文档库 最新最全的文档下载
当前位置:文档库 › 直线电机的现状及发展趋势

直线电机的现状及发展趋势

直线电机的现状及发展趋势
直线电机的现状及发展趋势

直线电机的特点及发展趋势

(谭铭志湖南大学、湖南、长沙)

概要:概述了直线电机的发展史及特点,相对传统旋转电机的优势,以及直线电机的原理及控制的概述,最后还介绍了直线电机的发展趋势。

关键词:直线电机、现状、发展趋势

一、引言

直线电机是一种将电能直接转换成直线运动的机械能而不需要任何中间转换机构的传动装置。由于采用了“零传动”,从而较传统传动方式有明显的优势,如结构简单、无接触、无磨损、噪声低、速度快、精度高等。近年,随着工业加工质量和运动定位精度等要求的不断提高,直线电机受到了广泛的关注。在国外,直线电机驱动技术已进入工业化阶段,但国内尚处于起步阶段。

二、直线电机的发展历程

直线电机的历史,最早可追溯到1840年惠斯登(Wheatstone)提出和制作雏形但不成功的直线电机,从那时至今已有160多年。在这个发展历程中,大致可分为以下三个阶段:探索实验阶段(1840—1955)、开发应用阶段(1956—1970)和实用商品化阶段(1971至今)。

第一阶段是直线电机探索实验和部分实验应用阶段,由于当时直线电机的理论还只是雏形、设计不够完善、且受到材料的性能、制造技术的限制,使得直线电机效率较低,可靠性不高,所以直线电机在这一时期始终未能得到真正的应用。

第二阶段是直线电机的全面开发阶段。由于自动控制技术、制造技术及材料技术的突飞猛进给直线电机的研究应用奠定的坚实的基础。这时期主要以英国莱恩苇特(E·Laithwaiter)教授为首的一些人在强调直线电动机基础研究的情况下,取得了不少研究成果,公开发表了直线电机理论分析的文章,并出版了比较系统的介绍直线电机的专著《Induction Machines for Special Purpose》,这给直线电机领域作出了开创性贡献,也鼓励着世界各地的科学家继续努力。

第三阶段是直线电机的独立应用时代,在这个阶段直线电机找到一条适合自身发展的道路,在旋转电机无能为力的领域大展身手。从此直线电机的应用得到了迅速的推广,制成了许多具有实用价值的装置与产品,如运用直线电机驱动的磁悬浮列车时速达到了500Km/h,接近了航空飞行速度,电子缝纫机、磁头定位装置以及应用音圈直线电机加工活塞的中凸变椭圆的数控车床等。

三、简述直线电机的结构、原理及优缺点

直线电机在结构上可以认为是旋转电机在结构方面的一种演变,它可看作是将一台旋转电机沿径向剖开,然后将电机的圆周展开成直线,如图一所示:

图一旋转电机和直线电机示意图图二旋转电机演变为直线电机的过程

a) 旋转电机b) 直线电机a) 沿径向剖开b) 把圆周展成直线

这样就得到了由旋转电机演变而来的最原始的直线电机。由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。图二所示为演变而来的直线电机,后在结构上作了优化与改进,一般为双边型短初级长次级直线电机,这是扁平直线电机的一种,是目前应用最广泛的结构形式,除此以外,直线电机还可以做圆筒型(也称管型),圆弧型和圆盘型。

直线电机不仅结构上由旋转电机演变而来,而且工作原理也与旋转电机非常类似。如下图三所示为旋转电机的基本工作原理,图中线圈AX 、BY 、CZ 为定子A 、B 、C 三相绕组。当在其中通往三相对称正弦电流后,便在气隙中产生旋转磁场,这个磁场可看成沿气隙圆周呈正弦分布。电流变化一个周期,旋转磁场转过一对磁极,它的旋转速度称为同步转速s n (r/min)表示,它与电流的频率f (Hz)成正比,而与电极对数p 成反比,如下所示:p f

n s 60=。用ττf p n v s s 2260==(m/s)(τ为极距)表示定子内圆表

面上磁场运动的线速度。为简便起见,图中笼型转子只画出了两根导条。当气隙中旋转磁场以同步速度旋转时,磁场就会切割转子导条,而在其中感应出电动势,由于导条是通过端环短接的,因此在感应电动势的作用下,便在转子导条中产生电流,这个电流与气隙磁场相互作用便产生切向电磁力F 。由于转子是圆柱,故转子上每根导条的切向电磁力乘上转子半径,全部加起来即为促使旋转的电磁转矩。

图三 旋转电机的基本工作原理 图四 直线电机的基本工作原理

1-定子 2-转子 3-磁场方向 1-初级 2-次级 3-行波磁场

将图三的旋转电机在顶上沿径向剖开,并将圆周拉直,便成了图四的直线电机。当通往三相对称正弦电流后,也会产生气隙磁场。当不考虑横向、纵向的端部效应时,这个气隙磁场也和旋转电机非常相似,也可看成是沿展开的直线方向呈正弦分布。当三相电流随时间变化时,气隙磁场将按A 、B 、C 相序沿直线移动。在原理上与旋转电机类似,不同之处在于:这个磁场是平移的,而不是旋转的,因此称为行波磁场。显然,行波磁场的移动速度与旋转磁场的的线速度是一样的,即为τf v s 2=(m/s),也称为同步速度。在次级中为简便起见,图中只画出一根导条,次级导条在行波磁场的切割下,将产生感应电动势并产生电流。而所有导条上的电流和气隙磁场的相互作用便产生电磁推力。在这个电磁推力的作用下,次级就顺差行波磁场运动的方向作直线运动。次级移动速度用v 表示,转差率用s 表示,则有:

s s v v v s ?= s s sv v v =? s v s v )1(?=

在直线电机运行状态下,s 在0与1之间。这就是直线电机的工作原理。

直线电机与传统的旋转电机相比有如下的优势:1、结构简单:不需要一套把旋转运动转换成直线运动的的中间转换机构。2、反应速度快,灵敏度高,随动性好。3、容易密封,不怕污染,适应性强。4、工作稳定可靠,寿命长。5、推力大,额定值高。6、定位精度高。但是直线电机由于结构上的原因,有

着如下一些不足:1、直线电机初级铁芯沿磁场移动的方向是开断的,长度是有限的,不连续的,因而对移动磁场来说出现了一个“进入端”和一个“出口端”,这就产生的直线电机所特有的“边端效应”,使得电机的损耗增加,出力减小。2、直线电机初级、次级之间的间隙,由于机械结构的限制和工艺水平的影响,一般要比旋转电机的气隙大2至3倍,因而使直线电机的功率因数和效率大大降低。3、发热量大,需要较好的冷却系统。

四、直线电机的控制技术

直线电机的控制技术主要可从两部分来研究:驱动电路部分与控制器部分。

驱动电路要求能够提供大电压、大电流的大功率驱动系统。80年代以前主要以大功率三极管串(并)联的方式进行功率放大,由于各个功率管性能、参数等不一致,比较难以匹配与调试。再加上要自已搭配比较多的外围电路,如保护电路(短路、过流、过热、熔丝、缺相、过压、限幅)、吸收电路等使电路过于庞大,从而出错率增加。近年随着微电子技术的高速发展,大功率开关管IGBT,以及智能型大功率开关功率模块IPM已经非常成熟,在普遍的交流伺服系统、以及变频器等装置中都已经成熟的应用。

使用IPM的优点如下:驱动电路内置,保证的IGBT间连线最短,使驱动回路阻抗变低,使系统在最佳状态下驱动IGBT。并且IPM还内置了几乎所有的保护电路(短路、过流、过热、缺相、过压),简化了用户电路,缩短了用户开发时间,如三凌的PM30CSJ060。

控制器的控制方法可分为开环控制与闭环控制,一般对精度要求不高(如定位精度在0.05mm以上),可采用开环控制,这种控制方式简单可靠。闭环控制时一般在要求定位精度在μm级时使用,一般需要位置检测装置作为反馈信号进行闭环控制,一般使用高速高精度光栅尺作为位置检测装置。控制方法还可以分为模拟控制器、数字控制器与模拟数字混合控制器。现代控制策略大部分是针对数字控制器而言的,以下针对数字控制器阐述一下控制策略,大致可以分为以下三类:传统控制策略、现在控制策略、智能控制策略。在对象模型确定、不变化且为线性,以及操作条件、运行环境确定不变的条件下,采取传统控制策略是简单有效的。但在高精度微进给的高性能场合,就必须考虑对象的结构与参数变化以及各种不确定因素,才能得到满意的控制效果,这时就必须采用现代控制策略与智能控制策略。

传统控制策略有PID反馈控制、解耦控制等,在交流伺服系统中被广泛应用。PID控制算法蕴涵了动态控制过程中的过去、现在和将来的信息,而且配置几乎为最优,具有较强的鲁棒性,是交流伺服电动机最基本的控制形式,其应用广泛,并与其它新型控制思想相结合,形成了许多有价值的控制策略。而在速度与电流回路中都具有耦合作用,在动态过程中,可以采用解耦控制算法加以解决,使各变量的耦合减小到最低限度,以使各变量都能得到单独的控制。

现代控制策略:1>、自适应控制:对于直线伺服电动机特性参数的缓慢变化这一类扰动及其它外界干扰对系统伺服性能的影响,可以采用自适应控制策略加以降低或者消除。自适应控制一般分为模型参考自适应控制和自校正控制。2>、变结构控制:它在本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性。由于滑动模态可以进行设计、且与控制对象参数及扰动无关,这就便于变结构控制具有快速响应、对参数及扰动变化不敏感、无需在线辨识与设计等优点,因此在伺服系统中得到了成功的应用。

但振动问题限制了它在某些场合的应用。3>、鲁棒控制:针对控制对象模型的不确定性(包括模型的不确定性、非线性的线性化、参数与特性时变、漂移、工作环境与外界扰动),设法保持系统的稳定性和品

质鲁棒性。主要有代数方法与频域方法。频域方法是从系统的传递函数矩阵出发设计系统,

H控制是其

比较成熟的方法,其实质是通过使系统由扰动至偏差的传递函数矩阵的

H范数取极小或小于某一给定

值,据此来设计控制器,对抑制扰动具有良好的效果。4>、预见控制:是指对目标值的过去、现在、未来和干扰信号的未来情况完全知道的情况下,使目标值与被控量间的偏差整体达到最小,所以就自然地把其归为在全控制过程期间的某一评价函数取最小值的最优控制理论框架之中。

