文档库 最新最全的文档下载
当前位置:文档库 › 湖南大学材料化学电化学实验报告

湖南大学材料化学电化学实验报告

湖南大学材料化学电化学实验报告
湖南大学材料化学电化学实验报告

实验一 线性极化法测定金属Fe 在稀H 2SO 4中的腐蚀速度

一、基本要求

1. 掌握动电位扫描法测定电极极化曲线的原理和实验技术。通过测定Fe 在

0.1M 硫酸溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。 2. 讨论极化曲线在金属腐蚀与防护中的应用。 二、实验原理

当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属铁在盐酸体系中为例: 阳极反应: Fe-2e=Fe 2+ 阴极反应: H ++2e=H 2

阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。

极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。

在活化极化控制下,金属腐蚀速度的一般方程式为:

其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数

)]ex p()[ex p(

k

c a c corr k a i i i I β?

?β??---=-=

塔菲尔斜率。若以十为底的对数,则表示为b a 、b k 。

这就是腐蚀金属电极的极化曲线方程式,令 ?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度

测定腐蚀速度的塔菲尔直线外推法 当对电极进行阳极极化,在强极化区, 阴极分支电流i k =0,

改写为对数形式:

当对电极进行阴极极化,?E <0, 在强极化区,阳极分支电流i a =0

改写成对数形式:

强极化区,极化值与外测电流满足塔菲尔关系式,如果将极化曲线上的塔菲尔区外推到腐蚀电位处,得到的交点坐标就是腐蚀电流。

c

E ??-=?)]

ex p(

)[ex p(

k

a

corr E

E

i I ββ?--?=)

ex p(

a

corr a E

i i I β?==corr

a corr

a i I

b i I E lg

ln

==?β)

ex p(

k

corr E

i I β?--=corr

k corr

k i I b i I E lg

ln

==?-β

图 1 塔菲尔外推法求金属腐蚀电流的基本原理

三、实验仪器及药品

CHI660C电化学工作站1台;

烧杯一个;

汞/硫酸亚汞(参比电极)1支

Pt片电极(辅助电极)1支。

45号钢(圆柱体)电极

0.1M H

2SO

4

溶液

蒸馏水,金相砂纸

图 2 极化曲线测量示意图

四、实验步骤

1. 电极处理:用金相砂纸将45号钢电极表面打磨平整光亮,测量试样的直径,计算工作面的面积。

2.将打磨光亮的电极用蒸馏水清洗、酒精去油。

3.测量极化曲线:

(1)打开CHI660C 工作站的窗口。

(2)将三电极分别插入电极夹的三个小孔中,使电极进入电解质溶液中。将CHI 工 作站的绿色夹头夹Fe 电极,红色夹头夹Pt 片电极,白色夹头夹参比电极。 (3)测定开路电位。点击“T ”(Technique )选中对话框中“Open Circuit Potential-Time ”实验技术,点击“OK ”。点击“?”(parameters )选择参数,可用仪器默认值,点击“OK ”。点击“?”开始实验,测得的开路电位即为电极的自腐蚀电势Ecorr 。

(4)开路电位稳定后,测电极极化曲线。点击“T ”选中对话框中“Tafel ”实验技术,点击“OK ”初始电位(Init E )设为比E corr 低“-0.5V ”,终态电位(Final E )设为比Ecorr 高“1.25V ”,扫描速率(Scan Rate )设为“0.0025V/s ”灵敏

辅助电极

极化电解池

工作电极

参比电极

参比电池

盐桥

恒电位仪

度(sensivitivty )设为“自动”,其它可用仪器默认值,极化曲线自动画出。 (5)自腐蚀电流的拟合,打开CHI660C 的控制软件,利用自带的软件求得自腐蚀电流密度。也可将实验数据考贝回去,用origin 软件作图,用tafel 外推法求的自腐蚀电流。将两者互相比较。

4. 实验完毕,清洗电极、电解池,将仪器恢复原位,桌面擦拭干净。 五、注意事项

不能将电极线接错。 六、实验报告内容

利用塔菲尔外推法求腐蚀电流。

从Fe 在0.1M 硫酸溶液中的极化曲线图中可以看出, Fe 的自腐蚀电位:v c 96798.0-=?

因为831.1lg -=c i ,所以自腐蚀电流:A i c 014757.0= 七、思考题

(1)平衡电极电位、自腐蚀电位有何不同。

答:平衡电极电位是指腐蚀电池开路时未发生极化时的阴极反应和阳极反应的平衡电位;而自腐蚀电位腐蚀体系的混合电位,由同时发生的两个电极过程共同决定,是不可逆的非平衡电位。

平衡电位不是自腐蚀电位。电极位于不用介质中,会有一个电极电位,比如管道在土壤中通常电极电位为0.55-065V.CSE ,那么给管道加上一个极化电位,

管道就不会有腐蚀电流流出,这时的电位叫平衡电位。也就是腐蚀电流为零的电位就是平衡电位。

来代表金属的腐蚀速度?

(2)为什么可以用自腐蚀电流i

corr

答:金属的腐蚀是金属被氧化,可以理解成铁失去电子,就是被氧化的过程。根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强

越大,自腐蚀电位越负,说明腐蚀严重,度和通电时间成正比。自腐蚀电流I

corr

腐蚀速度越快,腐蚀电流密度越大。即金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。

实验二铁的钝化曲线

一、基本要求

1. 掌握有钝化行为的金属阳极过程的极化曲线特征

2. 求得Fe的自腐蚀电位,致钝电位、钝化电流密度、过钝化电位等参数。

3. 讨论极化曲线在金属腐蚀与防护中的应用。

二、实验原理

铁的钝化曲线(图1):

图1

abc段是Fe的正常溶解,生成Fe2+,称为活化区。cd段称为活化钝化过渡区。de段的电流称为维钝电流,此段电极处于比较稳定的钝化区, Fe2+离子与溶液中

的离子形成FeSO

4沉淀层,阻滞了阳极反应,由于H+不易达到FeSO

4

层内部,使

Fe表面的pH增大,Fe

2O

3

、Fe

3

O

4

开始在Fe表面生成,形成了致密的氧化膜,极

大地阻滞了Fe的溶解,因而出现钝化现象。ef段称为过钝化区。

测得铁的钝化曲线可采用恒电位法(静态法)或动电位扫描法(动态法)。

静态法:将电极电势较长时间地维持在某一恒定值,同时测量电流密度随时间的变化,直到电流基本上达到某一稳定值。如此逐点地测量在各个电极电势下的稳定电流密度值,以获得完整的极化曲线的方法。

动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电势下的瞬时电流密度,并以瞬时电流密度值与对应的电势作图就得到整个极化曲线。所采用的扫描速度(即电势变化的速度)需要根据研究体系的性质选定。一般说来,电极表面建立稳态的速度越慢,则扫描也应越慢,这样才能使测得的极化曲线与采用静态法测得的结果接近。

三、实验仪器及药品

仪器 CHI660C电化学工作站(上海辰华公司)1台;电解池1个;硫酸亚汞电极(参比电极)、Fe电极(研究电极)、Pt片电极(辅助电极)各1支;

试剂 1mol/LH

2SO

4

溶液

四、实验步骤

1、电极处理:用金相砂纸将铁电极表面打磨平整光亮,用蒸馏水清洗后滤纸吸干。每次测量前都需要重复此步骤,电极处理得好坏对测量结果影响很大。

2、测量极化曲线:

(1)打开电化学工作站的窗口;

(2)安装电极,使电极进入电解质溶液中,将绿色夹头夹Fe电极,红色夹头夹

Pt片电极,黄色夹头夹参比电极;

(3)测定开路电位。选中恒电位技术中的“开路电位—时间”实验技术,双击选择参数,可用仪器默认值,点击“确认”。点击“?”开始实验,测得的开路电位即为电极的自腐蚀电势Ecorr;

(4)开路电位稳定后,测电极极化曲线。选中“线性扫描技术”中的“塔菲尔曲线”实验技术,双击。为使Fe电极的阴极极化、阳极极化、钝化、过钝化全部表示出来,初始电位设为比Ecorr负500mV,终止电位设为“2.0V”,扫描速度设为“0.0025V/s”,灵敏度(sensivitivty)设为“自动”。其它可用仪器默认值,极化曲线自动画出。

3、实验完毕,清洗电极、电解池,将仪器恢复原位,桌面擦拭干净。

五、注意事项

1、测定前仔细了解仪器的使用方法。

2、电极表面一定要处理平整、光亮、干净,不能有点蚀孔。

六、实验报告内容

从极化曲线上求出Fe电极的自腐蚀电位、钝化电流密度及钝化电位范围,对比

上一实验,分析H

2SO

4

浓度对Fe钝化的影响。

利用origin 软件进行数据处理,得到电位E 与lgI 之间的关系图,即极化曲线如下:

C 点对应的是致钝电位(横坐标:v E p 020.0=)和致钝电流(A I p 351.0=)

D 点对应的是过钝化电位(横坐标:v

E p 735.0=) 那么,钝化电位范围就是0.020v —0.735v

七、思考题

(1)分析H 2SO 4浓度对Fe 钝化在影响。

答:常温下,硫酸浓度越大,对Fe 的钝化作用越明显,而稀硫酸不能使铁钝化,因为浓硫酸是强氧化性酸,能把铁氧化成特殊价态的四氧化三铁(薄而致密),这种铁的氧化物不溶于浓硫酸和浓硝酸。而稀硫酸没有强氧化性,不能使金属表面生成致密的氧化膜,只能与金属发生置换反应,产生氢气。 (2)Fe 在盐酸中能否钝化,为什么?

