文档库 最新最全的文档下载
当前位置:文档库 › 负载敏感系统阀前和阀后补偿

负载敏感系统阀前和阀后补偿

负载敏感系统阀前和阀后补偿

负荷传感系统分阀前补偿和阀后补偿,当有两个或两个以上的负载同时动作时,如果主泵提供的流量足够满足系统所需流量,阀前补偿和阀后补偿的作用是完全一样的;如果主泵提供的流量无法满足系统所需流量,那么阀前补偿的那种情况是:主泵流量首先往负荷小的负载提供流量,当满足完了负荷小的负载的流量要求时,才往其他的负载供流量;而阀后补偿的情况是:同比(阀开口量)减少各个负载的流量供给,达到动作很协调的效果。即:主泵提供的流量无法满足系统所需流量时,阀前补偿的流量分配与负载有关,而阀后补偿的流量分配与负载无关,只与主阀的开口量有关。

阀前补偿和阀后补偿都是为了使负载运动速度与负载压力无关而产生的。阀前补偿是为了能对补偿的控制,阀后补偿是对执行元件的直接补偿,阀前补偿是控制P口到A口之间的压差恒定,阀后补偿是控制B口到T口之间的压差恒定。但是阀前补偿不能对系统产生的负负载进行补偿,而阀后补偿可以,如:rexroth的ludv系统采用阀后补偿。

根据压力补偿阀布置在整个液压油路中的位置,负载敏感压力补偿控制系统还可以分为阀前压力补偿负载敏感系统和阀后压力补偿负载敏感系统。阀前补偿是指压力补偿阀布置在油泵与操纵阀之间,阀后补偿是指压力补偿阀布置在操纵阀与执行机构之间。

阀后补偿比阀前补偿要先进,主要体现在泵供油不足的情况下。如果泵供油不足的话,阀前补偿的主阀,导致的结果是向轻载去的流量多,重载去的流量少,就是轻载动得快,复合动作时,各个执行元件不同

步。而阀后补偿没有这个问题,会比例分配泵所提供的流量,复合动作时使各个执行元件同步。

博世力士乐比例伺服阀教程

14th –15th January 2004, Bosch Rexroth in China 4 WRD(E) 5X NG 10, 16, 25, 32, 35 Q max 3000 l/min 4/3RV NG 10, 16, 25, 32 Q max 3500 l/min 4 WRLE(H) NG 6/10 Q max 180 l/min 4 WRA(E) 2X NG 6 / 10 Q max 75 l/min 4 WRE(E) 2X NG 6 / 10 Q max 180 l/min 4 WRZ(E) 7X NG 10, 16, 25, 32, 52 Q max 2800 l/min 4 WRK(E) 2X NG 10, 16, 25, 32, 35 Q max 3000 l/min Proportional Valves High Response Control Valves 4 WS(E)2EM 5X NG 10Q N 90 l/min (bei Δpv 70 bar) 4 WSE3EE NG 16, 25, 32Q N 850 l/min (bei Δpv 70 bar) 4 WS(E)2EM 2X NG 6Q N 20 l/min (bei Δpv 70 bar) Servo Valves 4 WRPE NG 10, 16, 25,32 Q max 3500 l/min 4/3HRV1 NG 6 Q max 24 l/min 4/3WV1 NG 6 /10 Q max 120 l/min 4/3WV1 OBE NG 6/ 10 Q max 120 l/min 4/3WV1 OBE NG 6 / 10 Q max 100l/min HI HI HI HI HI HI HI HI

