地等松软的地面上。 4.3.2 拾振器的灵敏度主轴方向与测量方向一致。 4.4 测量条件 4.4.1 测量时振源应处于正常工作状态。 4.4.2 测量应避免足以影响环境振动测量值的其他环境因素,如剧烈的温度梯度

振动监测参数及标准(特选参考)

机械设备振动监测参数及标准 一、振动诊断标准的制定依据 1、振动诊断标准的参数类型 通常,我们用来描述振动的参数有三个:位移、速度、加速度。一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。 诊断参数在选择时主要应根据检测目的而选择。如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。 2、振动诊断标准的理论依据 各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。振动的存在必然引起结构损伤及材料疲劳。这种损伤多属于动力学的振动疲劳。它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。

美国的齿轮制造协会(AGMA )曾对滚动轴承提出了一条机械发生振动时的预防损伤曲线,如下图所示。 图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。 理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。 而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影位移恒定 一定的速度 加速度恒 定

AWA6256B 型环境振动分析仪

AWA6256B+型环境振动分析仪 一、产品概述: AWA6256B+环境振动分析仪由环境振动加速度计、主机、环境振动测量分析软件组成,主要用于环境振动测量。环境振动可同时符合 ISO8041:1990及GB/T 23716-2009(ISO8041:2005)标准;符合现行GB10070-1988标准中对仪器的要求,也可满足修订中环境振动测量仪器的要求。 AWA6256B+环境振动分析仪安装人体振动测量软件(S6291-01107),符合GB/T13441和ISO8041:2005标准,软件可以对0.5 Hz~100 Hz的全身振动进行7种频率计权、4种时间计权测量及统计分析,配置相应的座垫式加速度计用于全身振动测量;配置相应的手传振动加速度计可对5 Hz~1600 Hz的手传振动进行测量。安装低频1/3 OCT分析软件(S6291-03110) ,满足GB /T 50355-2005 标准对仪器的要求,对中心频率0.5 Hz~200 Hz.低频振动进行实时1/3 OCT分析。 二、主要技术性能: 配置1:环境振动;配置2:环境振动+人体振动;配置3:环境振动+人体振动+低频1/3 OCT; 注:手传振动因使用的传感器不同,需要单独配置。 环境振动测量人体振动测量低频振动测量(新产品) 软件配置人体振动分析软件包 (S 6291-01107) 人体振动分析软件包 (S 6291-01107) 低频1/3 OCT分析软 件包(S 6291- 01310 ) 符合标准ISO 8041: 1990 (JJG921-1996) 可升级符合 GB/T 23716-2009 (ISO 8041:2005) GB/T 23716-2009 (ISO 8041:2005) 全身振动测量符合 GB/T13441 (ISO 2631)标准, 手传振动符合 GB/T 14790.1 (ISO 5349-1), GBZ/T 189.9 GB/T 50355-2005 JGJ/T 170-2009 GB/T 3241-2010 传感器AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g 全身振动:AWA84410 型三轴向座垫加速度 计,灵敏度: 约 3 pC/ m·s-2,质 量:250 g 手传振动:AWA84181 传感器,灵敏度: 1 pC m·s-2,质 量:14 g AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g

振动系统固有频率的测试

振动系统固有频率的测试实验指导书 一.实验目的 1.学习振动系统固有频率的测试方法; 2.了解DASP-STD软件; 3.学习锤击法测试振动系统固有频率的原理与方法;(传函判别法) 二.实验仪器及简介 ZJY-601T型振动教学实验台,ZJY-601T型振动教学试验仪,采集仪,DASP-STD(DASP Standard 标准版)软件,微机。 1.ZJY-601T型振动教学实验台:主要由底座、桥墩 型支座、简支梁、悬臂梁、等强度梁、偏心电动机、 调压器、接触式激振器及支座、非接触式激振器、磁 性表座、减振橡胶垫、减振器、吸振器、悬索轴承装 置、配重锤、钢丝、圆板、质量块等部件和辅助件组 成。与ZJY-601T型振动教学实验仪配套,完成各种振 动教学实验。 它以力学和电学参数为设计出发点,力学模型合 理,带有10种典型力学结构,多种激振、减振和拾振方式。 力学结构有:两端简支梁、两端固支梁、等截面悬臂梁、等强度悬臂梁(变截面)、复合材料梁、圆板、单自由度质量-弹簧系统、两自由度质量-弹簧系统、三自由度质量-弹簧系统、悬索。 激励方式有:脉冲锤击法、正弦激励(接触、非接触式)、正弦扫描(接触、非接触式)、偏心质量、支承运动。 减振和隔振有:主动隔振、被动隔振、阻尼减振、动力减振(单式)、动力减振(复式)。 传感器类型有:压电加速度传感器、磁电式速度传感器、电涡流位移传感器、力传感器(力锤中)。 2.ZJY-601T型振动教学试验仪:由双通多功能振动测试 仪、扫频信号发生器、功率放大器组成,并集成了数据采集 器,可连接压电式加速度传感器、磁电式速度传感器或电涡 流传感器,对被测物体的振动加速度、速度和位移进行测量。 可将每个通道所测振动信号转换成与之相对应的0~5V AC 电压信号输出,供计算机使用。扫频信号发生器的输出频率 在手动档时,可通过旋钮在0.1~1000Hz范围内连续调节;在自动档时,可从10到1000Hz自动变换,扫频时间可由电位器控制,3s~240s连续可调,激振频率可由液晶显示器显示。功率放大器可直接与JZ-1型激振器或JZF-1非接触式激振器连接,对物体进行激振,其输出幅度可连续调节。3.DASP-STD(DASP Standard 标准版):是一套运行在Windows95/98/Me/NT/2000/XP平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。 DASP-STD主要包括单通道、双通道、多通道、扩展、示波采样分析和模态教学6个基本部分,可以实现信号的实时分析,即可以连续不间断地进行信号的采样,并同时进行频谱分析和结果显示,实现了采样、分析和显示示波的同步进行 三.实验原理 对于振动系统,经常要测定其固有频率,常用的方法有简谐力激振法和锤击法。本次实验用后一种方法,即通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。 通常我们认为振动系统为线性系统,用一特定已知的激振力,经可控的方法来激励结构,同时