答:不能。因为铁经强氧化剂如浓硫酸或浓硝酸处理后,由活泼态转变为钝化态,由于钝化后表面生成了致密的氧化膜,起保护作用,不易被腐蚀,而盐酸是还原性酸,其酸根具有强还原性,是浓度高的氯离子的还原性,其中的氢离子的氧化性没有含氧酸根的氧化性强,不能使铁钝化。

(3)测定钝化曲线为什么不采用恒电流法?

答: 金属钝化指的是阳极电势超过一定值后发生的溶解速度迅速减小的现象,电势变化给了电子不同的运动力。而恒电流法只是给了恒定数量的电荷,并不是给了不同的活跃度,没法得到变化参数,所以不采用恒电流法。

实验三 铁氰化钾在玻碳电极上的氧化还原

一、基本要求

1. 掌握用循环伏安法判断电极反应过程的可逆性

2. 学会使用伏安极谱仪

3. 学会测量峰电流和峰电位 二、实验原理

循环伏安法是用途最广泛的研究电活性物质的电化学分析方法,在电化学、无机化学、有机化学、生物化学等领域得到了广泛的应用。由于它能在很宽的电位范围内迅速观察研究对象的氧化还原行为,因此电化学研究中常常首先进行的是循环伏安行为研究。

循环伏安是在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。

典型的循环伏安图如图所示:

U

t

+ -

+

+ - +

+ -

+

三角波

选择施加在a点的起始电位E

i

,然后沿负的电位即正向扫描,当电位负到能

够将Ox还原时,在工作电极上发生还原反应:Ox + Ze = Red,阴极电流迅速增加(b-d),电流在d点达到最高峰,此后由于电极附近溶液中的Ox转变为Red 而耗尽,电流迅速衰减(d-e);在f点电压沿正的方向扫描,当电位正到能够将Red氧化时,在工作电极表面聚集的Red将发生氧化反应:Red = Ox + Ze,阳极电流迅速增加(i-j),电流在j点达到最高峰,此后由于电极附近溶液中的

Red转变为Ox而耗尽,电流迅速衰减(j-k);当电压达到a点的起始电位E

i

时便完成了一个循环。

循环伏安图的几个重要参数为:阳极峰电流(i

pa )、阴极峰电流(i

pc

)、阳极

峰电位(E

pa )、阴极峰电位(E

pc

)。对于可逆反应,阴阳极峰电位的差值,即△

E=E

pa -E

pc

≈56 mV/Z,峰电位与扫描速度无关。

而峰电流i

p

=2.69×105n3/2AD1/2V1/2C,i

p

为峰电流(A),n为电子转移数,A

为电极面积(cm2),D为扩散系数(cm2/s),V为扫描速度(V/s),C为浓度(mol/L)。

由此可见,i

p 与V1/2和C都是直线关系。对于可逆的电极反应,i

pa

≈ i

pc

三、实验仪器及药品

1.电化学工作站,三电极系统(玻碳电极为工作电极、饱和甘汞电极为参比电极、铂丝电极为辅助电极)

2. 铁氰化钾标准溶液(6.0×10-3 mol/L,含KNO

3

溶液1.0 mol/L),10 mL 电解杯,10 mL容量瓶

四、实验步骤

1. 打开仪器预热20分钟,打开电脑,打开电化学工作站操作界面。

2. 电极抛光:用Al

2O

3

粉将玻碳电极表面抛光,然后用蒸馏水清洗,待用。

3. 将铁氰化钾标准溶液转移至10 mL电解池中,插入三支电极,在“实验”菜单中选择“实验方法”,选择“循环伏安法”,点“确定”,设置实验参数:起始电位(+0.6 V);终止电位(-0.2 V);静止时间(2 s);扫描时间(任意扫速);扫描速度(0.1 V/s);灵敏度(1.0×e-3);循环次数(1);是否敲击(不敲击);通氮时间(0);氮气(不保持),点“确定”。从“实验”菜单中选择“开始实验”,观察循环伏安图,记录峰电流和峰电位。

4. 考察峰电流与扫描速度的关系,使用上述溶液,分别以不同的扫描速度:0.1、0.2、0.5 V/s(其他实验条件同上)分别记录从+0.6V~ -0.2V扫描的循环伏安图,记录峰电流。

5. 考察峰电流与浓度的关系,分别准确移取上述溶液1.00、2.00、5.00 mL,置于3只10 mL容量瓶中,分别用去离子水定容,摇匀,以0.1 V/s的扫描速度(灵敏度调为1.0×e-4,其他实验条件同上)分别记录从+0.6V~ -0.2V扫描的循环伏安图,记录峰电流。

五、注意事项

六、实验结果与处理

1. 计算阳极峰电位与阴极峰电位的差△E。

2. 计算相同实验条件下阳极峰电流与阴极峰电流的比值i

pa / i

pc

3. 相同K

3Fe(CN)

6

浓度下,以阴极峰电流或阳极峰电流对扫描速度的平方根

作图,说明二者之间的关系。

4. 相同扫描速度下,以阴极峰电流或阳极峰电流对K

3Fe(CN)

6

的浓度作图,

说明二者之间的关系。

5. 根据实验结果说明K

3Fe(CN)

6

在KNO

3

溶液中电极反应过程的可逆性。

A. 所得不同扫描速度下的循环伏安图如下:

1.扫描速度为 0.1 V/s

Epa=0.336 Epc=0.097 Ipa= -2.769*10-5Ipc= 5.545*10-5

(1) 阳极峰电位与阴极峰电位的差△E=0.239V

(2) 阳极峰电流与阴极峰电流比值Ipa/Ipc=-0.499 2.扫描速度为0.2v/s

Epa= 0.350 Epc= 0.074 Ipa= -2.980*10-5Ipc= 6.899*10-5

(1)阳极峰电位与阴极峰电位的差△E=0.276V

(2)阳极峰电流与阴极峰电流比值Ipa/Ipc= -0.432

3.扫描速度为0.5v/s

Up:EPc:0.0395 Ipc:1.349*10*-4Down:Epa:0.3859 Ipa: -7.30*10-5

(1) 阳极峰电位与阴极峰电位的差△E=0.3464V

(2) 阳极峰电流与阴极峰电流比值Ipa/Ipc= -0.541

B. 所得不同浓度下的循环伏安图如示:

1.铁氰化钾标准溶液(6.0×10-5mol/L)

Epa= 0.311 Ipa= -2.695*10-6 Epc= 0.0228 Ipc=6.222*10-6(1) 阳极峰电位与阴极峰电位的差△E=0.283V

(2) 阳极峰电流与阴极峰电流比值Ipa/Ipc= -0.433

2.铁氰化钾标准溶液(1.2×10-5mol/L)

Epa= 0.307 Ipa= -7.749*10-6Epc= 0.054 Ipc= 1.130*10-5

(1) 阳极峰电位与阴极峰电位的差△E=0.253V

(2) 阳极峰电流与阴极峰电流比值Ipa/Ipc= -0.686

2.铁氰化钾标准溶液(3×10-5mol/L )

Epa = 0.316 Ipa= -2.209*10-5 Epc= 0.094 Ipc= 3.196*10-5

(1) 阳极峰电位与阴极峰电位的差△E=0.222V

(2) 阳极峰电流与阴极峰电流比值Ipa/Ipc=-0.691

C. 相同K 3Fe(CN)6浓度下,以阴极峰电流或阳极峰电流对扫描速度的平方根作图,说明二者之间的关系。

阴极峰电流(/10^-5)