智能控制策略:对控制对象、环境与任务复杂的系统宜采用智能控制方法。模糊逻辑控制、神经网络和专家控制是当前三种比较典型的智能控制策略。现在神经网络与专家控制还不是很成熟,还需要世界各

地科学家继续努力探索。模糊控制器专用芯片已经商品化,因其实时性好、控制精度高,在伺服控制系统中已广泛应用。

五、直线电机的应用及发展趋势

现在直线电机被世界各国、各个行业广泛应用,主要体现在以下几个方面:

1、在物流运输系统中的应用:邮政系统的邮包、印刷品的物流分拣、输送线, 如日本东京多

摩邮局的大型邮政分拣机,深圳海关也采用了由浙江大学提供直线电机驱动的物流分拣线。目前许多行业如电工、电子、机械、化工、医药等生产流水线和装配线也有部分使用直线电机驱动的传输线。

2、在数控机床中的应用:传统机床的驱动装置依赖丝杆驱动,丝杆驱动本身具有一系列不利

因素,如:长度限制、机械间隙、磨擦、扭曲、螺距周期误差等,而直线电机不仅无此缺陷,且结构简单、精度可以是丝杆的10 倍甚至100 倍,加速度可以是传统机床的20 倍以上,高速、超高速、高加速度、高精度数控机床只有使用直线电机驱动才能够达到要求。自1993年德国Ex-Cell-O 公司研发出世界上第一台直线电机驱动工作台的加工中心以来,直线电机已在不同种类的机床上得到应用。德国、日本、美国等国家均有几十家公司的展品采用直线电机驱动系统。美国Gincin -nati公司的HYPCR MACH高速加工中心,X轴长达46m,采用直线电机驱动后,加工大型薄壁飞机零件,用传统方法加工一件要8小时,而用该机床只需30分钟。北京机电院高技术股份有限公司承担的“十五”攻关项目《直线电机驱动的高速立式加工中心》,于2003年研制成功国内第一台直线电机驱动的加工中心,并在2003年北京国际机床展览会展出。长沙一派自主研制成功的短行程高频响高刚度音圈式直线电机(频响300Hz以上,刚度达到10Kg/μm),驱动的数控机床成功应用于内燃机关键零部件活塞的中凸变椭圆加工,得到行业好评,我国60%以上活塞中凸变椭圆是长沙一派数控机床加工的。

3、直线电机在IT行业中的应用:PCB板定位、打孔机,计算机硬盘、软盘、光驱的磁头定位

装置,打印机,扫描仪等。如日本松下公司则将直线伺服电动机用于驱动数字扫描仪,使扫描仪总重减轻,启动推力提高,图象波动减少,扫描速度提高近5 倍。

4、直线电机在交通与民用方面的应用:直线电机应用于交通方面最典型的就是磁悬浮列车,

它改变了传统轨道车辆靠轮轨摩擦力推进的方式,采用磁力悬浮车体、直线电机驱动技术,使列车在轨道上浮起滑行,在交通技术发展史上是一个重大的突破,被誉为21 世纪一种理想的交通工具。磁浮车与现有常规车相比,主要优点是:速度快(500km/h);安全,无翻车;无噪声振动;占地小;爬坡强;结构简单;节能。国内外许多国家如德、日、美、法、英、俄、加拿大、韩国、瑞士、瑞典及中国都已投入了这方面的研制,其中尤以德、日最为突出。中国目前除上海的磁浮列车外,还有北京、四川等地也正在进行这方面的工作。直线电机在民用方面发展也非常迅速,有直线电机驱动的门、窗、窗帘,盘形直线电机驱动的洗衣机,空调、冰箱用直线电机压缩机,还有用直线电机驱动的家用针织机和缝纫机、炒茶机等。特别是用直线电机驱动的电梯,它具有的结构简单、省材、省空间、高速、低噪声、节能的优点。

5、直线电机在军事上的应用:直线电机在军事上也得到了一些应用,如前面所述的直线电

机驱动的潜艇,还有直线电机驱动的电磁炮,美国曾在1995 年宣布已完成。此外在一些军事设施上,如军用靶场、军用仿真系统、军用战斗武器如导弹的发射等等。

随着工厂自动化、精细化及机械制造行业的高速发展,对移动机构的定位精度、移动速度、以及启动、停止的平稳性,执行元件的性能及控制技术提出了日益严格的要求,用传统的旋转电机已无法满足要求,而直线电机在这些重要场合弥补了旋转电机的不足。在新的需求和新材料新技术的推动下,直线电机将获得更大的发展。如智能型驱动器、智能型控制器的发展对直线电机的性能与精度提供了更高可靠性。为了扩大直线电机的应用领域,人们根据新的原理开发专用直线电机。如用复合弹性材料CFRP的新型超声直线电机。

六、结语

直线电机具有结构简单、无接触、无磨损、低噪声、速度快、精度高、推力大等优点,但由于直线电机本身所具有的磁路开断所引起的边端效应以及安装气隙较大等问题,故在选择直线电机的时候要根据需求,权衡利弊人,选择能够充分发挥直线电机优势的地方应用。相信在不久的将来,随着新材料、新技术、以及控制理论的飞速发展,能够克服直线电机的缺点,完善直线电机的优点,更广泛的被人民应用到生活中的各个领域,相信直线电机完全取代传统式的旋转电机是社会发展的必然趋势。

参考文献:

[1] 叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2002.