负载敏感多路阀原理

负载敏感多路阀原理 负载敏感多路阀在拖拉机化肥撒布系统的应用 采用CP2定差减压阀和CP3定差溢流阀实现多路阀多支路同时动作, 可以改善液压系统调速性能,提高效率,减少发热,减少能量消耗。通常是在多路阀中用2通定差减压阀CP2与流量阀(工作阀片)串联组合成调速阀,在多路阀的进口阀片用3通式旁通式定差溢流阀CP3通过CH 梭阀网络回路与工作阀片并联组合成旁通式溢流调速阀。 以下图为例,该阀的进口阀块内置CP3三通定差旁通溢流阀(逻辑元件),每个比例流量阀进口前置CP2二通压力补偿定差减压阀,CH负载感应梭阀。各阀功能如下: ?CP3三通旁通定差溢流阀:当多路阀停止操作,且各阀均在中位时,CP3则以补偿弹簧压力(10-13公斤)旁通泵供油流量。当某一比例流量阀(工作阀片)工作时,CP3旁通溢流阀在该执行元件负载压力作用下减少阀口开度,减少旁通流量,根据负载压力提供所需的流量,此时供油压力随负载压力变化,效率高,发热量小。 ?CH负载感应梭阀(工作阀片):CH负载感应梭阀将各工作阀片中的最高负载压力传至进口阀块的CP3弹簧侧。 ?CP2二通定差减压阀:当一个或多个比例流量阀同时工作时,负载压力传至CP2阀的弹簧侧。此时,通过阀心的负反馈作用,来自动调节流量阀(工作阀片)阀口两端的压力差, 使其基本保持不变。在CP2的压力补偿作用下各阀的流量均保持恒定,使各流量阀的流量与其输入信号成比例,流量大小与阀的开度成正比,独立控制且不受其它负载变化的干扰,从而保证多机构同步动作。 定量泵接入进口阀块P口,油泵压力经P1口作用于压力补偿旁通阀的底部,CP3的弹簧腔与工作片阀的LS负载反馈系统的梭阀连通。

负载敏感系统

一、负载敏感和压力补偿概念 (一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。 以往液压系统在使用操纵过程中,存在着以下需解决的问题: 1. 节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。 2. 操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。 3. 单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。合理地分配流量,实现理想复合动作。 4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。 为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。 目前液压传动仍存在问题有待解决。例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。目前人们正在研究采用电路中变压器这类东西,来解决这个问题。 (二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。(即广义的负载敏感和压力补偿)。 负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行反馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。负载敏感系统所采用的控制方式包括液压控制和电子控制。 从负载敏感系统的液压元件来看可分: 负载敏感阀:将压力、流量和功率变化信号,向阀进行反馈,实现控制功能的阀。 负载敏感泵:将压力、流量和功率变化信号,向泵进行反馈,实现控制功能的泵和马达。 负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。 压力补偿: 将压差设定为规定值进行的自动控制都叫压力补偿。 压力补偿流量控制:不受负荷压力变化和液压泵流量变化的影响,由设定节流压差值 对流量进行自动控制,称为压力补偿流量控制。 在节流调速中,根据流量基本计算式,p k Q ?=,压差保持不变(=?p 常数) ,只要调节阀口面积(反映在k 上)就能控制通过阀的流量,通过改变阀的开度,不受负载和液压泵流量影响,改变和控制流量,利用流量控制阀的原理来进行调速,提出了压力补偿概念。在节流口上,并联或串联一个压力补偿器。 (三)开中心直通型油路系统存在的问题。 前面已经谈到挖掘机开心式油路都采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。并联供油路,组成并联油路,把二种油路采用各种方式组成起来,就构成了复杂多变的挖掘机油路。 操纵阀的结构简图和符号图如图1所示。

力士乐闭中心负载敏感压力补偿挖掘机液压系统

力士乐闭中心负载敏感压力补偿挖掘机液压系统 主要内容 介绍了力士乐闭中心负载敏感压力补偿挖掘机液压系统组成及其工作原理、特性。重点分析了多路阀 液压系统、液压泵控制系统、各主要液压作用元件液压回路及多路阀先导操纵系统等。 目前液压挖掘机有两种油路: 开中心直通回油六通阀系统和闭中心负载敏感压力补偿系统, 我国国产液压挖掘机大多采用”开中心”系统, 而国外著名的挖掘机厂家基本上都采用”闭中心”系统。闭中心具有明显的优点, 但价格较贵。国内厂家对开中心系统比较熟悉, 而对闭中心系统不太了解,因此有必要来介绍一下闭中心系统, 本文重点分析力士乐闭中心负载敏感压力补偿(LUDV) 挖掘机油路。 LUDV 意为与负载无关的分配阀。 LUDV系统 力士乐挖掘机液压系统可以看作由以下4 部分组成: ①多路阀液压系统(主油路) ; ②液压泵控制液压系统(包括与发动机综合控制) ; ③各液压作用元件液压子系统, 包括动臂、斗杆、铲斗、回转和行走液压系统, 还包括附属装置液压系统; ④多路阀操纵和控制液压系统。 LUDV系统是力士乐等公司在改进负荷传感技术的基础上发展起来的,它是不受负载影响的流量分配系统,它将常开式压力补偿改为常闭式,泵所提供的流量与负载所需相匹配,避免了不必要的空流和节流损失。即使泵的流量小于系统复合动作所需的流量,各动作的相对速度也不会发生变化,从而保证动作的协调性,避免动作冲击。 1 多路阀液压系统 多路阀液压系统是液压挖掘机的主油路, 它确定了液压泵如何向各液压作用元件的供油方式, 决定了液压挖掘机的工作特性。力士乐采用的闭中位负载敏感压力补偿多路阀液压系统