扫描速度 扫描速度平方根

5.545 0.1 0.316228

6.899

0.2 0.447214 13.49

0.5

0.707107

由下图可得,在同K

3Fe(CN)

6

浓度下,阴极峰电流与扫描速度的平方根成直线性

关系,且斜率为4608.81279。

D.相同扫描速度下,以阴极峰电流或对K

3Fe(CN)

6

的浓度作图

阴极峰电流(/10^-6) K

3

Fe(CN)

6

的浓度(10-5mol/L)

6.2220.6 11.30 1.2 31.96 3.0

由下图可得,在相同扫描速度下,阳极峰电流与不同K 3Fe(CN)6浓度下近似直线性关系,且斜率大约为91479.75994。

对63Fe(CN)K (内含0.20mol/L 3KNO )溶液的循环伏安曲线进行数据处理,选取曲线的第二圈,即第三和第四段曲线,根据循环伏安曲线特点,用半峰法进行峰测量,测量结果如图:由测量结果可知,氧化峰电位为Ep2=244mV ,峰电流为ip2=4.6983×106-A ;还原峰电位是Ep1=310mV ,峰电流是ip1=4.666×106-A 。氧化峰还原峰电位差为66mV ,峰电流的比值为:ip1/ip2=0.95≈1。由此可知,铁氰化钾体系(Fe(CN)63-/4-)在中性水溶液中的电化学反应是一个可逆过程。(注:由于该体系的稳定,电化学工作者常用此体系作为电极探针,用于鉴别电极的优劣。)

实验四 金属的电镀实验

一、基本要求

1. 了解电镀的基本概念

2. 了解电镀溶液中添加剂的作用。 二、实验原理

电镀是一个普遍的工业流程。使用电流,可以将一层金属如铜或镍镀在一有导电性的物体上。传统电镀的主要目的通常是改变基体表面的特性,改善基体材料的外观、耐腐蚀性和耐磨性。现在,电镀技术在制备半导体、催化材料、纳米材料等功能性材料和微机电加工领域正日益发挥着重要作用。国内期刊“电镀与环保”、“电镀与精饰”、“材料保护”等刊登这方面的研究。

把化学能转化为电能的过程称为电解。电镀属于电解,是一种电化学沉积过程,是指在含有欲镀金属的盐类溶液中,在直流电的作用下,以欲镀金属或其它惰性导体为阳极,通过电解作用,阴极镀件表面上沉积出金属,获得牢固的金属膜的过程。

根据法拉弟定律,在电镀镍时,通过电镀槽的电量若为l F (96500 C ),则应得镍镀层0.5 mol (58.69/2 g )。而实际上沉积的镍不到0.5 mol ,这是由于在电镀过程中,阴极上进行的反应不只是Ni 2++2e -= Ni ,还有2H ++2e -= H 2副反应的存在,使得用于沉积金属的电流只是通过总电流的一部分,而其余部分消耗在副反应上,所以电流效率达不到100%。电流效率计算公式如下:

100%100%Q

W W Q η=

?=

?实理

电镀前要对金属片进行打磨,其目的是为了处理、清洁被镀金属的表面,从而得到结合力好的镀层。镀层质量的好坏要考虑的因素有很多,主要有:被镀金属的特性、镀层特性、合适的前处理、合适的电镀溶液、合适的操作条件(电流密度、镀液浓度和各组分比例、镀液温度、时间、后处理)、合适的电镀设备和器具、环境条件等。 1.添加剂对电镀效果的影响

在电镀溶液中加添加剂:糖精、1,4-丁炔二醇、香豆素等可以明显的

提高镀层的光亮度。加入光亮剂的镀镍溶液称光亮镀液。

2.杂质对镀层质量的影响

在电镀液中如果含有一定量的金属杂质,会影响渡层的质量,如镀镍溶液中含有Fe离子就会使镀层的质量下降。

3. 镀件的表面状态对镀层的影响

镀件的表面状态对镀层的光洁度,亮度,镀层的附着力等都有很大的影响。所以为了得到合格的镀层,镀件的表面必须经过合格的酸洗除锈、碱洗(或有机溶剂清洗)除油,机械或电化学抛光等。

三、实验仪器及药品

CHI660C电化学工作站;铜电极;普通镍镀液(成分见表1);NaOH,Na

3PO

4

,Na

2

CO

3

盐酸,金相砂纸

表1普通镀镍液成分

成分质量浓度(g/L)

六水合硫酸镍(NiSO

4?6H

2

O)100

六水合氯化镍(NiCl

2?6H

2

O)40

硼酸(H

3BO

3

)30

十二烷基硫酸钠C

12H

25

NaO

4

S 0.1

1-4 丁炔二醇0.4

对甲苯磺酰胺0.8

实验中所用的试剂均为分析纯试剂,并用蒸馏水配制。

四、实验步骤

(一)具体操作方法

1. 配制电镀溶液(按表1)

2.电极的处理

黄铜电极为工作电极,尺寸为1cm×1cm,其中Cu/Zn的质量分数分别为59.65%和40.35%,大面积的镍片为对电极。实验开始前,工作电极依次用型号为50、600、2000的砂纸打磨,然后用丙酮擦洗,并用蒸馏水冲洗,再放入碱性洗液取

建筑材料实验报告

建筑材料实验报告 班级: 水保12-2 姓名:黄 婷 学号:120214219 组号: 第 一 组 中国农业大学 水利与土木实验教学中心 壁薄、线槽内气设备资料、情况 中资料故障时,

实验一、水泥性能测试试验报告 试验日期: 气(室)温: C :湿度: 水泥品种: 水泥标号: 水泥出厂日期: 水泥生产厂家: 一、试验内容 (-)标准稠度用水量测试 (1)试验方法原理:采用固定用水量法:拦和用水量为ml 5.142(精确至于ml 5.0)。根据试锥或试针下沉深度5mm (或仪器中对应的标尺刻度),以下式计算标准稠度用水量(P %)试杆法。 S P 185.04.33-=实验用实际用水量按式:ω=试验用水泥量×P % (2)试验步骤: ①先用湿抹布擦拭搅拦锅和搅拌叶片,将称取好的500g 水泥倒入搅拌锅内。 ②将搅拌锅放置到净浆机搅拌座上,并使之升到搅拌位置,并用量筒量取142.5rnl 拌和水徐徐加入拌锅内,防止水和水泥溅出。 ③启动自动档开关,搅拌机按以下步骤运行:低速搅拌120S ,停15S ,同时将叶片和锅壁上的水泥浆刮入锅中,接着高速搅拌120S ,停机。 ④将拦制好的水泥净浆装人置于玻璃板上的试模中,用小刀插捣,轻轻振动数次,刮去多余的净浆,并抹平表面。 抹平表面的试模和底板迅速移至到维卡仪上,将其中心定在试杆下降直至与水泥浆表面接触,拧紧螺丝1~2S 后,突然放松,使试杆垂直自由地沉人水泥净浆中。以试杆沉入净浆并距底板6±1rnm 的水泥净浆为标准稠度净浆。 (二)水泥胶砂强度检验分两步进行: 1.水泥胶砂,试件成型(1)水泥胶砂成型步骤 ①擦净试模内壁,在四周模板与底座的接触面涂黄油,紧密装配以防漏浆。内壁涂薄层机油,方便脱模。 ②配制水泥胶砂浆每锅胶砂浆按质量比 水泥:标准砂:水=l ∶3∶0.5,即天平称取450±2g 水泥,中国ISO 标准砂一袋(1350g ±5g ),量筒取水225±1 ml 。 ③将水加入搅拌锅里,加水泥,将锅放置在固定锅架上,并上升在固定位置。④胶砂搅拌过程: 启动搅拌机自动开关,先低速搅拌30S 后,在第二个30S 开始的同时均匀地加入标准砂,全部加完为止,又高速搅拌30S ,接着停拌90S ,并在刚停的瞬间(约15S )用胶皮刮具将叶片和锅壁上的胶砂刮入锅内,停拌完后,在高速下继续伴60S ,自动停机,取下拌锅,将粘在叶片上的胶砂刮下。 (2)试件制备 ①将空试模和模套固定在振实台上,用勺子将胶砂取出分二层装人试模。第一层,每槽约放300g 胶砂,用大播料器垂直在模套顶部沿每个模槽来回一次将料层播平,接着启动开关,自动