[2] 郭庆鼎.直线交流伺服系统的精密控制技术. 北京:机械工业出版社,2000.

[3] 丁志刚.微特直线电机及其控制.浙江大学出版社.1986.

[4] M.波罗亚多夫著.张春镐译.直线感应电机理论.科学出版社.1985.

[5] [美]S.A.纳斯尔.直线电机. 科学出版社.1982.

[6] 叶去岳.直线电机技术手册.机械工业出版社.2003.

[7] Mclean G W.Review of recent progress in linear motors [J].IEE

Proceedings,1998,135(6):380-416.

[8] Wilkinson K J R.End effects in wound linear induction motors[J].IEE Proceedings

B,1982,129(1):35-42

直线电机发展应用综述 (1)(1).

直线电机在数控机床上的应用综述 所在学院:机械工程学院 学科专业:机械工程 学生:解瑞建 学号:12847920 指导教师:董颖怀 天津科技大学机械工程学院 二零一二年十二月二十七日

摘要 简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。 关键词:直线电机数控机床驱动控制高速机床 0 引言 数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。 图0 SUPT Motion公司生产的一种直线电机

直线电机运用

直线电机主要应用于三个方面: 一是应用于自动控制系统,这类应用场合比较多; 二是作为长期连续运行的驱动电机; 三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。 本期讨论直线电机的运用 Linear motor: 直线伺服电机应用 昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me 工业之美

什么是直线电机特点 1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及 其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子 加速器、制造武器等。2.直线电机是如何工作的 下面简单介绍直线电机类型 和他们与旋转电机的不同,最 常用的直线电机类型是平板式, U型槽式和管式。线圈的典型组 成是三相,有霍尔元件实现无刷 换相,直线电机用HALL换相的 相序和相电流。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固 定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度) 和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙 (airgap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋 转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直 线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 3.直线电机分类 管状直线电机 圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以 增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力 线圈是圆柱形的,沿磁棒上下运动。 U型直线电机 U型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统 支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。 非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空 气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通 泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害 平板直线电机 有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选 择时需要根据对应用要求的理解。无槽无铁芯平板电机是一系列coils安装在一个铝板上。由 于FOCER没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有 助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度 平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨 具有高的磁通泄露。 无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片 结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸 力和电机产生的推力成正比,迭片结构导致接头力产生。 无槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。 铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可 以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。 加工产品对比

线性马达(直线电机)的工作原理

所谓线性马达又称为直线电机,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初 级展开作为直线电机(线性马达)的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为直线电机(线性马达)的动子。 我们常说的磁悬浮,往往和直线电机(线性马达)驱动有着很大联系。磁浮运输系统通常采用“线性马达”也就是直线电机作为推进系统的。 线性马达的构成原理 设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”(Short-stator Motor);线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又 由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马 达”(Long-stator Motor)。 传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加, 行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突 破地面运输系统理论上最高速度每小时375公里的瓶颈。虽然法国TGV曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等 国之高铁商业营运时速均不超过300公里。

因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬 浮”(Magnetic Levitation,简称“磁浮”Maglev) 的方式,使列车浮离车道行驶,以减少摩 擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进 能源使用之效率。另外采用“线性马达”(Linear Motor) 亦可加快该磁浮运输系统的速度, 因此使用线性马达的磁浮运输系统应运而生。 所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分 为“常电导磁石”(Permanent Magnets) 或“超导磁石”(Super Conducting Magnets, SCM)。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由 于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢 (约300kph) 的磁浮列车;至于速度高达500kph以上的磁浮列车 (利用磁力相吸原理),就非使用 通一次电就永久具有磁性 (因此列车可以不用集电) 之超导磁石不可。 因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬 浮”(Electrodynamic Suspension, EDS) 与“电磁悬浮”(Electromagnetic Suspension, EMS) 两种型态。电动悬浮 (EDS) 是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场 方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠 两磁场作用力相互平衡而达成,故其悬浮高度可固定不变 (约10 ~ 15mm),列车即因此具有相 当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车 辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮 (即“起飞”),车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行 (即“降落”)。通常采用电动悬浮 (EDS) 的系统,只能以“线性同步马达”(Linear Synchronous Motor, LSM) 作为推进系统,且其速度相对较慢 (约300kph)。 电动悬浮系统 (EDS) 与线性同步马达 (LSM) 的组合 电磁悬浮 (EMS) 则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之 电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两

直线电机工作原理,特点及应用(数控大作业)

《数控技术》大作业二 1.综述 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。 2.工作原理 直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。 行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。因此直线电动机可实现往返直线运动。 3.直线电机的特点 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。 4.直线电机的应用

直线电机的发展及其在电梯行业的应用详细版

文件编号:GD/FS-7710 (安全管理范本系列) 直线电机的发展及其在电梯行业的应用详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

直线电机的发展及其在电梯行业的 应用详细版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。就电梯的曳引驱动系统而言,无论是交流电机

蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在开发阶段科学家在直线电动机研究的基础上,取得了非常大的研究成