的工作原理见图1 (因换向阀不影响原理分析, 故未画出) 。 图1 挖掘机力士乐主油路简图 挖掘机力士乐主油路由工装油路和回转油路二个负载敏感压力补偿系统组成。 1.1 工装油路 工作装置和行走油路(除回转外) 简称工装油路,用阀后补偿分流比负载敏感压力补偿(LUDV)系统, 具有抗饱和功能。在每个操纵阀阀杆节流口后, 设压力补偿阀, 然后通过方向阀向各液压作用元件供油。LUDV 多路阀原理符号见图2 。 图2 力士乐多路阀原理符号图 LUDV 每个阀块主要由操纵阀和压力补偿阀组成, 其原理符号如图2a 所示。为了便于理解阀的原理, 把操纵阀进行分解后可知, 它实际上由阀的节流部分和阀的换向部分两部分组

浅谈变量泵选用

常见的变量柱塞泵有恒压变量泵、恒功率变量泵、负载敏感变量泵等。对于要求压力接近或相同,流量变化较大的液压系统,如节流调速系统、泵保压系统、要求快速响应的中位常闭换向阀系统、蓄能器系统、电液伺服系统和电液比例换向阀系统等,一般应采用恒压变量泵作为动力源,避免采用定量泵-溢流阀系统和旁路节流调速系统,以降低溢流或旁流流量损耗。恒压变量泵的主要特征是:在系统压力达到泵的设定压力前为定量泵特性;达到设定压力时,泵的流量随负载需要自动调整;无负载时,泵的流量自动降至0,但其输出压力维持恒定。国外中高压节流调速液压系统广泛采用恒压变量泵。 对于负载缓慢增加、平均功率较小或接近最大压力的行程较小的液压系统,如大多数压机,一般应采用恒功率变量泵作为动力源,对平均速度影响不大,但可以大幅减小装机功率。恒功率变量泵的主要特征是:在系统压力达到泵的变量压力前为定量泵特性;达到变量压力时,泵的流量随负载增加自动减小,但压力/流量乘积大致为常数。变量转折压力和压力/流量乘积(功率)均可根据需要调整,是应用最广泛的变量泵之一。 对于功率较大、负载缓慢增加且有较长保压时间要求的系统,也可采用恒压恒功率变量泵。 对于要求分别具有不同压力、不同流量的多执行器系统,可采用双压、双流量恒压变量泵或负载敏感变量泵。双压、双流量恒压变量泵的输出特性可调整为相当于2台不同压力、不同流量的恒压变量泵,利用泵上附设的电磁阀来转换工作状态,适合于双执行器系统。负载敏感

变量泵的输出特性为:在泵的额定压力和流量范围内,其实际输出压力和流量能同时随负载需要自动调整;无负载时,泵的流量自动降至0,且输出压力较低,适合于多执行器系统。由于上述2种泵能同时降低压力和流量损耗,故具有更好的节能效果,将获得良好的应用前景。 附带指出,对于零流量时输出压力较高的各种恒压变量泵,不影响系统功能时最好仍设置卸载回路,因这类泵在高压零流量时的功率损耗和磨损均大于零压全流量时的功率损耗和磨损。 1、工况判断是第一步。

液压系统基础知识大全-负载敏感阀

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它 向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执 行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线 往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等 几大类。 液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中 的控制阀动作。 液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭 头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、 执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件 和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。 根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为,则与 0其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为 偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编 号,也应对实际设备进行编号,以便发现系统故障。 DIN ISO1219-2 标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编 号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控 制回路都与其系统编号相对应 国产液压系统的发展 目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。 其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。 液压附件: 目前在世界上,做附件较好的有: 派克(美国)、伊顿(美国)颇尔(美国) 西德福(德国)、贺德克(德国)、EMB(德国)等 国内较好的有: 旭展液压、欧际、意图奇、恒通液压、依格等 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而 发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水 平的高低已成为一个国家工业发展水平的重要标志。 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水 压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油, 又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液