环己烯的制备__实验报告

主反应式: 可能的副反应:(难) 0H H + A 共沸点 64.9o C 、J 30.5% 69.5% 实验八 环己烯的制备 、实验目的: 1、 学习以浓磷酸催化环己醇脱水制备环己烯的原理和方法; 2、 初步掌握分馏、水浴蒸馏和液体干燥的基本操作技能 、实验原理:书 P158 烯烃是重要的有机化工原料。工业上主要通过石油裂解的方法制备烯烃,有时也利用醇在氧化铝等催 化剂存在下,进行高温催化脱水来制取,实验室里则主要用浓硫酸,浓磷酸做催化剂使醇脱水或卤代烃在 醇钠作用下脱卤化氢来制备烯烃。 本实验采用浓磷酸做催化剂使环已醇脱水制备环已烯。 三、主要试剂、产物的物理和化学性质 化学物质 相对分子质里 相对密度/d 420 沸点/ c 溶解度/g (100g 水)-1 环己醇 100 0.96 161.1 3.6 20c 磷酸 98 1.83 -1/2出0(213 C ) 2340 环己烯 82.14 0.89 83.3 微溶于水 环己醚 182.3 0.92 243 微溶于水 四、实 验装置 一般认为,该反应历程为 E i 历程,整个反应是可逆的:酸使醇羟基质子化,使其易于离去而生成正碳 离子,后者失去一个质子,就生成烯烃。 共沸点97施; 共彿点.西.纨“

仪器:50mL圆底烧瓶、分馏柱、直型冷凝管,100mL 分液漏斗、100mL锥形瓶、蒸馏头,接液管。 试剂:10.0g (10.4mL, O.lmol )环已醇,4mL浓磷酸, 氯化钠、 无水氯化钙、5%碳酸钠水溶液。 其它:沸石 1、投料 六、预习实验步骤、现场记录及实验现象解释 在50ml干燥的圆底烧瓶中加入10g环己醇、4ml浓磷酸和几粒沸石,充分摇振使之混合均匀,安装反应装置。 2、加热回流、蒸出粗产物产物 将烧瓶在石棉网上小火空气浴缓缓加热至沸,控制分馏柱顶部的溜出温度不超过90C,馏出液为带 水的混浊液。至无液体蒸出时,可升高加热温度(缩小石棉网与烧瓶底间距离),当烧瓶中只剩下很少残 液并出现阵阵白雾时,即可停止蒸馏。 3、分离并干燥粗产物 将馏出液用氯化钠饱和,然后加入3—4ml 5%的碳酸钠溶液中和微量的酸。将液体转入分液漏斗中, 振摇(注意放气操作)后静置分层,打开上口玻塞,再将活塞缓缓旋开,下层液体从分液漏斗的活塞放出,产物从分液漏斗上口倒入一干燥的小锥形瓶中,用 1 —2g无水氯化钙干燥。 4、蒸出产品 待溶液清亮透明后,小心滤入干燥的小烧瓶中,投入几粒沸石后用水浴蒸馏,收集80—85 C的馏分于 一已称量的小锥形瓶中。 六、产品产率的计算注意事项: 1、投料时应先投环己醇,再投浓磷酸;投料后,一定要混合均匀。 2、反应时,控制温度不要超过90Co 3、干燥剂用量合理。 4、反应、干燥、蒸馏所涉及器皿都应干燥。 5、磷酸有一定的氧化性,加完磷酸要摇匀后再加热,否则反应物会 被氧化。 6、环己醇的粘度较大,尤其室温低时,量筒内的环己醇若倒不干净,会影响 产率。 7、用无水氯化钙干燥时氯化钙用量不能太多,必须使用粒状无水氯化钙。粗产物干燥好后再蒸馏,蒸馏装置要预先干燥,否则前馏分多(环己 供参考

腐蚀电化学实验报告

腐蚀电化学分析 杨聪仁教授编撰一、实验目的 以电化学分析法测量金属在不同环境下的腐蚀速率。 二、实验原理 2-1 腐蚀形态 腐蚀可被定义为材料受到外在环境的化学侵蚀而导致退化的象。大多数材料的腐蚀包含了由电化学引起的化学侵蚀。我们可根据被腐蚀金属的表面,简便地将腐蚀型态分类,如图一。有许多类型易被辨识,但各种腐蚀类型彼此间都有某种程度的关连。这些类型包括: 均匀或一般侵蚀腐蚀应力腐蚀 化学或两金属腐蚀冲蚀腐蚀 孔蚀腐蚀涡穴损伤 间隙腐蚀移擦腐蚀 粒间腐蚀选择性腐蚀 均匀或一般侵蚀腐蚀 均匀腐蚀是指当金属处于腐蚀环境时,金属整个表面会同时进行电化学反应。就重量而言,均匀腐蚀是金属所面临的最大腐蚀破坏,尤其是对钢铁来说。然而,它很容易藉由保护性镀层、抑制剂及阴极保护等方法来控制。 化学或两金属腐蚀 由于不同金属具有不同的电化学电位,因此当要将不同金属放在一起时,必须格外小心,以免产生腐蚀现象。两金属化学腐蚀的另一个重要考虑因素是阳极与阴极的比率,也就是面积效应(area effect)。阴极面积大而阳极面积小是一种不利的面积比率,因为当某特定量的电流经过金属对时,例如不同尺寸的铜极及铁极,小电极的电流密度会远大于大电极,因此小阳极将会加速腐蚀。所以大阴极面积对小阳极面积的情形应尽量避免。 孔蚀腐蚀 孔蚀是会在金属上产生空孔的局部腐蚀类型。此类型的腐蚀若造成贯穿金属的孔洞,则对工程结构会有相当的破坏效果。但若没有贯穿现象,则小蚀孔有时对工程设备而言是可接受的。孔蚀通常是很难检测的,这是因为小蚀孔常会被腐蚀生成物覆盖所致。另外蚀孔的数目及深度变化也很大,因此对孔蚀所造成的破坏不太容易做评估。也因为如此,由于孔蚀的局部本质,它常会导致突然不可预测的破坏。蚀孔会在腐蚀速率增加的局部区域发生。金属表面的夹杂物,其他结构不均匀物及成份不均匀处,都是蚀孔开始发生的地方。当离子和氧浓度差异形成浓淡电池时也可产生蚀孔。 间隙腐蚀是发生于间隙及有停滞溶液之遮蔽表面处的局部电化学腐蚀。若要产生间隙腐蚀,必须有一个间隙其宽度足够让液体进入,但却也可使液体停滞不流出。因此,间隙腐蚀通常发生于开口处有百万分之几公尺或更小宽度的间隙。 粒间腐蚀

2019年锂电池实验报告-实用word文档 (8页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 锂电池实验报告 篇一:锂离子电池的制备合成及性能测定实验报告 实验二锂离子电池的制备合成及性能测定 一.实验目的 1.熟悉锂离子电极材料的制备方法,掌握锂离子电极材料工艺路线; 2.掌握锂离子电池组装的基本方法; 3.掌握锂离子电极材料相关性能的测定方法及原理; 4.熟悉相关性能测试结果的分析。二.实验原理 锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入 与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正 负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂 状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位 尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。三.实验装置及材料 1.实验装置: 恒温槽,冰箱,搅拌器,管式电阻炉,真空干燥箱,鼓风干燥箱,铁夹,分液 漏斗,研钵,烧杯,pH试纸,循环水真空泵,漏斗,抽滤瓶,滤纸,玻璃皿, 温度计; 2.实验材料: 乙醇,醋酸镍,醋酸钴,醋酸锰,碳酸钠,去离子水,氨水,乙炔黑,PVDF,NMP,LiOH; 四.实验内容及步骤

环己烯的制备实验报告

环己烯的制备实验报告 一、实验目的:利用环己醇以及其他相关的化学试剂来进行化学反应制备环己烯。 二、实验原理:化学反应式: 反应历程: 可能的副反应: 主要反应物,以及产物:环己醇(15g,也即是15.6ml)、1ml浓硫酸试剂、产物为、副产物为水,环己醚,以及环己醇、食盐Nacl、无水氯化钙、5%的碳酸钠水溶液。 其中环己醇的沸点为:163℃,纯粹环己烯的沸点为82.9℃。 三、实验仪器以及操作图: 实验仪器有:圆底烧瓶、铁架台,直型冷凝管、接受瓶、分液漏斗、温度计、橡胶塞、电炉、导管、接液管、水浴锅、锥形瓶、漏斗、烧杯、短的分馏柱、蒸馏头,电子天平。 四、实验步骤: 1、按照实验装置示意图从上到下、从左到右的顺序安装蒸馏装置,检查装置的气密性。 2、在50ml的圆底烧瓶里面加入15.6ml的环己醇,并加入1ml的浓硫酸,滴加时注意,防止浓硫酸烧伤手臂。并加入几粒沸石,充分摇匀后使之均匀混合。在烧瓶上装一短的分馏柱,接上冷凝管,把接受瓶浸在冷水中冷却。 3、将烧瓶在电炉上面用空气浴的方法加热,控制温度不超过90℃,分馏出的液体为带水的混浊液,到无液体蒸出而且在圆底烧瓶内有白雾出现的时候,停止蒸馏,此时记下蒸馏出产物的那段温度为85℃至90℃。 4、将蒸出的液体先加入食盐饱和,然后加入3——4ml5%的碳酸钠溶液进行中和微量的酸。将液体转入分液漏斗中,摇振后静置,直至有机相分离出来,然后用分液漏斗分理处需要的上层有机相,即为环己烯的粗产物。此时用1——2g无水氯化钙进行干燥,待溶液清亮透明后滤入重新洗净干燥后的烧瓶中,此时把锥形瓶洗干净并烘干称量干重。

