文档库 最新最全的文档下载
当前位置:文档库 › 材料热力学知识点

材料热力学知识点

材料热力学知识点
材料热力学知识点

第一章单组元材料热力学

名词解释:

1 可逆过程

2 Gibbs自由能最小判据

3 空位激活能

4 自发磁化:

5 熵:

6 热力学第一定律热力学第二定律

7 Richard定律

填空题

1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。

2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW

3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应

4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。

5 纯Fe的A3的加热相变会导致体积缩小

6 Gibbs-Helmholtz方程表达式是

7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化

论述题

1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应?

2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。

3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。

4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。

计算题

1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J?mol-1,试求将β-Ti过冷到800O C 时,β→α的相变驱动力

2若某金属形成空位的激活能为58.2KJ?mol-1,试求在700O C下,该金属的空位浓度。

3纯Bi在0.1MPa压力下的熔点为544K。增加压力时,其熔点以3.55/10000K?MPa-1的速率下降。另外已知融化潜热为52.7J?g-1,试求熔点下液、固两相的摩尔体积差。(Bi的原子量为209g?mol-1.

第二章 二组元相

名词解释:

溶体:以原子或分子作为基本单元的粒子混合系统所形成的结构相同,性质均匀的相

理想溶体:在宏观上,如果组元原子(分子)混合在一起后,既没有热效应也没有体积效应时所形成的溶体。

混合物:由结构不同的相或结构相同而成分不同的相构成的体系

化合物:两种或两种以上原子组成的具有特定结构的新相

溶解度:溶体相在与第二相平衡时的溶体成分(浓度),固溶体在与第二相平衡时的溶解度也成为固溶度。

溶解度间隙:溶体的自由能-成分曲线上出现拐点时,溶体的结构稳定性会发生变化,导致同类原子偏聚在一起的失稳分解,从而形成形溶解度的的中断,也称为出现溶解度间隙。 有序化:如果原子的相互作用能IAB 远小于零,溶体中异类组元的原子更倾向聚合在一起的现象称为有序化。

Henry 定律:稀溶体的溶质定律。在温度一定时,以A 组元为溶剂,B 组元为溶质的稀溶体中,溶质的活度系数为常数,为常数B B B B f f X a =

Raoult 定律:即稀溶体的溶剂定律。当溶质的浓度极低时,溶剂的活度系数近似等于1,即a A =X A

填空题

1在恒压下,对二元溶体而言,摩尔自由能取决于温度和溶体成分。得出这一结论的原理是吉布斯相律

2如果有N A 个A 原子和N B 个B 原子构成1mol 的理想溶体。设Na 为阿伏加德罗常数。则理想溶体的微观状态数W=!

N !N !N B A a 3混合物摩尔自由能的计算

4 A 、B 两组元形成的二元正规溶体,设其Spinodal 曲线和溶解度间隙曲线的顶点温度为Ts ,相互作用能为I AB ,则顶点温度Ts 和相互作用能I AB 的关系式为R 2I T AB

S =

5 偏摩尔Gibbs 自由能就是化学势,二元溶体中i 组元化学势的通式为:

i m i m i X G X 1G ??-+=)(μ

6 溶体中组元的活度a i 等于组元的浓度Xi 乘以活度系数fi,活度系数产生的原因是相互作用能

论述题

1试证明混合物自由能服从混合律(Mixture law ),即混合物的摩尔自由能M m G 与两相的摩

尔自由能αm G 和βm G 之间的关系式为

βαβαααββm B

B B M B m B B M B B M m G X X X X G X X X X G --+--= 式中,M m X 、αm X 和βm X 分别为混合物、α相和β相的成分

2试利用在Gm-X 图中化学势的图解法,解释为什么有的固溶体当中会发生上坡扩散。

计算题

1试用正规溶体模型计算一个I AB =16.7KJ ?mol -1成分为X B =0.4的二元固溶体,其发生Spinodal 分解的上限温度是多少?其发生Spinodal 分解的顶点温度Ts 又为多少?

2 某A-B 二元正规溶体的I αAB =20KJ ?mol -1,试求800K 发生Spinodal 分解的成分范围

第三章 二组元材料热力学

名词解释:

端际固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种合金相就称为一次固溶体。在相图中一次固溶体通常是出于两端,所以又被称作端际固溶体

分配比:溶质元素的重要性质,用以判断溶质元素对平衡两相稳定性的影响。定义为:βαβαB B B X X K =,其中αB X 和βB X 分别为溶质原子在α和β两相中的平衡成分。 区域熔炼:利用液固两相平衡时成分的差异而设计的获得高纯材料的方法。

通过移动加热环,让棒状待提纯材料从一端到另一端逐次熔化、凝固,使杂质原子聚集在一端,从而使材料得以提纯

相稳定化参数:是分配比的热力学表征。定义为

βαβαβαβα???→→→*+==AB B 0B B I G K ln RT G ,

βα?→*B G 称作β相稳定化参数

填空题:

1两相平衡的基本判据即平衡态判据是体系的Gibbs 自由能为极小值,即dG=0或G=min 在此基础上根据化学势的定义,派生出两相平衡时各组元的化学势必须相等

2 两相平衡的化学势相等条件也可以称公切线法则:平衡两相的摩尔自由能曲线公切线的切点成分是两相平衡成分,两切点之间成分的体系处于两相平衡状态

3 若A-B 二元系中存在化合物中间相AmBn (θ)时,化合物的摩尔自由能与化学势的条件是θθθμμB A m n m G +=

4两个稀溶体平衡时,平衡两相的浓度差与溶质无关,而取决于温度和该温度下溶剂的相变自由能

5 二元合金相图中,溶质元素会对γ相区产生影响,使得γ相区缩小(封闭γ区)的溶质元素称为α former ,使得γ相区扩大(扩大γ区)的溶质元素称为γ former

论述题

1 向Fe 中加入α former 元素将使γ相区缩小。试证明:无论加入什么元素,要使γ相区完全封闭,元素的加入量至少要达到0.6%(原子分数)

2 试用Gm-X 图说明,为什么bcc 结构的金属溶质元素加入铁中后,大多会使Fe 的γ相区缩小(封闭γ相区)?

计算题

1 已知Fe-W 合金中,W 在γ相及α相中的分配系数04.2X X K W

W W ==→γαγα,α中W

的含量为011.0X W =α,试求在1100O C 下,纯铁的相变自由能γα?→Fe G 0

2在Fe-Sb 合金中,Sb 在γ相及α相中的分配系数54.1X X K Sb

Sb Sb ==→γαγα,试计算在1100O C 下两相的平衡成分。已知在1100O C 下,纯铁的相变自由能γα?→Fe G 0=-116J ?mol -1

3 如果A-B 二元系中的固相的相互作用键能具有成分依存性,关系为B aX 2u

=,试求

溶解度间隙的顶点温度。

第四章 相变热力学

名词解释

1无扩散相变:相变过程中不发生溶质元素的长程定向移动,相变产物(新相)和母相具有相同成分,只是结构发生了变化。

2 T 0线:各温度下母相和转变产物相的摩尔自由能相等的各点成分的连线,即无扩散相变驱动力为0的成分和温度关系曲线

3 马氏体点:原指Fe 基合金冷却时奥氏体转变成马氏体的开始温度,后将所有冷却时发生的无扩散切变相变的开始温度称为马氏体点

4一级相变:压力一定时,在可逆相变温度下,成分不变相变的母相和新相化学势相等,而化学势对温度、压力的一阶偏微分不等的相变。特点是发生一级相变时会伴随体积和熵(焓)的突变。

5 二级相变:压力一定时,在可逆相变温度下,成分不变相变的母相和新相化学势相等,化学势对温度、压力的一阶偏微分也相等,但化学势对温度、压力的二阶偏微分不等。即有等压热容、膨胀系数和压缩系数的突变。

6 晶间偏析:固溶体中溶质原子分布不均匀,在晶界发生溶质原子的富集或是贫化,对材料的性能产生影响,本质上是一种热力学平衡状态。

填空题

1 A-B 二元系固溶体,如果α

AB I >0,而且温度不高,则摩尔自由能曲线所形成拐点。这时整个成分范围可以分成三个区域,分别称为:稳定区、失稳区和亚稳区

2 在固溶体的亚稳区成分范围内,固溶体会发生分解,但不能以失稳分解的机制发生,而要通过普通的形核长大机制进行。

3第二相析出是指从过饱和固溶体中析出另一结构的相 4 弯曲表面的表面张力σ和附加压力P 的关系式为r

σ

P 2=,假设弯曲表面的半径为r. 5 根据Trouton 定律:多数物质的液体在沸点汽化时的熵变约是气体常数R 的11倍

论述题

1如图所示A-B 二元系中,成分低于αB X 的γ单相可以通过无扩散相变,转变成同成分不同结构的α单相。若γ相及α相都可以用正规溶体近似描述,试写出其无扩散相变驱动力表达式并加以证明。

2 试证明晶界偏析这一热力学现象的平衡判据——平行线法则

3 试在摩尔自由能成分曲线即Gm-X 图中标出,一个二元固溶体α,析出同结构固溶体的相变驱动力和形核驱动力,并分析对两组元的相互作用能和温度有何要求,析出什么成分的晶核时驱动力最大。