机械设备振动标准

机械设备振动标准 1 设备振动测点的选择与标注 1.1 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分2进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。水平方向标注为H,铅垂方向标注为V ,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2 在机器壳体上测量振动时,振动传感器定位的示意图

1.2 振动监测点的标注(1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001 开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3 ~6-5 。 图6-3 振动监测点的标注 图6-4 振动监测点的标注 (2)立式机器遵循与卧式机器同样的约定 1.3 现场机器测点标注方法机壳振动测点的标注可以用油漆标注(最简单的一种方 法),标注大小与传感 器磁座大小相似;也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标

注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径 30mm, 用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7 至14 天;对接 近或高于3000转/ 分的高速旋转设备,应至少每周监测 1 次。 4)对车间级设备监测(指运行人员),监测周期一般可定为每天1 次或每班1 次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期配件;如果实测振动值接近或超过该设备停机值,应及时停机安排检修;如果因生产原因不能停机时,要加强监测,监测周期可缩短为 1 天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择对于超低频振动,建议测量振动位移和速度;对于低频振动, 建议测量振动 速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz 以下。 2)低频振动,振动频率在10Hz 至1000Hz。 3)中高频振动,振动频率在1000Hz至10000Hz。 4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 3.2 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下 几个“同” : 1 )测量仪器同; 2 )测量仪器设置同; 3 )测点位置、方向同; 4 )设备工况同; 5 )背景振动同。并尽量由同一个人测量。 3.3 振动数据采集应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还需要记录设备的其他过程参数,如温度、压力和流量等,以便于比较和趋

电动机振动、温度诊断标准(整理篇)

ISO 2372 和ISO 3945 机械振动诊断标准 在 10~1000Hz 的频段内,振动速度均方根值相同的振动,被认为具有相同的烈度,为使不同的旋转机械使用同一烈度标准进行评定,本标准根据机器的尺寸及功能(振动体质量、尺寸、机械的输出功率等)、机器——支承系统的刚性等将旋转机械分为如下 4 类:Ⅰ——小型转机,如 15kW 以下的电动机;Ⅱ——安装在刚性基础上的中型转机,功率 300kW 以下;Ⅲ——大型转机,机器—支承系统为刚性状态;Ⅳ——大型转机,机器—支承系统为挠性支承状态。 每类旋转机械分 4 个区段作振动状态评定: A 区——新交付使用的机器应达到的状态或优良状态; B 区——机器可以长期运行或合格状态; C 区——机器尚可短期运行但必须采取相应补救措施,或不合格状态; D 区——不允许状态。 ISO32373 和DIN45665(德)电动机空载振动标准

注:1.本标准把电动机按其中心高度(H)分为三个类型,中心高度越大,振动阈值越 大。 2.电动机状态判别分为三个等级:正常、良好、特佳。 3.本标准是指电动机在空 转(不带负荷)条件下的阈值。 4.诊断参数为速度有效值(Vrms)。 Y 系列电动机空载振动、速度允许值 在线运行电动机的允许振动极限值 风机和泵的振动速度有效值与振动位移幅值换算公式: SΛ 2 V f2 2Vπ f f0.225 V f f ωt Λ 式中S——位移峰值振幅(㎜); f 的振动速度有效值(㎜ /s ); Vf——频率为 角频率(ω 2π f )(Hz);振动频率( Hz)。 轴承允许使用温度 标准: GB3215-82 4.4.1 泵工作期间,轴承最高温度不超过 80 标准: JB/T5294-91

相关文档