5、将分离干燥后的滤液重新加入圆底烧瓶后,加入几粒沸石进行水浴加热,收集温度在80——85℃之间的馏分于已经称量干重的锥形瓶内,此时锥形瓶干重为51.6g。待蒸馏出只剩下很少部分液体时,且温度变化范围突然下降时,停止蒸馏,此时称量锥形瓶连同液体的质量,的数据为55.8g。 五、实验数据计算: 产物环己烯的质量=55.8g—51.6g=4.2g 生产出的环己烯的质量为4.2g。产率为4.2g/15g=28% 六、误差分析:产物过低的原因主要有: a.气密性不够,导致生成的环己烯有泄漏。 b.在转移液体以及过滤的时候液体有沾到器壁上,导致有损失。C.火力的大小有问题,导致加热不够稳定,火力过大时,导致生成环己烯的速率过快,从而来不及液化就散到容器外部。 七、思考题: 1、答案:加入食盐的目的就是为了降低环己烯的溶解度。 2、答案:由于反应进入末期时,绝大部分的环己醇已被反应生成环己烯,此时容器内生成剩余的环己烯很少,造成容器内蒸汽含量降低,蒸汽压不稳定,从而生成阵阵白雾。 3、答案:Cacl2+5H2O==Cacl2`5H2O 过滤的原因是因为五水氯化钙里面含有水,若不过滤则在第二次蒸馏时有水,是环己烯和水生成共沸物,从而影响环己烯的产量和纯度。 4、脱水产物: ①(CH3)2CHCH=CH2 ②(CH3)2C=CHCH3或者(CH3)2CHCH=CH2 ③(CH3)3CH=CH2 八、讨论: 1、本实验具有一定的危险性,在取浓硫酸时一定注意按照实验正规操作取浓硫酸。 2、要保证装置的气密性,防止出现严重的泄露。 3、第一次加热时可以是空气浴或者水浴加热,但是第二次的时候一定要水浴加热,防止温度变化范围太大。 4、各实验药品的添加顺序一定要正确,否则会影响实验的整个进程。 5、第一次蒸馏和第二次蒸馏的仪器有细微的差别,主要是短的分馏柱和分馏头的区别。

电化学实验报告

电化学分析实验报告 院系:化学化工学院专业班级:学号:姓名: 同组者: 实验日期: 指导老师: 实验一:铁氰化钾在玻碳电极上的氧化还原 一、实验目的 1.掌握循环伏安扫描法。 2.学习测量峰电流和峰电位的方法。 二、实验原理 循环伏安法也是在电极上快速施加线性扫描电压,起始电压从ei开始,沿某一方向变化, 当达到某设定的终止电压em后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫 描速率可以从每秒数毫伏到1v。 当溶液中存在氧化态物质ox时,它在电极上可逆地还原生成还原态物质,即 ox + ne → red;反向回扫时,在电极表面生成的还原态red则可逆地氧化成ox,即 red → ox + ne.由 此可得循环伏安法极化曲线。 在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。从循环伏安法图中 可以确定氧化峰峰电流ipa、还原峰峰电流ipc、氧化峰峰电位φ pa 和还原峰峰电位φpc。 对于可逆体系,氧化峰峰电流与还原峰峰电流比为:ipa/ipc =1 25℃时,氧化峰峰电位 与还原峰峰电位差为:△φ条件电位为:φ=(φpa+ φpc)/2 由这些数值可判断一个电极过程的可逆性。 =φ pa - φpc≈56/z (mv) 三、仪器与试剂 仪器::电化学分析仪va2020, 玻碳电极、甘汞电极、铂电极。试剂:铁氰化钾标准溶 液,0.5mol/l氯化钾溶液,蒸馏水。 四、实验步骤 1、溶液的配制 移取铁氰化钾标准溶液(10mol/l)5ml于50ml的塑料杯中,加入0.5mol/l氯化钾溶液, 使溶液达到30ml 。 2、调试 (1)打开仪器、电脑,准备好玻璃电极、甘汞电极和铂电极并清洗干净。(2)双击桌 面上的valab图标。 3、选择实验方法:循环伏安法 设置参数:低电位:-100mv;高电位600mv;初始电位-100mv; 扫描速度:50mv/s;取样间隔:2mv;静止时间:1s;扫描次数:1;量程: 200μa。 4. 开始扫描:点击绿色的“三角形”。 5. 将上述体系改变扫描速度分别为10mv/s、50mv/s、100mv/s、160mv/s、200mv/s,其 他条件不变,作不同速度下的铁氰化钾溶液的循环伏安曲线,其峰值电流与扫描速度的平方 根成正比关系。 -3 五、实验数据及处理 1. 找到循环伏安曲线上对应的氧化与还原峰,然后手动做切线。

电位电压的测定实验报告三篇标准范本

报告编号:LX-FS-A31027 电位电压的测定实验报告三篇标准 范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

电位电压的测定实验报告三篇标准 范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 篇一:电极电位的测量实验报告 一.实验目的 1. 理解电极电位的意义及主要影响因素 2. 熟悉甘汞参比电极的性能以及工作原理 3. 知道电化学工作站与计算机的搭配使用方法 二.实验原理 电极和溶液界面双电层的电位称为绝对电极电位,它直接反应了电极过程的热力学和动力学特征,但绝对电极电位是无法测量的。在实际研究中,测量电极电位组成的原电池的电动势,而测量电极电位所

用的参考对象的电极称为参考电极,如标准氢电极、甘汞电极、银-氯化银电极等,该电池的电动势为:E=φ待测-φ参比 上述电池电动势可以使用高阻抗的电压表或电位差计来计量 在该实验中,采用甘汞电极为研究电极,铁氰、化钾/亚铁氰、化钾为测量电极。在1mol的KCl支持电解质下,分别用10mM摩尔比1:1和1:2的铁氰、化钾/亚铁氰、化钾溶液在常温(27℃)以及45℃下测量,收集数据,可得到相同温度不同浓度的两条开路电位随时间变化曲线、相同浓度不同温度的两条开路电位随时间变化曲线。可以用电极电势的能斯特方程讨论温度对于电极电势的影响 三.实验器材 电化学工作站;电解池;甘汞电极;玻碳电极;