化学知识点梳理

俗名 无机部分: 纯碱、苏打、天然碱、口碱:Na2CO3小苏打:NaHCO3大苏打:Na2S2O3石膏(生石膏):CaSO4.2H2O 熟石膏:2CaSO4·H2O 莹石:CaF2重晶石:BaSO4(无毒)碳铵:NH4HCO3石灰石、大理石:CaCO3生石灰:CaO 食盐:NaCl 熟石灰、消石灰:Ca(OH)2芒硝:Na2SO4·7H2O (缓泻剂) 烧碱、火碱、苛性钠:NaOH 绿矾:FaSO4·7H2O 干冰:CO2明矾:KAl (SO4)2·12H2O 漂白粉:Ca (ClO)2、CaCl2(混和物)泻盐:MgSO4·7H2O 胆矾、蓝矾:CuSO4·5H2O 双氧水:H2O2皓矾:ZnSO4·7H2O 硅石、石英:SiO2刚玉:Al2O3水玻璃、泡花碱、矿物胶:Na2SiO3铁红、铁矿:Fe2O3磁铁矿:Fe3O4黄铁矿、硫铁矿:FeS2铜绿、孔雀石:Cu2 (OH)2CO3菱铁矿:FeCO3赤铜矿:Cu2O 波尔多液:Ca (OH)2和CuSO4石硫合剂:Ca (OH)2和S 玻璃的主要成分:Na2SiO3、CaSiO3、SiO2过磷酸钙(主要成分):Ca (H2PO4)2和CaSO4重过磷酸钙(主要成分):Ca (H2PO4)2天然气、沼气、坑气(主要成分):CH4水煤气:CO和H2硫酸亚铁铵(淡蓝绿色):Fe (NH4)2 (SO4)2溶于水后呈淡绿色 光化学烟雾:NO2在光照下产生的一种有毒气体王水:浓HNO3与浓HCl按体积比1:3混合而成。 铝热剂:Al + Fe2O3或其它氧化物。尿素:CO(NH2) 2 有机部分: 氯仿:CHCl3电石:CaC2电石气:C2H2 (乙炔) TNT:三硝基甲苯酒精、乙醇:C2H5OH 氟氯烃:是良好的制冷剂,有毒,但破坏O3层。醋酸:冰醋酸、食醋CH3COOH 裂解气成分(石油裂化):烯烃、烷烃、炔烃、H2S、CO2、CO等。甘油、丙三醇:C3H8O3焦炉气成分(煤干馏):H2、CH4、乙烯、CO等。石炭酸:苯酚蚁醛:甲醛HCHO 福尔马林:35%—40%的甲醛水溶液蚁酸:甲酸HCOOH 葡萄糖:C6H12O6果糖:C6H12O6蔗糖:C12H22O11麦芽糖:C12H22O11淀粉:(C6H10O5)n 硬脂酸:C17H35COOH 油酸:C17H33COOH 软脂酸:C15H31COOH 草酸:乙二酸HOOC—COOH 使蓝墨水褪色,强酸性,受热分解成CO2和水,使KMnO4酸性溶液褪色。 二、颜色 铁:铁粉是黑色的;一整块的固体铁是银白色的。Fe2+——浅绿色Fe3O4——黑色晶体Fe(OH)2——白色沉淀Fe3+——黄色Fe (OH)3——红褐色沉淀Fe (SCN)3——血红色溶液FeO——黑色的粉末Fe (NH4)2(SO4)2——淡蓝绿色Fe2O3——红棕色粉末FeS——黑色固体 铜:单质是紫红色Cu2+——蓝色CuO——黑色Cu2O——红色CuSO4(无水)—白色CuSO4·5H2O——蓝色Cu2(OH)2CO3—绿色Cu(OH)2——蓝色[Cu(NH3)4]SO4——深蓝色溶液 BaSO4、BaCO3、Ag2CO3、CaCO3、AgCl 、Mg (OH)2、三溴苯酚均是白色沉淀 Al(OH)3白色絮状沉淀H4SiO4(原硅酸)白色胶状沉淀 Cl2、氯水——黄绿色F2——淡黄绿色气体Br2——深红棕色液体I2——紫黑色固体 HF、HCl、HBr、HI均为无色气体,在空气中均形成白雾 CCl4——无色的液体,密度大于水,与水不互溶KMnO4--——紫色MnO4-——紫色 Na2O2—淡黄色固体Ag3PO4—黄色沉淀S—黄色固体AgBr—浅黄色沉淀 AgI—黄色沉淀O3—淡蓝色气体SO2—无色,有剌激性气味、有毒的气体 SO3—无色固体(沸点44.8 o C)品红溶液——红色氢氟酸:HF——腐蚀玻璃 N2O4、NO——无色气体NO2——红棕色气体NH3——无色、有剌激性气味气体 三、现象:

热力学复习知识点汇总

概 念 部 分 汇 总 复 习 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝热过程中内能U 是一个态函数: A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形 式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分 形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公式一比较 即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 公式:nR C C V p =- 14、绝热过程的状态方程: const =γpV ;const =γ TV ; const 1 =-γ γT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率2 11T T - =η,逆循环 为卡诺制冷机,效率为2 11T T T -= η (只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 17、无摩擦的准静态过程是可逆过程。 18、卡诺定理:所有工作于两个一定温度T 1与T 2之间的热机,以可逆机的效率为最高。并且所有的可逆机 的效率η都相等21 1T T - =η ,与工作物质无关,只与热源温度有关。 19、热机的效率:1 21Q Q -=η,Q 1为热机从高温热源吸收的热量,Q 2 为热机在低温热源放出的热量。 20、克劳修斯等式与不等式:02 211≤+T Q T Q 。 21、可逆热力学过程0=?T dQ ,不可逆热力学过程0

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

材料力学知识点总结教学内容

材料力学总结一、基本变形

二、还有: (1)外力偶矩:)(9549 m N n N m ?= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t r T 22πτ= (3)矩形截面杆扭转剪应力:h b G T h b T 32max ;β?ατ= =

三、截面几何性质 (1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑=== n i i n i ci i c A y A y 1 1 ; ∑∑=== n i i n i ci i c A z A z 1 1 2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )( 四、应力分析: (1)二向应力状态(解析法、图解法) a . 解析法: b.应力圆: σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+” α:从x 轴逆时针转到截面的 法线为“+” ατασσσσσα2sin 2cos 2 2 x y x y x --+ += ατασστα2cos 2sin 2 x y x +-= y x x tg σστα-- =220 22 min max 22 x y x y x τσσσσσ+??? ? ? ?-±+= c :适用条件:平衡状态 (2)三向应力圆: 1max σσ=; 3min σσ=;2 3 1max σστ-= x

(3)广义虎克定律: [])(13211σσνσε+-=E [] )(1 z y x x E σσνσε+-= [])(11322σσνσε+-=E [] )(1 x z y y E σσνσε+-= [])(12133σσνσε+-=E [] )(1 y x z z E σσνσε+-= *适用条件:各向同性材料;材料服从虎克定律 (4)常用的二向应力状态 1.纯剪切应力状态: τσ=1 ,02=σ,τσ-=3 2.一种常见的二向应力状态: 22 3122τσσ σ+?? ? ??±= 2234τσσ+=r 2243τσσ+=r 五、强度理论 *相当应力:r σ 11σσ=r ,313σσσ-=r ,()()()][2 12 132322214σσσσσσσ-+-+-= r σx σ

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

八年级化学知识点整理

第一单元走进化学世界 (一)物质的变化和性质 1.物理变化和化学变化的主要区别是什么?举例说明? 答:物理变化没有新物质生成,而化学变化有新物质生成。 2.下列现象哪些是物理变化,哪些是化学变化?为什么? (1)潮湿的衣服经太阳晒,变干了。—物理变化 (2)铜在潮湿的空气里生成铜绿。—化学变化 (3)纸张燃烧。—化学变化 (4)瓷碗破碎。—物理变化 (5)铁生锈。—化学变化 (6)石蜡熔化。—物理变化 3.为什么说点燃蜡烛时既有物理变化又有化学变化? 答:蜡烛燃烧有新物质生成,是化学变化,蜡烛受热熔化无新物质生成,是物理变化。 4.下列哪些是物质的物理性质,哪些是物质的化学性质?为什么? (1)空气是没有颜色、没有气味的气体。—物理性质 (2)水沸腾时能变成水蒸气。—物理性质 (3)食物在人体中消化,最后能变成水、二氧化碳等。—化学性质 (4)以粮食为原料能酿酒。—化学性质 (5)铜的密度是8.9g/cm3,熔点是1083℃—物理性质 (6)二氧化碳能使澄清的石灰水变浑浊。—化学性质 (7)酒精能燃烧。—化学性质 (8)酒精能挥发。—物理性质 (二)化学是一门以实验为基础的科学 1.你家里用什么燃料烧水做饭?燃烧过程中你能观察到什么现象?燃料燃烧是不是化学变化?为什么? 答:目前,我国家庭使用的燃料品种很多,主要有化石燃料(煤炭、液化石油气、天然气、煤气等)和生物质燃料(薪草、沼气、粪便等。)尽管这些燃料燃烧的现象不一定相同,但肯定都属于化学变化。燃料燃烧是当前人类利用化学变化获取能源的主要途径。 2.在家中帮助家长洗碗或玻璃杯时,你怎样检查碗或玻璃杯是否洗干净了? 答:洗过的碗或玻璃杯内壁附着的水既不聚集成水滴,也不成股流下时,表示已洗干净。 第二单元我们周围的空气 (一)空气 1.利用家庭中的常用物品设计一个证明空气存在的小实验,简述步骤和方法。 答:一个最简单的方法是把空杯子口向下压入水面以下,水不能进入,说明杯子中有空气,它阻止了水的进入。 2.你去过城镇繁杂的街道或农村广阔的田野吗?在这两处的感受是不是一样?这两处的主要不同是什么? 答:在城镇繁华街道附近,一般空气质量较差,原因是多方面的,如污染物较多、机车尾气、尘土、细菌等,噪声也较大;农村广阔的田野空气质量好,安静。 (二)氧气 (三)制取氧气 1.结合“加热高锰酸钾制取氧气”的实验,回答下列问题: (1)检查装置的气密性时,如果装置的气密性很好,在导管移出水面之前松开手,会有什