直线电机原理

,提高系统精确度,所以得到广泛的应用。直线电动机的种类按结构形式可分为;单边扁平型、双边扁平型、圆盘型、圆筒型(或称为管型)等;按工作原理可分为:直流、异步、同步和步进等。下面仅对结构简单,使用方便,运行可靠的直线异步电动机做简要介绍。 直线异步电动机的结构主要包括定子、动子和直线运动的支撑轮三部分。为了保证在行程范围内定子和动子之间具有良好的电磁场耦合,定子和动子的铁心长度不等。定子可制成短定子和长定子两种形式。由于长定子结构成本高、运行费用高,所以很少采用。直线电动机与旋转磁场一样,定子铁心也是由硅钢片叠成,表面开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相。直线异步电动机的动子有三种形式: (1)磁性动子动子是由导磁材料制成(钢板),既起磁路作用,又作为笼型动子起导电作用。 (2)非磁性动子,动子是由非磁性材料(铜)制成,主要起导电作用,这种形式电动机的气隙较大,励磁电流及损耗大。 (3)动子导磁材料表面覆盖一层导电材料,导磁材料只作为磁路导磁作用;覆盖导电材料作笼型绕组。 因磁性动子的直线异步电动机结构简单,动子不仅作为导磁、导电体,甚至可以作为结构部件,其应用前景广阔。 直线异步电动机的工作原理和旋转式异步电动机一样,定子绕组与交流电源相连接,通以多相交流电流后,则在气隙中产生一个平稳的行波磁场(当旋转磁场半径很大时,就成了直线运动的行波磁场)。该磁场沿气隙作直线运动,同时,在动子导体中感应出电动势,并产生电流,这个电流与行波磁场相互作用产生异步推动 直线异步电动机主要用于功率较大场合的直线运动机构,如门自动开闭装置,起吊、传递和升降的机械设备,驱动车辆,尤其是用于高速和超速运输等。由于牵引力或推动力可直接产生,不需要中间连动部分,没有摩擦,无噪声,无转子发热,不受离心力影响等问题。因此,其应用将越来越广。直线同步电动机由于性能优越,应用场合与直线异步电动机相同,有取代趋势。直线步进电动机应用于数控绘图仪、记录仪、数控制图机、数控裁剪机、磁盘存储器、精密定位机构等设备中。

直线电机的发展及其在电梯行业的应用(正式版)

文件编号:TP-AR-L8349 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 直线电机的发展及其在电梯行业的应用(正式版)

直线电机的发展及其在电梯行业的 应用(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 直线电机可以不用借助任何中间转换结构把电能 转变成直线运动,与传统的方式相比,具有噪音低、 无磨损、无接触、结构简单、速度快、精度高等方面 的优点。基于此本文对直线电机的发展及其在电梯行 业的应用进行探讨,阐述了直线电机在电梯中驱动系 统、门机系统的应用前景,为工程技术人员对直线电 机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电 机进行工作,为了实现电梯门的开和关,需要借助一 些比较复杂的转动机构来把旋转运动的电机转变成直

线运动。就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在开发阶段

直线电机的发展及其在电梯行业的应用通用范本

内部编号:AN-QP-HT103 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 直线电机的发展及其在电梯行业的应 用通用范本

直线电机的发展及其在电梯行业的应用 通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。 传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运

直线电机开发及应用研究

2009年第1期 唐丽婵,等:基于LabVIEW 的无线远程温度监控系统 25 文章编号:1674-540X(2009)01-025-07 收稿日期:2009-01-15 作者简介:王振滨(1973-),男,博士研究生,主要从事分数阶线性系统和电气传动方面的研究工作,E mail:wangzhenbing@https://www.wendangku.net/doc/ac9225010.html, 直线电机开发及应用研究 王振滨1, 余鹿延2, 周守国3 (1.上海电气集团股份有限公司中央研究院,上海200070; 2.上海赛科现代交通设备有限公司,上海200023; 3.上海捷晟电机有限公司,上海200075) 摘 要:介绍了直线电机国内外的发展现状,指出永磁同步直线电机将是直线电机今后的发展方向。阐述了永磁同步直线电机的磁阻力产生的原因及其造成的推力波动对永磁同步直线电机控制性能的影响,并归纳出减小磁阻力的方法。最后简要介绍了上海电气中央研究院在开展永磁同步直线电机研究及应用的情况。 关键词:永磁同步直线电机;磁阻力;控制;开发与应用中图分类号:T M 33 文献标识码:A The Development and Application Research of Linear Motors W A N G Zhenbin 1 ,YU L uyan 2 ,ZH O U S houguo 3 (1.Shang hai Elect ric Group Co.Lt d.Cent ral A cademe,Shang hai 200070,China;2.Shanghai SEC M odern Traffic Equipment Co.Ltd.,Shanghai 200023,China; 3.Shanghai Jie Sheng M ot or Co.,Ltd.,Shanghai 200075,China) Abstract:It intro duces the up to date researches o f linear mo to rs hom e and abro ad,and points out permanent magnet linear synchronous m otors (PMLSM )w ill be the development dir ectio n of linear motor s in the future.T he r easo ns orig inated fr om detent for ce of PM LSMs are illustrated as w ell as the influences of the thrust force r ipple caused by it on the control per for mances of PM LSMs,and the methods o f reducing detent force is summed up.Finally,a brief introduction is g iven of the researches and applications of PM LSM s made by Shanghai Electr ic Gr oup Co.Ltd.Centr al A cademe. Key words:PM LSM;detent force;contr ol;development and applicatio n 1 直线电机国内外研究现状 1.1 快速发展的永磁直线电机技术 永磁直线电动机具有结构简单、体积小、无电 励,效率高、单位推力大等优点,随着稀土永磁材料、电磁场数值计算与分析、智能控制理论以及计算机技术的不断发展,永磁直线电动机的发展越来越快,己成为学术研究和开发应用的热点。永磁直