怎样写化学实验报告

篇一:怎样写好化学实验报告 龙源期刊网 .cn 怎样写好化学实验报告 作者:赵保栓 来源:《试题与研究·教学论坛》2013年第18期 化学是以实验为主的一门自然学科,实验是认识和探究化学原理的重要手段,也是化学学习的重要内容。化学实验对教师来说是传授化学科学知识和技能的重要方法,对学生则可帮助其形成化学概念,理解和巩固知识,培养观察思维和动手能力,养成实事求是、严肃认真的科学态度。因此必须重视化学实验的教学,教会学生写好实验报告。一个实验能否达到预期的结果,观察能力很重要,只有善于观察并准确描述观察到的现象,才能为实验的顺利完成奠定良好的基础。那么在化学实验中如何观察和记录才能顺利完成实验报告呢? 一、应明确实验的目的,确定实验观察的重点 设置某实验的目的在于实现某一学习目标,实验目的决定了实验观察的重点。只有明确重点观察的内容,抓住本质的现象,才能有效地观察、有效地学习。如在初中化学(序言)课的实验,所设置的几个实验都是为学生顺利理解和掌握物理变化和化学变化而设置的。因此,观察重点应放在反应前后物质是否发生了变化,从而确定变化是物理变化还是化学变化。如镁带的燃烧实验,观察的重点是镁带燃烧后的产物的性质和镁带有何本质的不同,确定反应是否有新物质生成,从而判断该反应是否属于化学变化。而不能仅仅注意实验过程中的发出耀眼的强光,放出大量的热这一非本质的现象。只有这样,才能实现实验的目的——掌握物理变化和化学变化的本质。 二、要明确实验观察的顺序 一般而言,实验观察的顺序是:1、实验仪器的选择与连接?摇2.药品放置的部位?摇3.反应物的色、态、味等物理性质?摇4.反应发生的条件、催化剂、反应操作方法?摇5.反应过程中的现象(发光、放热、变色、放出气体、生成沉淀等)?摇6.生成物的色、态、味等物理性质。按照上述顺序观察硫在氧气中燃烧的实验,观察到的现象是:淡黄色的固体硫在氧气中燃烧,发出蓝紫色火焰,放出大量的热,生成一种有刺激性气味的无色气体。在观察实验室制氧气的装置特点时,应先观察整套装置是由发生装置、导气管,收集装置等三部分组成,然后观察每个部分都是哪些仪器组成,选择这些仪器的依据,最后再观察它们是如何组装成整套装置的,如何检查装置的气密性等。学会观察实验室制氧气的装置特点的程序,便可依此程序去观察实验室制取其它气体的装置特点。 三、要能区分明显现象和主要现象 明显现象是我们感观容易察觉的现象,主要现象是最能揭示变化本质的现象,以铁丝在氧气中燃烧的实验为例,剧烈燃烧、火星四射是明显现象,:生成一种不同于铁的黑色固体是主要现象,透过现象,我们即能揭示出铁丝在氧气中燃烧是化学变化。当然,对于有些实验而篇二:化学实验报告的撰写 化学实验报告的撰写 一、化学实验内容很多,也很广泛。化学实验报告一般是根据实验步骤和顺序从七方面展开来写的: 1.实验目的:即本次实验所要达到的目标或目的是什么。使实验在明确的目的下进行。2.实验日期和实验者:在实验名称下面注明实验时间和实验者名字。这是很重要的实验资料,便于将来查找时进行核对。 3.实验仪器和药品:写出主要的仪器和药品,应分类罗列,不能遗漏。需要注意的是实验报告中应该有为完成实验所用试剂的浓度和仪器的规格。因为,所用试剂的浓度不同往往会得到不同的实验结果,对于仪器的规格,不能仅仅停留在“大试管”“小烧杯”的阶段。

环己烯的制备思考题

环己烯的制备思考题 1、在粗制环己烯中加入精盐使水层达到饱和的目的何在? 答:目的是降低环己烯在水中的溶解;加饱和食盐水的目的是尽可能的除去粗产品中的水分,有利于分层。 2、在蒸馏终止前,出现的阵阵白雾是什么? 答:是浓磷酸由于反应物的减少而导致浓度增大而挥发的酸雾。 3、写出无水氯化钙吸水所起化学变化的反应式?为什么蒸馏前一定要将它过滤掉?答:CaCl2 +xH2O=CaCl 2?xH2O 常温下x 最大一般等于6。 蒸馏前若不将它过滤,会重新释放出H2O,使蒸馏产物中不可避免地混有少量水蒸气。 4、写出下列醇与浓硫酸进行脱水的反应产物。 a.3- 甲基-1-丁醇; b .3- 甲基-2-丁醇; c .3,3-二甲基-2-丁醇。 CH3 CH 3C=CHCH3 CH 3C=CHCH3 CH 3C=CCH3 CH3 CH3 CH3 补充: 1、用磷酸做脱水剂比用浓硫酸做脱水剂有什么优点? 答:(1)磷酸的氧化性小于浓硫酸,不易使反应物碳化;(2)无刺激性气体SO2放出。 2、如果你的实验产率太低,试分析主要在哪些操作步骤中造成损失? 答:(1)环己醇的粘度较大,尤其室温低时,量筒内的环己醇很难倒净而影响产率。(2)磷酸和环己醇混合不均,加热时产生碳化。(3)反应温度过高、馏出速度过快,使未反应的环己醇因于水形成共沸混合物或产物环己烯与水形成共沸混合物而影响产率。(4)干燥剂用量过多或干燥时间过短,致使最后蒸馏是前馏份增多而影响产率。 3、在环己烯制备实验中,为什么要控制分馏柱顶温度不超过73℃? 答:因为反应中环己烯与水形成共沸混合物(沸点70.8℃,含水10 %);环己醇与环己烯形成共沸混合物(沸点64.9℃,含环己醇30.5 %);环己醇与水形成共沸混合物(沸点97.8℃,含水80 %),因此,在加热时温度不可过高,蒸馏速度不易过快,以减少未反应的环己醇的蒸出。 4、当浓硫酸与环己醇混合时,为什么要充分摇匀? 答:浓硫酸与环己醇混合时应要充分摇匀,以免加热时使环己醇局部炭。 5、如果经干燥后蒸出的环己烯仍然浑浊,是何原因? 答:用无水氯化钙干燥的时间一般要在半个小时以上,并不时摇动。但实际实验中,由于时间关系,只能干燥5~10 分钟。因此,水可能没有除净的,在最后蒸馏时,会有较多的前馏分(环己烯和水的共沸物)蒸出,蒸出的环己烯会仍然浑浊。另外如果粗制品的最后一步蒸馏所用的仪器不干燥或干燥不彻底,则蒸出的产品将浑浊。 6、为什么蒸馏粗环已烯的装置要完全干燥? 答:因为环已烯可以和水形成二元共沸物,如果蒸馏装置没有充分干燥而带水,在蒸馏时则

电化学实验报告实验报告

Experimental class on“Fuel Cell and Electrochemistry” Experiment setup Equipment: CHI760D electrochemical station Three electrode system. WE: CE: RE: Saturated Calomel Electrode Solution: 1.0 ×10-3mol/L K 3 [ Fe (CN)6] + 0.1M KCl Lab report 1) Plot curves of LSV curve, and describe why current changes with sweeping voltage? 0.6 0.4 0.2 0.0 -0.2 -0.4 0.000000 0.000002 0.000004 0.000006 0.000008 0.000010 Potential/V C u r r e n t /u A Reason: V oltage is a driving force to an electrode reactions, it is concerned with the equilibrium of electron transfer at electrode surface . As the altering of applied voltage, the Fermi-level is raised (or lowered), which changing the energy state of the electrons. Making the overall barrier height (ie activation energy) alter as a function of the applied voltage. (1). In this reaction, when voltage is 0.6V, there is no electron transfer, so the current is zero. With the voltage to the more reductive values, the current increases. (2). When the diffusion layer has grown sufficiently above the electrode so that the flux of reactant to the electrode is not fast enough to satisfy that required by Nernst Equation. The peak is obtaining. (3). When the reaction continued, it would get a situation that there will be a lower reactant concentration at the electrode than in bulk solution, that is, the supply of fresh reactant to the surface decreased, so current decreases.

电化学工作站校准规范 实验报告

国家计量技术规范规程制修订《电化学工作站校准规范》 实验报告 上海市计量测试技术研究院 2019年06月

实验报告 1、实验目的 验证《电化学工作站校准规范》的适用性和可行性。 2、实验地点 分别在上海市计量测试技术研究院、常州市康辉医疗器械有限公司、上海微创医疗器械(集团)有限公司、南京微创医学科技服务有限公司、微创心脉医疗科技(上海)有限公司、上海医疗器械检测所、上海交通大学医学院附属第九人民医院、上海形状记忆合金材料有限公司、苏州热工研究院有限公司、国核电站运行服务技术有限公司、国家眼镜产品质量监督检验中心11家实验单位对瑞士万通公司的PGSTAT 128N型、PGSTAT 204型、PGSTAT 302N型;上海辰华公司的CHI630E型、CHI650E型、CHI660E型;AMETEK公司的Versa STST3型、PARSTST-40W型、GAMRY公司的Reference 600f型、Solartron公司的SI1287等15台仪器进行了实验验证。 3、环境条件 温度:(15~30)℃;相对湿度:20%~ 80%;供电电源:电压(220±22)V,频率(50±1)Hz;附近无影响仪器正常工作的电磁场及机械振动;仪器接地良好。 4、实验仪器与实验设计 目前瑞士万通和上海辰华的电化学工作站占据一半以上的市场份额。因此,在验证实验中重点考察了以上2家公司的产品,选择了瑞士万通PGSTAT128N、PGSTAT204、PGSTAT302N三个系列,上海辰华的CHI630E、CHI 650E、CHI 660E 三个系列进行实验验证,同时兼顾了AMETEK公司的Versa STST3型、PARSTST-40W型,GAMRY公司的Reference 600f型,Solartron公司的SI1287,累计收集了15台仪器的数据。采用计量校准后的校准设备对电化学工作站的电位示值误差、电流示值误差和峰电位重复性按照校准规范的规定程序进行实验验证分析。