知识点热力学与料热力学部分

知识点热力学与料热力学部分

————————————————————————————————作者:————————————————————————————————日期:

热力学与材料热力学部分 热力学:用能量转化和守恒的观点来研究物质热运动的客观规律;以实验事实为基础,总结研究系统状态变化过程中的功能转化和热力学过程的方向性问题。 热力学研究能(energy)和能的转变(transformations)规律 材料研究的每个过程离不开热力学 1、材料服役性能 2、材料制备 3、材料微观组织 材料热力学是热力学基本原理在材料设计、制备与使用过程中的应用。 材料热力学是材料科学的重要基础之一。 材料学的核心问题是求得材料成分-组织结构-各种性能之间的关系。问题的前半部分,即材料成分-组织结构的关系要服从一个基本的科学规则,这个基本规则就是材料热力学。在材料的研究逐渐由“尝试法”走向“定量设计”的今天,材料热力学的学习尤其显得重要。 材料热力学是经典热力学和统计热力学理论在材料研究方面的应用,其目的在与揭示材料中的相和组织的形成规律。固态材料中的熔化与凝固以及各类固态相变、相平衡关系和相平衡成分的确定、结构上的物理和化学有序性以及各类晶体缺陷的形成条件等是其主要研究对象。 现代材料科学发展的主要特征之一是对材料的微观层次认识不断进步。利用场离子显微镜和高分辨电子显微镜把这一认识推进到了纳米和小于纳米的层次,已经可以直接观察到从位错形态直至原子实际排列的微观形态。这些成就可能给人们造成一种误解,以为只有在微观尺度上对材料的直接分析才是深刻把握材料组织结构形成规律的最主要内容和最主要途径;以为对那些熵、焓、自有能、活度等抽象概念不再需要更多的加以注意。其实不然,不仅热力学的主要长处在于它的抽象性和演绎性,而且现代材料科学的每一次进步和发展都一直受到经典热力学和统计热力学的支撑和帮助。材料热力学的形成和发展正是材料科学走向成熟的标志之一。工业技术的进步在拉动材料热力学的发展,而材料热力学的发展又在为下一个技术进步准备基础和条件。 材料热力学是热力学理论在材料研究、材料生产活动中的应用。因此这是一门与实践关系十分密切的科学。学习这门课程,不能满足于理解书中的内容,而应当多进行一些对实际材料问题的分析与计算,开始可以是一些简单的、甚至是别人已经解决的问题,然后由易渐难,循序渐进。通过不断的实际分析与计算,增进对热力学理论的理解,加深对热力学的兴趣,进而有自己的心得和成绩。 热力学最基本概念: 1、焓变 enthalpy

化学知识点整理

高中化学知识点总结 1.氢离子的氧化性属于酸的通性,即任何可溶性酸均有氧化性。 2.不是所有的物质都有化学键结合。如:稀有气体。 3.不是所有的正四面体结构的物质键角为109。28,如:白磷。 5.电解质溶液导电,电解抛光,等都是化学变化。 6.常见气体溶解度大小:NH3.>HCL>SO2>H2S>CL2>CO2 7.相对分子质量相近且等电子数,分子的极性越强,熔点沸点越高。如:CO>N2 8.有单质参加或生成的反应不一定为氧化还原反应。如:氧气与臭氧的转化。9.氟元素既有氧化性也有还原性。F-是F元素能失去电子具有还原性。10.HCL ,SO3,NH3的水溶液可以导电,但是非电解质。 11.全部由非金属元素组成的物质可以使离子化合物。如:NH4CL。12.ALCL3是共价化合物,熔化不能导电。 13.常见的阴离子在水溶液中的失去电子顺序: F-