直线电机的工作原理

直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的优缺点介绍

直线电机是一种将电能转化为动能的机械装置,通常应用于工业生产当中。与直线电机相对应的一种装置是旋转电机,两者的工作原理类似。但是直线电机是进行直线运动的电机,而旋转电机是进行旋转运动的电机。直线电机可以直接将电能转化为动能,而不需要中间装置。 直线电机的优点 直线电机一般有平板式、U型式、管式几种。直线电机的工作系统是通过内部直线导轨来完成工作,用环保材料将线圈压缩成电路板的动子和电热调节器连接,然后在稀土磁铁的磁轨上进行动力推动,不需要像旋转电机一样,将动子固定在旋转轴承的支撑架上来保证相

对运动部分的稳定,通过直接反馈位置的直线编码器装置,就可以直接测量负载位置,从而保证负载位置的精确度。 由上看出,直线电机因为不需要中间转换装置,所以操作简单,非常适合进行非离心力的运动。直线电机的优势主要有以下几点: 首先,结构简洁。直线电机直接产生直线运动,位置精确度高,更为节省成本、稳定可靠、操作和维护简便。 第二,运动效率高。直线电机的气垫和磁垫中间存在缝隙,在运动时,不会出现机械接触,也不会出现摩擦和噪音,对零部件的损伤较小,从而具有较高的工作效率,可以进行高速直线运动。

直线电机与并联机床

直线电机与并联机床:机床技术创新典范 在全球经济陷入金融危机,并尚未摆脱其复杂影响的今天,人们对未来的发展进行了深入思考,我们将以什么样的姿态和面貌来迎接一个全新时代的到来呢?可以想见,危机过后,世界经济环境将发生巨大而深刻的变化,技术和产品的发展模式也将不再简单重复过去,我们必将造就一个以高新技术和创新成果为支撑的,以节能环保和低碳经济为主导的,绿色而高效的现代文明时代。 本届展会的主题是“以科技创新迎接后危机时代”,那么,现今的机床有哪些令人瞩目的共性、关键技术呢?记者注意到直线电机和并联机床。 直线电机:前途远大瓶颈仍存 日前,中国机床工具工业协会有关人士告诉记者:“直驱技术是行业发展的方向,也是国产机床的短板,在这个领域,德国和日本占尽先机。但是,我最近了解到,日本在直驱技术的开发上也遇到了难题,即大功率、大扭矩加工时无法解决散热问题。” 美国Ingersoll公司是知名的机床制造商,克莱斯勒汽车公司购买其6台HVM600卧式加工中心,用来生产高级汽车发动机汽缸盖。该机床主轴转速2万r/min,X/Y/Z三轴由GEFANUC的直线电机驱动。这6台加工中心每天生产300个汽缸盖,相当于11台非直线电机驱动的加工中心的生产量。 目前,世界上最知名的机床厂家几乎无一例外地都推出了直线电机驱动的机床产品,品种覆盖了绝大多数机床类型。 国内自1995年以来也开展了直线电机在机床上的应用研究,如广东工大研发的直线感应电机驱动的GD-3型高速数控机床进给单元,清华研究的长行程永磁直线伺服单元,北京机电院研发的直线电机驱动的加工中心,浙江大学研制的圆筒型直线电机驱动的并联机构坐标测量机和扁平永磁直线电机驱动的磨床,北京机床研究所研发的直线电机驱动的电火花成型机床,国防科大研发的活塞非圆切削中采用直线电机驱动刀具以及北航、南航与有关单位合作研发的机床等。此外,一些企业如杭州机床集团、江苏多棱数控机床股份有限公司、济南捷迈数控公司、深圳市大族激光科技股份有限公司、南京四开公司等也分别在平面磨床、

直线电机的结构及工作原理

直线电机的结构及工作原理 来源:本站整理作者:佚名2010年02月25日 17:43 分享 订阅 [导读]直线电机的结构直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相 关键词:直线电机 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 直线电机的特点 高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 位精度高线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 速度快、加减速过程短 行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。 动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 应用于自动控制系统,这类应用场合比较多; 作为长期连续运行的驱动电机; 应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。

直线电机的发展及其在电梯行业的应用

直线电机的发展及其在电梯行业的应用 直线电机可以不用借助任何中间转换结构把电能转变成直线运动,与传统的方式相比,具有噪音低、无磨损、无接触、结构简单、速度快、精度高等方面的优点。基于此本文对直线电机的发展及其在电梯行业的应用进行探讨,阐述了直线电机在电梯中驱动系统、门机系统的应用前景,为工程技术人员对直线电机的研发指明了方向。传统的电梯曳引系统和门机利用交流旋转电机进行工作,为了实现电梯门的开和关,需要借助一些比较复杂的转动机构来把旋转运动的电机转变成直线运动。就电梯的曳引驱动系统而言,无论是交流电机蜗轮蜗杆驱动系统或是交流调速系统、或是永磁马达调速系统,因为交流电机响应速度慢,控制起来比较复杂,无法满足未来对电梯性能的要求。而直线电机因为其结构的特殊性,不易被环境影响,受到了行业的广泛关注,正逐渐成为主流的电梯产品。 直线电机的发展和研究情况 1.1.直线电机的发展史 直线电机的概念是在1840年被提出来的,距今有一百多年的历史。可以将其发展史大致分成三个阶段,分别为:探索实验阶段、开发应用阶段和实用商品化阶段。其中第一个阶段指的是直线电机的探索和实验阶段,在这个阶段直线电机的设计还存在一定的问题,也没有找到直线电机合适的应用领域,因此直线电机一直没有被广泛使用。在