湖南大学材料化学电化学实验报告汇总

实验一 线性极化法测定金属Fe 在稀H 2SO 4中的腐蚀速度 一、基本要求 1. 掌握动电位扫描法测定电极极化曲线的原理和实验技术。通过测定Fe 在 0.1M 硫酸溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流。 2. 讨论极化曲线在金属腐蚀与防护中的应用。 二、实验原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。以金属铁在盐酸体系中为例: 阳极反应: Fe-2e=Fe 2+ 阴极反应: H ++2e=H 2 阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,体系通过的电流和电极上发生反应的物质的量存在严格的一一对应关系,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。 金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。极化曲线在金属腐蚀研究中有重要的意义。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。还可以通过极化曲线的测量获得阴极保护和阳极保护的主要参数。 在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数 )]ex p()[ex p( k c a c corr k a i i i I β? ?β??---=-=

环己烯的制备

环己烯的制备 一、实验目的 1、学习、掌握由环己醇制备环己烯的原理及方法。 2、了解分馏的原理及实验操作。 3、练习并掌握蒸馏、分液、干燥等实验操作方法。 二、实验原理 OH 85%H 3PO 4+ H 2O OH 85%H 3PO 4 2 O + H 2O 主反应副反应 主反应为可逆反应,本实验采用的措施是:边反应边蒸出反应生成的环己烯和水形成的二元共沸物(沸点70.8℃,含水10%)。但是原料环己醇也能和水形成二元共沸物(沸点97.8℃,含水80%)。为了使产物以共沸物的形式蒸出反应体系,而又不夹带原料环己醇,本实验采用分馏装置,并控制柱顶温度不超过90℃。 反应采用85%的磷酸为催化剂,而不用浓硫酸作催化剂,是因为磷酸氧化能力较硫酸弱得多,减少了氧化副反应。 分馏的原理就是让上升的蒸汽和下降的冷凝液在分馏柱中进行多次热交换,相当于在分馏柱中进行多次蒸馏,从而使低沸点的物质不断上升、被蒸出;高沸点的物质不断地被冷凝、下降、流回加热容器中;结果将沸点不同的物质分离。详细的原理参见P88-89。 三、实验药品及物理常数 药品名称 分子量 (mol wt) 用 量 (ml 、g 、mol) 熔点 (℃) 沸点 (℃) 比重 (d 420) 水溶解度 (g/100ml) 环己醇 100.16 10ml (0.096mol ) 25.2 161 0.9624 稍溶于水 环己烯 82.14 83.19 0.8098 不溶于水 85%磷酸 98 5ml (0.08mol ) 42.35 1.834 易溶于水 其它药品 饱和食盐水、无水氯化钙

四、实验装置图 圆底烧瓶 刺形分馏柱 温度计 直形冷凝管 接引管 锥形瓶 蒸馏头 水浴 温度计 直形冷凝管 接引管 锥形瓶 图1 反应装置图2 蒸馏装置 图3 分液漏斗 五、实验流程图 10ml 环己醇5ml85%加样品摇匀 安装好仪器 加热反应分馏柱顶<90分去水层 粗产品无水等体积饱和食盐水洗涤 至出现白雾停止蒸馏 干燥 收集80-85度馏分产品称重,计算产率。 CaCl 2H 3PO 4 几粒沸石 ℃ 水浴蒸馏 六、实验步骤 在50毫升干燥的圆底(或茄形)烧瓶中,放入10ml 环己醇(9.6g ,0.096mol)、5ml85%磷酸,充分振摇、混合均匀。投入几粒沸石,按图1安装反应装置,用锥形瓶作接受器。 将烧瓶在石棉网上用小火慢慢加热,控制加热速度使分馏柱上端的温度不要超过90℃,馏出液为带水的混合物。当烧瓶中只剩下很少量的残液并出现阵阵白雾时,即可停止蒸馏。全部蒸馏时间约需40min 。 将蒸馏液分去水层,加入等体积的饱和食盐水,充分振摇后静止分层,分去水层(洗涤微量的酸,产品在哪一层?)。将下层水溶液自漏斗下端活塞放出、上层的粗产物自漏斗的上口倒入干燥的小锥形瓶中,加入1-2克无水氯化钙干燥。 将干燥后的产物滤入干燥的梨形蒸馏瓶中,加入几粒沸石,用水浴加热蒸馏。收集80-85℃的馏分于一已称重的干燥小锥形瓶中。产量4-5g 。 本实验约需4h 。 七、注意事项 1、环己醇在常温下是粘碉状液体,因而若用量筒量取时应注意转移中的损失。所以,取样时,最好先取环己醇,后取磷酸。 2、环己醇与磷酸应充分混合,否则在加热过程中可能会局部碳化,使溶液变黑。 3、安装仪器的顺序是从下到上,从左到右。十字头应口向上。 4、由于反应中环己烯与水形成共沸物(沸点70.8℃,含水l0%);环己醇也能与水形成共沸物(沸点97.8℃,含水80%)。因比在加热时温度不可过高,蒸馏速度不宜太快,以减少末作用的环己醇蒸出。文献要求柱顶控制在73℃左右,但反应速度太慢。本实验为了加快蒸出

腐蚀电化学实验报告

腐蚀电化学分析 杨聪仁教授编撰 一、实验目的 以电化学分析法测量金属在不同环境下的腐蚀速率。 二、实验原理 2-1 腐蚀形态 腐蚀可被定义为材料受到外在环境的化学侵蚀而导致退化的象。大多数材料的腐蚀包含了由电化学引起的化学侵蚀。我们可根据被腐蚀金属的表面,简便地将腐蚀型态分类,如图一。有许多类型易被辨识,但各种腐蚀类型彼此间都有某种程度的关连。这些类型包括: 均匀或一般侵蚀腐蚀应力腐蚀 化学或两金属腐蚀冲蚀腐蚀 孔蚀腐蚀涡穴损伤 间隙腐蚀移擦腐蚀 粒间腐蚀选择性腐蚀 均匀或一般侵蚀腐蚀 均匀腐蚀是指当金属处于腐蚀环境时,金属整个表面会同时进行电化学反应。就重量而言,均匀腐蚀是金属所面临的最大腐蚀破坏,尤其是对钢铁来说。然而,它很容易藉由保护性镀层、抑制剂及阴极保护等方法来控制。 化学或两金属腐蚀 由于不同金属具有不同的电化学电位,因此当要将不同金属放在一起时,必须格外小心,以免产生腐蚀现象。两金属化学腐蚀的另一个重要考虑因素是阳极与阴极的比率,也就是面积效应(area effect)。阴极面积大而阳极面积小是一种不利的面积比率,因为当某特定量的电流经过金属对时,例如不同尺寸的铜极及铁极,小电极的电流密度会远大于大电极,因此小阳极将会加速腐蚀。所以大阴极面积对小阳极面积的情形应尽量避免。