传热学知识点总结

Φ-=B A c t t R 1211k R h h δλ=++传热学与工程热力学的关系: a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律, 传热学研究过程和非平衡态热量传递规律。 b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。 c 传热学以热力学第一定律和第二定律为基础。 传热学研究内容 传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。 热传导 a 必须有温差 b 直接接触 c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移 d 没有能量形式的转化 热对流 a 必须有流体的宏观运动,必须有温差; b 对流换热既有对流,也有导热; c 流体与壁面必须直接接触; d 没有热量形式之间的转化。 热辐射: a 不需要物体直接接触,且在真空中辐射能的传递最有效。 b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。 c .只要温度大于零就有.........能量..辐射。... d .物体的...辐射能力与其温度性质..........有关。... 传热热阻与欧姆定律 在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2) 第二章 温度场:描述了各个时刻....物体内所有各点....的温度分布。 稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变 非稳态温度场:工作条件变动的温度场,温度分布随时间而变。 等温面:温度场中同一瞬间相同各点连成的面 等温线:在任何一个二维的截面上等温面表现为 肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0 之比 接触热阻 Rc :壁与壁之间真正完全接触,增加了附加的传递阻力 三类边界条件 第一类:规定了边界上的温度值 第二类:规定了边界上的热流密度值 第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度..... 。 导热微分方程所依据的基本定理 傅里叶定律和能量守恒定律 傅里叶定律及导热微分方程的适用范围 适用于:热流密度不是很高,过程作用时间足够长,过程发生的空间尺度范围足够大 不适用的:a 当导热物体温度接近0k 时b 当过程作用时间极短时c 当过成发生的空间尺度极小,与微观粒子的平均自由程相接近时

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结 第一章 绪论 一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性 要求。 二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够 的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能 力。 三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假 设和各向同性假设。 第二章 轴向拉压 一、轴力图:注意要标明轴力的大小、单位和正负号。 二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。注意此规定只 适用于轴力,轴力是内力,不适用于外力。 三、轴向拉压时横截面上正应力的计算公式:N F A σ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。 四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα= 注意角度α是指斜截面与横截面的夹角。 五、轴向拉压时横截面上正应力的强度条件[],max max N F A σσ=≤ 六、利用正应力强度条件可解决的三种问题:1.强度校核[],max max N F A σσ=≤ 一定要有结论 2.设计截面[],max N F A σ≥ 3.确定许可荷载[],max N F A σ≤ 七、线应变l l ε?=没有量纲、泊松比'εμε =没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA ?= 注意当杆件伸长时l ?为正,缩短时l ?为负。 八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应 的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服 极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。 会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

普通化学知识点总结(完整版)

普通化学复习资料 3.1物质的结构与物质的状态 3.1.1原子结构 1.核外电子的运动特性 核外电子运动具有能量量子化、波粒二象性和统计性的特征,不能用经典的牛顿力学来描述核外电子的运动状态。2.核外电子的运动规律的描述 由于微观粒子具有波的特性,所以在量子力学中用波函数Ψ来描述核外电子的运动状态,以代替经典力学中的原子轨道概念。 (1)波函数Ψ(原子轨道):用空间坐标来描写波的数学函数式,以表征原子中电子的运动状态。 一个确定的波函数Ψ,称为一个原子轨道。 (2)概率密度(几率密度):Ψ2表示微观粒子在空间某位置单位体积内出现的概率即概率密度。 (3)电子云:用黑点疏密的程度描述原子核外电子出现的概率密度(Ψ2)分布规律的图形。黑点较密的地方,表示电子出现的概率密度较大,单位体积内电子出现的机会较多。 (4)四个量子数:波函数Ψ由n.l.m三个量子数决定,三个量子数取值相互制约: 1)主量子数n的物理意义: n的取值:n=1,2,3,4……∞ ,

意义:表示核外的电子层数并确定电子到核的平均距离; 确定单电子原子的电子运动的能量。 n = 1,2,3,4, ……∞,对应于电子层K,L,M,N, ··· 具有相同n值的原子轨道称为处于同一电子层。 2)角量子数ι: ι的取值:受n的限制,ι= 0,1,2……n-1 (n个)。 意义:表示亚层,确定原子轨道的形状;对于多电子原 子,与n共同确定原子轨道的能量。… ι的取值: 1 , 2 , 3 , 4 电子亚层:s, p, d, f…… 轨道形状:球形纺锤形梅花形复杂 图3-1 3)磁量子数m: m的取值:受ι的限制, m=0 ,±1,±2……±ι(2ι+1个) 。 意义:确定原子轨道的空间取向。 ι=0, m=0, s轨道空间取向为1; ι=1, m=0 ,±1, p轨道空间取向为3; ι=2, m=0 ,±1,±2 , d轨道空间取向为5;

工程热力学复习重点及简答题202

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。

依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换 =系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界 四、根据系统内部状况划分 可压缩系统:由可压缩流体组成的系统。 简单可压缩系统:与外界只有热量及准静态容积变化 均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。 非均匀系统:由两个或两个以上的相所组成的系统。 单元系统:一种均匀的和化学成分不变的物质组成的系统。 多元系统:由两种或两种以上物质组成的系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。思考题: 孤立系统一定是闭口系统吗?反之怎样? 孤立系统一定不是开口的吗、