负载敏感

负载敏感 一、负载敏感和压力补偿概念 (一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。 以往液压系统在使用操纵过程中,存在着以下需解决的问题: 1. 节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。 2. 操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。 3. 单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。合理地分配流量,实现理想复合动作。 4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。 为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。 目前液压传动仍存在问题有待解决。例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。目前人们正在研究采用电路中变压器这类东西,来解决这个问题。 (二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。(即广义的负载敏感和压力补偿)。 负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行回馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。负载敏感系统所采用的控制方式包括液压控制和电子控制。 从负载敏感系统的液压组件来看可分: 负载敏感阀:将压力、流量和功率变化信号,向阀进行回馈,实现控制功能的阀。 负载敏感泵:将压力、流量和功率变化信号,向泵进行回馈,实现控制功能的泵和马达。负载敏感系统可降低液压系统能耗,提高机械生产率,改善系统可控性,降低系统油温,延长液压系统寿命。 压力补偿: 将压差设定为规定值进行的自动控制都叫压力补偿。 压力补偿流量控制:不受负荷压力变化和液压泵流量变化的影响,由设定节流压差值 对流量进行自动控制,称为压力补偿流量控制。 在节流调速中,根据流量基本计算式,,压差保持不变(常数),只要调节阀口面积(反映在k上)就能控制通过阀的流量,通过改变阀的开度,不受负载和液压泵流量影响,改变和控制流量,利用流量控制阀的原理来进行调速,提出了压力补偿概念。在节流口上,并联或串联一个压力补偿器。 (三)开中心直通型油路系统存在的问题。 前面已经谈到挖掘机开心式油路都采用六通多路阀,有二条供油路,直通供油路可组成优先油路,中位时直通回油箱进行卸载。并联供油路,组成并联油路,把二种油路采用各种方式组成起来,就构成了复杂多变的挖掘机油路。 操纵阀的结构简图和符号图如图1所示。

REXROTH力士乐开关阀结构和适用性

REXROTH力士乐开关阀结构和适用性 Rexroth力士乐ATEX开关阀的详细信息rexroth力士乐ATEX开关阀#力士乐开关阀 开关阀也叫rexroth力士乐ATEX开关阀,力士乐电磁阀电磁阀和全不锈钢;对于强腐蚀的介质必须选用隔离膜片式。中性介质,也宜选用铜合金为阀壳材料的电磁阀,否则,阀壳中常有锈屑脱落,尤其是动作不频繁的场合。氨用阀则不能采用铜材。REXROTH力士乐开关阀适用性: 1、介质特性 1)质气,液态或混合状态分别选用不同品种的电磁阀; 2)介质温度不同规格产品,否则线圈会烧掉,密封件老化,严重影响寿命命; 3)介质粘度,通常在50cSt以下。若超过此值,通径大于15mm时,用多功能电磁阀;通径小于15mm时,用高粘度电磁阀。 4)介质清洁度不高时都应在电磁阀前配装反冲过滤阀,压力低时,可选用直动膜片式电磁阀; 5)介质若是定向流通,且不允许倒流,需用双向电磁阀 REXROTH力士乐开关阀结构 电磁阀二通、三通指电磁阀的阀体上有两个、三个通道口;比如二位二通电磁阀是一进一出(二个通道、最普通常见)二位三通电磁阀控制液体是一进二出(两出分别是一个常开一个常闭);气动换向电磁阀是一进一出一排气;液压一进一出一回油。国内外的电磁阀从原理上分为三大类(即:直动式、分步直动式、先导式),而从阀瓣结构和材料上的不同与原理上的区别又分为六个分支小类(直动膜片结构、分步重片结构、先导膜式结构、直动活塞结构、分步直动活塞结构、先导活塞结构)。直动式电磁阀:原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