孔蚀腐蚀 孔蚀是会在金属上产生空孔的局部腐蚀类型。此类型的腐蚀若造成贯穿金属的孔洞,则对工程结构会有相当的破坏效果。但若没有贯穿现象,则小蚀孔有时对工程设备而言是可接受的。孔蚀通常是很难检测的,这是因为小蚀孔常会被腐蚀生成物覆盖所致。另外蚀孔的数目及深度变化也很大,因此对孔蚀所造成的破坏不太容易做评估。也因为如此,由于孔蚀的局部本质,它常会导致突然不可预测的破坏。蚀孔会在腐蚀速率增加的局部区域发生。金属表面的夹杂物,其他结构不均匀物及成份不均匀处,都是蚀孔开始发生的地方。当离子和氧浓度差异形成浓淡电池时也可产生蚀孔。 间隙腐蚀是发生于间隙及有停滞溶液之遮蔽表面处的局部电化学腐蚀。若要产生间隙腐蚀,必须有一个间隙其宽度足够让液体进入,但却也可使液体停滞不流出。因此,间隙腐蚀通常发生于开口处有百万分之几公尺或更小宽度的间隙。 粒间腐蚀 粒间腐蚀是发生在合金晶界及晶界附近的局部腐蚀现象。在正常情况下,若金属均匀腐蚀时,晶界的反应只会稍快于基地的反应。但在某些情况下,晶界区域会变得很容易起反应而导致粒间腐蚀,如此会使合金的强度下,甚至导致晶界分裂。 应力腐蚀 金属的应力腐蚀破裂(SCC)是指由拉伸应力及腐蚀环境结合效应所导致的破裂。在SCC期间,金属表面通常只受到很轻微的侵蚀,但局部裂缝却很快沿着金属横断面传播。产生SCC所需的应力可以是残留应力或施加应力。裂缝会开始于金属表面上的蚀孔或其他不连续处。在裂缝开始成长时,其尖端会开始向前,此时作用在金属上的拉伸应力会在裂缝尖端处形成高应力,当裂缝尖端向前传播时,在裂缝尖端处也会产生电化学腐蚀而使阳极金属溶解。裂缝会沿着垂直于拉伸应力的方向成长,直到金属破坏为止。若应力或腐蚀其中任一停止,则裂缝将停止成长。 冲蚀腐蚀 冲蚀腐蚀可被定义为由于腐蚀性流体与金属表面相对运动而导致金属腐蚀速率加速的现象。当腐蚀性流体的相对运动速率相当快时,机械磨擦效应将会相当严重。冲蚀腐蚀的特征为金属表面具有与腐蚀性流体流动方向相同的凹槽、蚀孔与圆孔等。 涡穴损伤 此类型的冲蚀腐蚀是由接近金属表面之液体中的气泡及充气孔穴破灭所造成的。涡穴损伤通常发生在具有高速液体流动及压力改变的金属表面。 移擦腐蚀 移擦腐蚀发生在材料承受振动及滑动负荷的界面处,它会形成具有腐蚀生成物的凹槽或蚀孔。当金属发生移擦腐蚀时,磨擦表面间的金属碎片会被氧化且某些氧化膜会因磨擦动作而剥落,因此摩擦表面间会累积可当研磨剂用的氧化物颗粒。

生物化学实验报告

实验一糖类的性质实验 (一)糖类的颜色反应 一、实验目的 1、了解糖类某些颜色反应的原理。 2、学习应用糖的颜色反应鉴别糖类的方法。 二、颜色反应 (一)α-萘酚反应 1、原理糖在浓无机酸(硫酸、盐酸)作用下,脱水生成糠醛及糠醛衍生物,后 者能与α-萘酚生成紫红色物质。因为糠醛及糠醛衍生物对此反应均呈阳性,故此反应不是糖类的特异反应。 2、器材 试管及试管架,滴管 3、试剂 莫氏试剂:5%α-萘酚的酒精溶液1500mL.称取α-萘酚5g,溶于95%酒精中,总体积达100 mL,贮于棕色瓶内。用前配制。 1%葡萄糖溶液100 mL 1%果糖溶液100 mL 1%蔗糖溶液100 mL 1%淀粉溶液100 mL %糠醛溶液100 mL 浓硫酸 500 mL 4、实验操作 取5支试管,分别加入1%葡萄糖溶液、1%果糖溶液、1%蔗糖溶液、1%淀粉溶液、%糠醛溶液各1 mL。再向5支试管中各加入2滴莫氏试剂,充分混合。倾斜试管,小心地沿试管壁加入浓硫酸1 mL,慢慢立起试管,切勿摇动。 观察记录各管颜色。 (二)间苯二酚反应 1、原理 在酸作用下,酮醣脱水生成羟甲基糠醛,后者再与间苯二酚作用生成红色物质。此反应是酮醣的特异反应。醛糖在同样条件下呈色反应缓慢,只有在糖浓度较高或煮沸时间较长时,才呈微弱的阳性反应。实验条件下蔗醣有可能水解而呈阳性反应。 2、器材 试管及试管架,滴管 3、试剂 塞氏试剂:%间苯二酚-盐酸溶液1000 mL,称取间苯二酚0.05 g溶于30 mL 浓盐酸中,再用蒸馏水稀至1000 mL。 1%葡萄糖溶液100 mL 1%果糖溶液100 mL 1%蔗糖溶液100 mL 4、实验操作

电位电压的测定实验报告范文三篇.doc

电位电压的测定实验报告范文三篇 篇一:电极电位的测量实验报告 一.实验目的 1. 理解电极电位的意义及主要影响因素 2. 熟悉甘汞参比电极的性能以及工作原理 3. 知道电化学工作站与计算机的搭配使用方法 二.实验原理 电极和溶液界面双电层的电位称为绝对电极电位,它直接反应了电极过程的热力学和动力学特征,但绝对电极电位是无法测量的。在实际研究中,测量电极电位组成的原电池的电动势,而测量电极电位所用的参考对象的电极称为参考电极,如标准氢电极、甘汞电极、银-氯化银电极等,该电池的电动势为:E=φ待测-φ参比 上述电池电动势可以使用高阻抗的电压表或电位差计来计量 在该实验中,采用甘汞电极为研究电极,铁氰、化钾/亚铁氰、化钾为测量电极。在1mol的KCl支持电解质下,分别用10mM摩尔比1:1和1:2的铁氰、化钾/亚铁氰、化钾溶液在常温(27℃)以及45℃下测量,收集数据,可得到相同温度不同浓度的两条开路电位随时间变化曲线、相同浓度不同温度的两条开路电位随时间变化曲线。可以用电极电势的能斯特方程讨论温度

对于电极电势的影响 三.实验器材 电化学工作站;电解池;甘汞电极;玻碳电极;水浴锅 铁氰、化钾/亚铁氰、化钾溶液(摩尔比1:1和1:2)(支持电解质为1M KCl); 砂纸;去离子水 四.实验步骤 1. 在玻碳电极上蘸一些去离子水,然后轻轻在细砂纸上打磨至光亮,最后再用去离子水冲洗。电化学工作站的电极也用砂纸轻轻打磨 2. 在电解池中加入铁氰、化钾/亚铁氰、化钾溶液至其1/2体积,将玻碳电极和甘汞电极插入电解池中并固定好,将两电极与电化学工作站连接好,绿色头的电极连接工作电极,白色头的电极连接参比电极。 3. 点开电化学工作站控制软件,点击 setup—技术(technique)—开路电压—时间,设置记录时间为5min,记录数据时间间隔为0.1s,开始进行数据记录,完成后以txt形式保存实验结果。 4. 将电解池放入45度水浴锅中,再重复一次步骤2和步骤3。 5. 将电解液换成铁氰、化钾/亚铁氰、化钾溶液(1:2)后重复一次步骤2至4 6. 实验结束后清洗电极和电解池,关好

实验七-实验报告

实验七:超声化学法制备纳米多孔氧化物及其电化学性能研究专业:材料物理姓名:许航学号:141190093 一、实验内容与目的 1、学习超声化学反应的基本原理,熟悉反应装置的构成; 2、通过与其他方法比较,了解超声化学法在多孔纳米材料制备方面的优缺点; 3、学习超声化学法制备多孔金属氧化物的实验步骤,了解多孔纳米材料的表征方法; 4、学习电化学工作原理,掌握电容测试方法,熟悉超级电容器常用的金属氧化物材料。 二、实验原理 超声化学主要源于声空化导致液体中微小气泡形成、振荡、生长收缩与崩裂及其引起的物理、化学效应。液体声空化是集中声场能量并迅速释放的过程,空化泡崩裂时,在极短时间和空化极小空间内,产生5000K以上的高温和约5.05×108Pa的高压,速度变化率高达1010K/s,并伴有强烈的冲击波和时速高达400km的微射流生成,使碰撞密度高达1.5kg/s;空化气泡的寿命约0.1μs,它在爆炸时释放出巨大的能量,冷却速率可达109K/s。这为一般条件下难以或不能实现的化学反应提供了一种特殊的环境。这些极端条件足以使有机物、无机物在空化气泡内发生化学键断裂、水相燃烧和热分解条件,促进非均相界面之间搅动和相界面的更新,极大提高非均相反应的速率,实现非均相反应物间的均匀混合,加速反应物和产物的扩散,促进固体新相的生成,并控制颗粒的尺寸和分布。通过将超声探头浸入反应溶液中就可将超声波引入到一个有良好控温范围的反应系统。利用超声来使反应体系中的物质得到充分的反应,从而制备出颗粒分布、大小尺寸均匀的纳米多孔氧化物。

三、实验数据及处理 1.循环伏安曲线 在恒定扫描速率下,伏安特性曲线为闭合曲线,且扫描速率越快,围成的图形面积越大。 2.恒流充放电电压-时间曲线 曲线包括充电和放电两个过程,设定电压从0V充到0.6V,再放电到0V。随着充电电流的增加,充放电总时间增长,曲线的峰点向时间增加的方向移动。

相关文档
相关文档 最新文档