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

热力学复习知识点汇总

概念部分汇总复习 第一章热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8准静态过程外界对气体所作的功:dW pdV,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝热过程中内能U 是一个态函数:W =U B _U A 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形 式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:U B _U A二W —Q ;微分 形式:dU =dQ dW 11、态函数焓H: H =:U pV,等压过程:. U - p V,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即U =U (T)。 13?疋压热谷比:C p二—;定容热容比:C V公式:C p -C V = nR P W T 丿p ._V p V-4 14、绝热过程的状态方程:pV = con st;TV = con st;———=const。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率「=1 -卫,逆循环 为卡诺制冷机,效率为—(只能用于卡诺热机) 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 17、无摩擦的准静态过程是可逆过程。 18、卡诺定理:所有工作于两个一定温度T1与T2之间的热机,以可逆机的效率为最高。并且所有的可逆机的效率都相 等=1-三,与工作物质无关,只与热源温度有关。 T2 19、热机的效率:「二[―Q z Q为热机从高温热源吸收的热量,Q为热机在低温热源放出的热量。 Q1 20、克劳修斯等式与不等式:Q Qz _ 0。 T1 T z 21、可逆热力学过程I dQ = o,不可逆热力学过程dQ ::: o。 L T L T 22、热力学基本方程:dU二TdS-pdV。 23、熵函数是一个广延量,具有可加性;对于可逆过程,熵S是一个态函数,积分与路径无关;对于绝热

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

材料热力学与相变复习总结

热力学定律定义表达式:一、能量从一种形式转化为其他形式时,其总量不变。▽u=q —W 二、一切自发过程都是不可逆的。或热不可能从低温物体传到高温物体而不引起其他变化。 盖.吕萨克(Gay-Lussac )定律:恒压下,任何气体温度升高或降低1℃所引起的体积膨胀都等于它们零度时体积的1/273.16。)16.2731(16.273000t V t V V V t +=+= 敞开体系或开放体系: 与环境之间既有物质交换,也有能量交换的体系 封闭体系或关闭体系:与环境之间只有能量交换,而无物质交换的体系 隔离体系或孤立体系:与环境之间既无物质交换,也无能量交换的体系 体系的性质是状态的函数。我们把这些性质,包括体系的温度、压力、体积、能量或其他,都叫做体系的状态函数 强度性质:与体系的总量无关的性质,例如温度、压强、比表面能、磁场强度等 广度性质:与体系的总量成比例的性质,例如体积、面积、质量等。 盖斯定律:同一化学反应,不论其经过的历程如何(一步或几步完成),只要体系的初态和终态一定,则反应的热效应总是一定的(相同的)。 对于可逆过程而言,qR/T 最大,所以对于同样的△u ,qR 是一定的,且仅取决于体系的状态。这样,qR /T 就具备了状态函数的特点。以S 表示之,称为熵。T q S R ?=?,T dq dS R =熵虽然可以作为此问题判断的依据,但是只适用于隔离体系。 G 称为吉布斯(Gibbs )自由能,也是个状态函数,可以判断恒温恒压下过程可逆与否。若令 G =H -TS 则dW' ≤-dG 如果过程只作膨胀功,即dW' =0,则有 dG ≤0,或 △G ≤0 判断恒温恒压、无非膨功的条件下过程自发进行的可能性。自由能减小不可逆、自发。不变则可逆平衡。 能斯特定理0)()( lim lim 00=?=???→→T T P T S T G 后来人们提出了另外两种热力学第三 定律的表达式: 0)(lim 0=?→S T 00 l i m S S T =→ 将偏摩尔量的定义式中的广度性质G 以自由能F 代之,则得到偏摩尔自由能1 21......,,,)/(-??=i n n n P T i i n F μ 化学位的物理意义是:恒温恒压下,加入微量i 所引起的体系自由能的变化。显然,化学位与自由能之间存在以下关系∑=i i dn dF μ 化学位反映了某一组元从某一相中逸出的能力。某一组元在一相内的化学位越高,它从这相迁移到另一相中的倾向越大。所以可以用化学位来判断过程的方向和平衡: 0≤∑i i dn μ“<”表示反应的方向;“=”表示平衡条件 拉乌尔定律:如果溶质是不挥发性的,即它的蒸气压极小,与溶剂相比可以忽略不计,则一定的温度下,稀溶液的蒸气压等于纯溶剂的蒸气压与其摩尔分数的乘积。 亨利定律:在一定的温度下,气体在液体中的溶解度和该气体的平衡分压成正比 大多数实际溶液都对拉乌尔定律有偏差,即蒸气压大于或小于拉乌尔定律的计算值。如果蒸气压大于拉乌尔定律的计算值,称为正偏差;如果蒸气压小于拉乌尔定律的计算值,叫做负