开发阶段科学家在直线电动机研究的基础上,取得了非常大的研究成果,发表了一些比较系统的电机类著作和文章,极大的推进了直线电机的发展,同时也引起了广大研究人员对直线电机的重视。从1971年开始对直线电机进行了独立应用,在这个阶段,研究人员选择了出了适合直线电机使用的途径,各种各样的直线电机被广泛的推广,研究出了非常多的具有使用价值的产品,比如冲压机、空压机、煤机等。 1.2.近年来国内外对直线电机的研究情况 近年来,直线电机得到了迅速的发展,很多人都开始对直线电机进行研究。国际上很多公司也逐渐开始研发直线电机类的产品,比如日本的三井精机公司、美国的Koll-morgen公司、各国的Wesitinghouse 公司等等。各种各样质量良好的直线电机产品也出现在了人们的视野中。比如Indramat公司研究出了非常完整的直线电机系列,其中包含了封闭式异步直线电机和无罩壳异步直线电机。在直线电机的控制系统中设置了非常标准的接口,可以更好的保证各种景观改型的程序控制器和数字变换器相兼容。 我国对直线电机的研究发展比较晚,大概是从70年代发展起来的。不过在国外直线电机使用潮流的影响下,我国国内也出现了很多直线电机开发使用的单位,例如浙江大学、沈阳工业大学、浙江大学、西安交通大学等。我国第一个直线电机研究所在浙江大学诞生,并且此研究取得了非常不错的研究成果。目前我国在直线电机方面的研究成

直线电机的应用

直线电机的应用 直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。 直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每 小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。 直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。 直线电机能直接产生直线运动,这一点对直线运动机械设计者和使用者有很大的吸引力。不少直线运动的机械是由旋转电机传动的,必须配置由旋转运动变为直线运动的机械传动装置,使得整个装置机构庞大,成本较高和效率较低。采用直线感应电机,不但省去了机械

电机的历史与未来发展

电机的历史与未来发展 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

摘要 在现代社会中,电能是现代社会最主要的能源之一。在电能的生产、输送和使用等方面,电机起着重要的作用。从19世纪30年代法拉第发明了世界上第一台真正意义上的电机—法拉第圆盘发电机开始,到现在21世纪10年代,电机的发展已经经过了近200年的历史。从最初的直流电机到现在大热的超声电机,随着科学的进步,生产力的迅猛发展,电机更新换代的速度日益加快,应用范围也越来越广,遍及生产生活的各个领域。我国在电机方面起步比西方国家晚了100年,但研究发展速度很快,很多企业和高校也都有自己新的研究技术,与国外先进国家的差距在逐渐缩短。未来,相信电机的应用和发展将会更加环保,更加智能。 关键词:电机、历史、发展、中国电机发展、未来 1、电机的简介 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机主要包括发电机、变压器和电动机等类型。发电机是将其他形式的能源转换成电能的机械设备,电动机将电能转换成为机械能,用来驱动各种用途的生产机械。 在自然界各种能源中,电能具有大规模集中生产、远距离经济传输、智能化自动控制的突出特点,它不但成为人类生产和活动的主要能源,而且对近代人类文明的产生和发展起到了重要的推动作用。与此相呼应,作为电能生产、传输、使用和电能特性变化的核心装备,电机在现代社会所有行业和部门中也占据着越来越重要的地位。 纵观电机的发展,其应用范围不断扩大,使用要求不断提高,结构类型不断增多,理论研究也不断深入。特别是近30年来,随着电力电子技术和计算机技术的进步,尤其是超导技术的重大突破和新原理;新结构;新材料;新工艺;新方法的不断推动,电机发展更是呈现出勃勃生机,其前景是不可限量的。 2、电机的历史 直流电机发展史 1820年丹麦物理学家奥斯特发现了电流磁效应 随后安培通过总结电流在磁场中所受机械力的情况建立了安培定律