德国哈威PSL和PSV型负载敏感式比例多路换向阀

B7700

1,概述 负载敏感原理可以用于液压系统的全部控制;在这些液压系统中,其主要目的是能够与其变化的负载无关地控制执行元件的流量.该流量应当保持恒定,或是按照一个任意的比例控制信号以最小的滞后进行变化.这就是需要一个控制机构(三通流量调节阀),使流量在工作期间与变化的负载持续地匹配;该控制机构的一侧持续地作用着的负载信号和一个弹簧力,另一侧作用着系统压力.这种方法只是根据负载的情况将泵的剩余压力(控制压差P)与弹簧力互相作用,从而确定了三通流量调节阀阀芯的浮动位置。 当通往执行元件的流量通过动作滑阀的节流口时,就会产生一个所需要的与弹簧力平衡的剩余压力.三通流量调节阀阀芯随着节流口面积变化而变化,用这种方法来改变旁通回油箱的流量. 液压系统基本上有三种不同的供油方式: 1.恒压系统(节流控制) 该系统使用一个定量泵,用供油节流②的 方法进行.多余的流量通过限压阀④旁通 回油箱;泵总是在溢流压力下工作. 2.恒流量系统 该系统由一台定量①供油.通往执行元件 的流量由三通流量调节阀⑥决定:三通流 量调节阀阀芯的位置由可调节流孔⑤处 的控制压差P确定. 多余的流量直接通过三通流量调节阀⑥ 中的通道返回油箱. 泵总是在执行元件的压力加上控制压差P 下工作. 3.变量泵系统 该系统使用一台变量泵⑦,在可调节流孔 ⑤处产生的控制压差P影响着组合式压 力/流量控制器⑧;该控制器有作用于泵的 调节装置⑨.于是,泵就调整到它只提供所 需大流量(执行元件所需流量+泄漏量),并 且总是在执行元件压力加控制压差P下 运转.

与恒压系统⑴相比较,恒流量系统⑵,具有较少的内部损失.通往执行元件的流量越接近供油流量,损失也就越小.如果采用恒压系统,所有多余的流量将通过系统的限压阀4返回油箱,因而泵总是在全负荷下运转.与以上两种系统相比,变量泵系统的效率更高,因为避免了多余的流量. 该系统的效率主要取决于泵的效率.通常,三通流量调节阀的控制压差P(大约10bar)小于其他种类的组合压力/流量调节方式的控制压差P(大约15bar)。 2,负载敏感式比例多路换向阀 基本的情况已在第一节中叙述了.安装在供油通路上的节流孔可以控制通往执行元件的流量.其结果是:有一个恒定的流量提供给通过各换向阀连接的所有执行元件。 但是,现今的液压技术要求通往执行元件的流量按照滑阀的变位情况(从中位至行程末端)连续地变换。 因此,上述的节流孔设计成控制滑阀的锥角边控制.由于对双作用执行元件来说,需要控制油口A和B的流量.该控制滑阀具有两个不同的锥角边控制。 从执行元件通路引出的LS信号通路经过换向滑阀中的信号孔引出,然后它们联合成一个公共的LS通路,并且保证只是从某一侧获得的控制压差P作用于三通流量调节阀或压力/流量调节装置。 这些信号孔就像一个二位二通换向阀那样作用,开启或关闭取点处和三通流量阀之间的连接通道.由于设计的不同,当几个阀同时动作时,会出现以下几种情况: z最低的压力控制着公共控制元件的压力(三通流量控制阀)(见2.1节) z最高的压力控制着公共控制元件的压力(三通流量控制阀)(见2.2节) z负载的压力只控制着自己的控制元件(二通流量控制阀)(见2.3节) 在大多数情况下,当所有的滑阀都处于中位时,公共的LS信号通路通过一条油路卸压.所有的三通流量控制阀和泵控制器都将无LS压力信号,此时视为无负载状态,于是使泵处于无压循环状态(定量泵)或使泵处于最小排量(变量泵).在三通流量控制阀或压力/流量控制器中安装的弹簧的特性曲线决定着无压循环的压力.该压力近似等于控制压差加上回油路的背压。 2.1样本D5700的标准型SKS换向阀 从所有阀片引出的所有LS通路①汇 合成一条公共的LS通路②;这条通路 或是通往连接块中的三通流量调节阀 ③(SKS型),或是通往出口④(SKV型). 出口④与泵的流量调节器相连.当所有 的阀都不动作时,通过通路⑥卸压.节 流孔⑩安装在各自的LS通路上;它们 能够减少内部损失,并能防止流入其它 阀片较多的流量.这种最简单的负载敏 感式控制形式只是在一个阀片动作时 才能具有这种特点.对于大多数的使用 情况这已经足够了,并且经过了多年的 证实。