中考化学知识点梳理

中考化学知识点全面梳理 一、初中化学常见物质的颜色 (一)固体的颜色 1. 红色固体:铜、氧化铁 2. 绿色固体:碱式碳酸铜 3. 蓝色固体:氢氧化铜、硫酸铜晶体 4. 紫黑色固体:高锰酸钾 5. 淡黄色固体:硫磺 6. 无色固体:冰、干冰、金刚石 7. 银白色固体:银、铁、镁、铝、汞等金属 8. 黑色固体:铁粉、木炭、氧化铜、二氧化锰、四氧化三铁(碳黑、活性炭) 9. 红褐色固体:氢氧化铁 10. 白色固体:氯化钠、碳酸钠、氢氧化钠、氢氧化钙、碳酸钙、氧化钙、硫酸铜、五氧化二磷、氧化镁 (二)液体的颜色 11. 无色液体:水、双氧水 12. 蓝色溶液:硫酸铜溶液、氯化铜溶液、硝酸铜溶液 13. 浅绿色溶液:硫酸亚铁溶液、氯化亚铁溶液、硝酸亚铁溶液 14. 黄色溶液:硫酸铁溶液、氯化铁溶液、硝酸铁溶液 15. 紫红色溶液:高锰酸钾溶液 16. 紫色溶液:石蕊溶液 (三)气体的颜色 17. 红棕色气体:二氧化氮 18. 黄绿色气体:氯气 19. 无色气体:氧气、氮气、氢气、二氧化碳、一氧化碳、二氧化硫、氯化氢气体等大多数气体 二、初中化学里常见的“三” 1. 我国古代三大化学工艺:造纸、制火药、烧瓷器 2. 氧化反应的三种类型:爆炸、燃烧、缓慢氧化 3. 构成物质的三种微粒:分子、原子、离子 4. 不带电的三种微粒:分子、原子、中子 5. 物质组成与构成的三种说法: ①二氧化碳是由碳元素和氧元素组成的 ②二氧化碳是由二氧化碳分子构成的 ③一个二氧化碳分子是由一个碳原子和一个氧原子构成 6. 构成原子的三种微粒:质子、中子、电子 7. 造成水污染的三种原因: ①工业“三废”任意排放 ②生活污水任意排放 ③农药化肥任意施放 8. 收集气体的三种方法: ①排水法(不溶于水的气体) ②向上排空气法(密度比空气大的气体)③向下排空气法(密度比空气小的气体) 9. 质量守恒定律的三个不改变: ①原子种类不变 ②原子数目不变 ③原子质量不变 10. 不饱和溶液变成饱和溶液的三种方法: ①增加溶质 ②减少溶剂 ③改变温度(升高或降低) 11. 复分解反应能否发生的三个条件:生成水、气体或者沉淀 12. 三大化学肥料:N、P、K 13. 排放到空气中的三种气体污染物:一氧化碳、氮的氧化物、硫的氧化物 14. 燃烧发白光的物质:镁条、木炭、蜡烛 15. 具有可燃性、还原性的物质:氢气、一氧化碳、单质碳 16. 具有可燃性的三种气体是:氢气(最理想燃料)、一氧化碳(有毒)、甲烷(常用) 17. CO的三种化学性质:可燃性、还原性、毒性 18. 三大矿物燃料:煤、石油、天然气(全为混合物) 19. 三种黑色金属:铁、锰、铬 20. 铁的三种氧化物:氧化亚铁、三氧化二铁、四氧化三铁 21. 炼铁的三种氧化物:铁矿石、焦炭、石灰石 22. 常见的三种强酸:盐酸、硫酸、硝酸 23. 浓硫酸的三个特性:吸水性、脱水性、强氧化性 24. 氢氧化钠的三个俗称:火碱、烧碱、苛性钠 25. 碱式碳酸铜受热分解生成的三种氧化物:氧化铜、水、二氧化碳 26. 实验室制取CO2不能用的三种物质:硝酸、浓硫酸、碳酸钠 27. 酒精灯的三个火焰:内焰、外焰、焰心. 28. 使用酒精灯有三禁: ①禁止向燃着的灯里添加酒精 ②禁止用酒精灯去引燃另一只酒精灯 ③禁止用嘴吹灭酒精灯 29. 玻璃棒在粗盐提纯中的三个作用:搅拌、引流、转移 30. 液体过滤操作中的三靠: ①倾倒滤液时烧杯口紧靠玻璃棒 ②玻璃棒轻靠在三层滤纸的一端 ③漏斗下端管口紧靠烧杯内壁 31. 固体配溶液的三个步骤:计算、称量、溶解 32. 浓配稀的三个步骤:计算、量取、溶解 33. 浓配稀的三个仪器:烧杯、量筒、玻璃棒 34. 三种遇水放热的物质:浓硫酸、氢氧化钠、生石灰

相关文档