直线电机在城市轨道交通系统中的应用

直线电机在城市轨道交通系统中的应用 摘要:介绍了直线电机工作原理和直线电机电动车特点,以及日本利用直线电机的地铁和常导磁悬浮交通系统发展的概况。 城市交通在城市的发展过程中愈来愈重要,而城市轨道交通占据突出的位置。由于近年来科学技术的发展和进步,包括地铁、轻轨交通、单轨交通、新交通系统以及磁悬浮交通系统等城市轨道交通的形式变化多样。在改善城市交通的时候,各个城市根据自己城市的具体特点选择交通系统的范围也更宽。安全、舒适、高密度运行,通过引入新技术达到节能,保护环境,降低成本,从结构和性能上采取措施,不断进行改进,保持先进性是城市轨道交通存在的价值。在城市轨道交通系统中,根据车辆的特点,采用直线电机作为驱动电机又提供了一种新的选择。 1 直线电机的工作原理 通常,电动机是旋转型的。定子包围着圆筒形的转子,定子形成磁场,在转子中流过电流,使转子产生旋转力矩。而直线电机则是将两个圆筒形部件展开成平板状,面对面,定子在相应于转子移动的长度方向上延长,转子通过一定的方式被支承起来,并保持稳定,形成转子和定子之间的空隙。 直流电机、感应电机、同步电机等都可做成直线电机,但是,直流电机在结构上无法做成无整流子型,所以,直线电机一般为感应电动机和同步电动机。这些交流电动机的1次侧有作为定子侧的,也有作为转子侧即移动体侧的。例如,超导磁悬浮中,同步电动机的定子(地上)是1次侧,旋转磁场在地上移动;而地铁的直线电机,感应电动机的旋转磁场装在车上,2次侧固定在地上。前者的空隙靠左右导向线圈保持,而后者靠车轮保持。 产生推进力的原理与电动机产生力矩的原理一样,在直线电机地铁中,安装在转向架上的直线电动机沿前进方向产生移动磁场。让面对该磁场、安装在地上的反作用板(相当于2次线圈)中通过2次电流(涡电流),由这个2次电流切割磁场产生的力作为反作用力,安装在转向架上的直线电动机得到推进力。 直线电机的基本缺点是很难将定子与转子空隙做成象旋转式电机那么小,旋转式是无限循环的,而直线电动机是有端头的。为此,泄漏磁通多,电气—机械能量转换的效率低,如果要得到相同的输出,逆变器的容量需要比旋转式大。 2 直线电机电动车的特点 在使用旋转式电机的电动车中,一般是通过齿轮减速将旋转力矩转换为列车的牵引力,同时也受到轮轨间粘着的限制。 直线电机电动车的推进力和制动力都利用直线电机,如上所述,有1次侧在车上和地上2种。1次侧在车上时,要将VVVF逆变器和直线电机装载在车上,使车辆重量增加,车辆价格高;但在地面上的设备仅只有反作用板,又降低了建设费用。1次侧在车上的方式已在一部分地铁得到了实际应用。 在直线电机的电动车中,推进力由铺设在钢轨间的反作用板直接传递,所以不受粘着的限制,有可能从滑行和空转产生的各种问题中解脱出来,有利于通过大坡道(最大坡度可达60‰~80‰)和小半径曲线(最小半径为50 m)的线路。此外,由于直线电机无转动部件,所以不需要轴承和润滑机构,使之结构简单,延长寿命,这是其最大的特点。 在旋转电动机中,旋转力矩与其直径的平方成正比,所以要得到大的旋转力矩,电动机的直径就要增大,在直线电机中,这相当于将相应的部分在长度方向延长,而高度方向可以减小。在大型电机中,如果是1级齿轮减速,车轮直径也必须加大;而在直线电机驱动中,则不必如此,所以,可以减小车轮的直径,这将使车辆的地板面的高度降低。

直线电机工作原理及其驱动技 术的 应用

直线电机工作原理及其驱动技术的应用 摘要:简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有的巨大优势。介绍了直线电机进给驱动技术在数控机床上的几个应用实例,指出直线电机进给驱动技术将是高速数控机床未来发展的方向。 引言 随着航空航天、汽车制造、模具加工、电子制造行业等领域对高效率地进行加工的要求越来越高,需要大量高速数控机床。机床进给系统是高速机床的主要功能部件。而直线电机进给系统彻底改变了传统的滚珠丝杠传动方式存在的弹性变形大、响应速度慢、存在反向间隙、易磨损等先天性的缺点,并具有速度高、加速度大、定位精度高、行程长度不受限制等优点,令其在数控机床高速进给系统领域逐渐发展为主导方向。 1 直线电机及其驱动技术 现代先进的驱动技术主要分为两大类:一类为电磁式的,另一类则为非电磁式的。 电磁类的现代先进的驱动技术主要由现代电磁类驱动器与现代控制系统组成,它的驱动器包括传统改进型的电磁驱动器与新发展型的电磁驱动器。它们中有旋转的、直线的、磁浮的、电磁发射的等等。除了在一般通用电机技术基础上改进获得的电机技术外,还有更多的是在通用电机技术基础上进一步发展的新型电机技术,如直线电机技术、无刷直流电机技术、开关磁阻电机技术和各种新型永磁电机技术等。 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线电机结构示意图如下图所示。直线电机是将传统圆筒型电机的初级展开拉直,变初级的封闭磁场为开放磁场,而旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。在电机的三相绕组中通入三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。当三相电流随时问变化时,使气隙磁场按定向相序沿直线移动,这个气隙磁场称为行波磁场。当次级的感应电流和气隙磁场相互作用便产生了电磁推力,如果初级是固定不动的,次级就能沿着行波磁场运动的方向做直线运动。即可实现高速机床的直线电机直接驱动的进给方式,把直线电机的初级和次级分别直接安装在高速机床的工作台与床身上。由于这种进给传动方式的传动链缩短为0,被称为机床进给系统的“零传动”。 与“旋转伺服电机+滚珠丝杠”传动方式相比较,直线电机直接驱动有以下优点:(1)高速度,目前最大进给速度可达100~200m/min。(2)高加速度,可高达2g~10g。(3)定位精度高,由于只能采用闭环控制,其理论定位精度可以为0,但由于存在检测元件安装、测量误差,实际定位精度不可能为0。最高定位精度可达0.1~0.01m。(4)

相关文档
相关文档 最新文档