负载敏感泵

实际使用中,负载敏感泵通常不是与节流阀,而是与负载敏感阀或比例换向阀配合使用。 为介绍其原理,此处先假设负载有流量需求,即P口有通路。 当节流阀通径足够大且全开时,节流阀前后压力基本相等。由于流量阀左右腔压力分别是节流前和节流后的压力,所以此时流量阀左右腔压力也基本相等。流量阀在弹簧力的作用下处于初始位置,泵变量活塞腔与回油相通,泵工作在最大排量。 当节流阀开度逐渐减小,如果泵输出流量不变,则节流阀前后压差逐渐增大,即流量阀两端压差越来越大。当节流阀开度减小到一定程度以下,如果泵输出流量还是不变,必然会造成节流阀的前后压差超过流量阀的设定压差(A10V产品中流量阀的标准设定压差 Δp=1.4MPa),于是流量阀右移,泵出口油进入变量活塞腔,将斜盘向小角度方向推动。斜盘角度稍有减小,泵输出流量随即减小,于是节流阀因过流量减小而压差降低。当油液流经节流阀产生的压差正好与流量阀设定压差相等时,流量阀达到平衡状态,泵斜盘稳定在某个位置,使泵的输出流量与节流阀开度相匹配,即所谓的要多少流量给多少流量。待机时,对于中位闭芯式负载敏感阀或比例换向阀而言,节流口处于关闭状态。此时节流阀的前后压差即为泵的待机压力,待机压力一般比Δp高0.2MPa左右,一般与系统管阻、泵结构等有关。当待机压力超过流量阀的设定压差(A10V产品中流量阀的标准设定压差Δp=1.4MPa),于是流量阀右移,泵出口油进入变量活塞腔,将斜盘向小角度方向推动,直到泵流量到最小约 等于零(大于零的部分用于维持泵及系统泄漏)。 当油液流经节流阀产生的压差正好与流量阀设定压差相等时,流量阀达到平衡状态,泵斜盘稳定在某个位置,使泵的输出流量与节流阀开度相匹配,即所谓的要多少流量给多少流量”是否理解为为维持此时 泵的输出流量,流量阀在平衡状态是在不断调整开度的?

1 负载敏感泵自动调节原理

1 负载敏感泵自动调节原理 负载敏感泵控系统原理图如图1所示,PL 为负载需要的压力,通过流量控制阀5泵的流量QL 为负载需要的流量。当阀5的开 度减小,表明负载需求流量减小,此时泵输 出的流量大于负载所要求的流量,则阀5进出口压力降 L S p p p -=?增大,推动敏感阀1 阀芯向右运动,使泵出口通过阀1左位与变量缸的大腔,由于变量缸大腔、小腔之 间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负荷所需求的流量为止。反之,阀5的开度增大,泵输出流量小 于负载所要求的流量,则 L S p p p -=?减小,阀1阀芯向左运动,变量缸大腔经过阀 1 2 3 4 5 X P S P L 1、负载敏感阀, 2、恒压阀, 3、变量缸大腔, 4、变量缸小腔, 5、外接流量控制阀 图1 负载敏感泵控系统原理图 1右位通油箱,泵的斜盘角增大,流量增大。 当负载保压时,L S p p =,这时负载敏感阀1无法开启,P S 推动恒压阀2阀芯向右运动,油液通过阀2左位进入变量缸的大腔,使泵的流量减小到仅能维持系统的压力,斜盘角近零偏角,泵的功耗最小。 当阀5关死,即负载停止工作,泵出口压力仅需为阀1弹簧设置压力,一般只有14bar 左右,流量接近为零。 以上的分析说明: (1)该泵的输出压力和流量完全根据负载的要求变化。 (2)保压时,泵的输出流量仅维持系统的压力。 (3)空运转时,泵的流量在低压、零偏角下运转。 2 负载敏感泵数学建模 为了进一步深入的分析研究负载敏感泵,首先必须要对负载敏感泵进行数学建模。 从上部分的原理分析得知,负载敏感泵有三种状态,即一般工作状态、保压工作状态、和空运转状态,其中一般工作状态和空运转状态由负载敏感阀感应负载需求产生 阀芯运动使泵流量变化来满足负载要求,保压工作状态由恒压阀感应负载敏感阀感应负载需求产生阀芯运动使泵流量变化来满足负载要求,系统模型需要分开建立。由于负载敏感阀和恒压阀结构相似运动过程也类似,本文下面将只建立负载敏感阀动作时的数学模型。 (1)负载敏感阀的动态特性 负载敏感阀芯运动的微分方程: ()v s v v v L S x K dt x d M F A p p +=--220

负载敏感液压泵稳定性仿真与参数优化

第28卷第5期2011年5月 机 电 工 程 Journal o fM echan ica l&E l ectrical Eng i nee ri ng V o.l 28N o .5M ay 2011 收稿日期:2010-12-03 基金项目:浙江省重大科技专项和优先主题计划资助项目(2007C11171) 作者简介:马 冲(1986-),男,江苏徐州人,主要从事变量柱塞泵方面的研究.E m ai:l m chseu@126.co m 通信联系人:孔晓武,男,副教授,硕士生导师.E ma i :l x w kong @yahoo .co https://www.wendangku.net/doc/a115130627.html, 负载敏感液压泵稳定性仿真与参数优化 * 马 冲,孔晓武 * (浙江大学流体传动与控制国家重点实验室,浙江杭州310027) 摘要:针对负载敏感泵压力偏差较大与稳定性差的问题,基于Pro /E 、ADAM S 以及AM ESi m 专业仿真软件建立了负载敏感液压泵的虚拟样机。通过理论分析与仿真,提出了负载敏感液压泵变量机构控制系统中阻尼孔和容腔的参数匹配方法,基于该方法对56cc /r 的负载敏感液压泵进行了优化,得到了较好的阻尼孔和容腔的匹配效果。最后,通过试验验证了仿真分析的正确性。研究结果表明,参数优化后的负载敏感液压泵具有较好的稳定性,降低了恒压控制的压力偏差以及压力波动。关键词:负载敏感液压泵;阻尼孔;稳定性;压力偏差;参数优化中图分类号:TH 322 文献标志码:A 文章编号:1001-4551(2011)05-0548-05 Stability si m ulation and para m eter opti m ization of load sensing pu mp MA Chong ,KONG X i ao wu (State K ey Lab o f Fluid Pow er Trans m issi o n and Contro,l Zhe ji a ng University ,H angzhou 310027,Ch i n a) Abstrac t :A i m i ng at t he prob l em that t he larg e pressure b i as and the poor stability o f the l oad sensi ng pu m p ,a virtual pro totype of a l oad sensing pu m p w as developed by co m b i ni ng P ro /E ,ADAM S and AM ES i m .Through ana l y zi ng t he pu mp s wo rking pri nc i ple and the si m u l a ti on resu lts ,a m e t hod t hat how to m a tch the volu m e and the d i am eter of da m pi ng or ifi ces w as reached .B ased on th i s m e t hod ,the 56cc /r l oad sensing pump was op ti m ized ,and the better m atch effect of vo l ume and da m pi ng or ifi ce was gotten .T he feas i bility and effectiveness of this m ethod were ver ifi ed through m any experi m ents .The resu lts i ndicate that t he l oad sens i ng pump opti m ized show s a stab le perfor m ance ,and the output pressure b ias and v i bra ti on are decreased i n high pressure conditi on . K ey word s :load sensi ng pu m p ;damp i ng or ifice ;stability ;pressure bias ;para m ete r opti m i zati on 0 引 言 电液比例负载敏感变量泵能够在负载压力变化的情况下输出恒定的流量,并且在负载压力升高到一定值时,泵输出流量自动减小到仅维持泵的输出压力恒定。这样的特性应用在注塑机上起到了很好的节能效果,工作效率较高。 计算机仿真技术的应用提高了研究效率,缩短了研究周期,给研究提供了很大的方便。文献[1]利用计算机仿真技术研究了压力控制变量泵的动态响应,发现高压时泵输出压力和变量柱塞腔的压力波动较大,斜盘倾角同样存在振荡现象。文献[2]对压力流 量复合控制变量泵控制元件的模型进行优化,利用S i m ulink 仿真对系统进行性能预测和分析,但是柱塞泵的模型较为简化。文献[3]采用AMES i m 对负载敏感泵进行建模,仿真分析了负载敏感阀的弹簧刚度、开口形状以及附加阻尼对负载敏感泵动态特性的影响,但仿真模型也采用了较简化的柱塞泵模型。文献[4]主要介绍了ADAM S /AMES i m 联合仿真技术方法,利用两个软件的各自的优势,考虑了传统仿真方法中容易忽略的参数,提供了变量柱塞泵较为真实的仿真结果。文献[5]采用虚拟样机技术,分析了配油盘位置与压力冲击,泵出口容积对压力脉动影响,以及柱塞运动特性与主轴应力应变情况。

负载敏感泵的动态特性分析与仿真研究

现代制造工程2008年第12期设备设计/诊断维修/再制造 负载敏感泵的动态特性分析与仿真研究 王炎,胡军科,杨波 (中南大学机电工程学院,长沙410075) 摘要:推导负载敏感泵的数学模型,建立直观的物理化AMESim模型,并进行仿真研究,研究表明,负载敏感阀的弹簧刚度、阀芯直径、开口形状及附加阻尼孔对负载敏感泵的动态响应起着重要作用,对理解、使用和设计负载敏感泵都有一定的参考价值。 关键词:负载敏感泵;数学模型;AMESim软件;动态特性 中图分类号:THl37.51文献标识码:A文章编号:1671---3133(2008)12—0084—05 Dynamiccharacteristicsanalysisandsimulationofloadsensingpump WangYan,HuJun—ke,YangBo (CollegeofMechanicalandElectronicEngineering,CentralSouthUniversity,Changsha410075,CHN)Abstract:ThemathematicalmodelforLoadSensing(LS)axialpistonpumpisestablished.AMESimisappliedtomodel,simulateandanalyzetheLSpumpsystem.Simulationresultsclarifythatspringstiffness,controlareaoftheflow—controlvalve,shapeofthevalvecoreandthedampingOI访Ceshavegreatinfluencetothedynamiccharacteristicsofthepump.Theresultswillbeusefulforunderstanding,usingand designingLSpump. Keywords:Ⅷsensingaxialpistonpump;Mathematicalmodel;AMESim;Dynamiccharacteristics 液压技术虽然有许多优势,但却有效率低、能量浪费大等不可忽视的弱点,所以节能是液压传动技术应该探讨的重要课题之一。负载敏感泵控系统由相应控制阀感应外部信号改变泵自身输出的流量和压力来匹配负载,避免了一般液压系统中由于溢流阀和节流阀带来的溢流和节流损失,使其具备了能量损失小、效率高的特点,如今得到广泛的运用。 本文在分析负载敏感泵原理的基础上,推导出负载敏感泵的数学模型,通过在图形化仿真环境AMES—im中建立负载敏感泵的模型,深人分析变量机构参数对负载敏感泵动态特性的影响,对理解、使用以及设计负载敏感泵都有一定的参考价值。1负载敏感泵自动调节原理 负载敏感泵控系统原理图如图l所示,P。为负载需要的压力,通过流量控制阀5泵的流量Q。为负载需要的流量。当阀5的开度减小,表明负载需求流量减小,此时泵输出的流量大于负载所要求的流量,则阀5进出口压差P=P。一P。增大,推动负载敏感阀1阀芯向右运动,使泵出口通过阀1左位与变量缸大腔3连通,由于变量缸大腔3与变量缸小腔4之间的面积差,推动变量斜盘角减小,使泵的流量减小,直到达到负载所需求的流量为止。反之。阀5的开度增大,泵输出流量小于负载所要求的流量,则p=P。一几减小, [2]TMS320F2833xDi画talSignalControHem(DSCs)DamManual[EB/OL].http://www.ti.eom.TI公司.[3]褚艺斌,廖文良,陈文芗.基于LPC2114的拉链头装配机控制系统设计[J].机床与液压,2007,35(2): 188一192. [4]尚久浩,张淳,李思益.自动机械设计[M].北京:中 国轻工业出版社,2003 作者简介:林创鲁.硕士研究生,研究方向:现代检测及仪器。 刘桂雄,教授,博士生导师.通讯作者,研究方向:现代检 测及自动化装王、制造业信息化。 E?nlail:megxliu@scut.edu.cn 收稿日期:2008..04-25 万方数据

REXROTH力士乐方向阀的工作原理讲解

REXROTH力士乐方向阀的工作原理讲解 REXROTH力士乐方向阀是具有两种以上流动形式和两个以上油口的方向控制阀。是实现液压油流的沟通、切断和换向,以及压力卸载和顺序动作控制的阀门。靠阀芯与阀体的相对运动的方向控制阀。有转阀式和滑阀式两种。按阀芯在阀体内停留的工作位置数分为二位、三位等;按与阀体相连的油路数分为二通、三通、四通和六通等;操作阀芯运动的方式有手动、机动、电动、液动、电液等型式。 REXROTH力士乐方向阀工作原理: 六通方向阀主要由阀体、密封组件、凸轮、阀杆、手柄和阀盖等零部件组成(图1)。阀门由手柄驱动,通过手柄带动阀杆与凸轮旋转,凸轮具有定位驱动与锁定密封组件的开启与关闭功能。手柄逆时针旋转,两组密封组件分别在凸轮的作用下关闭下端的两个通道,上端的两个通道分别与管道装置的进口相通。反之,上端的两个通道关闭,下端两个通道与管道装置的进口相通,实现了不停车换向。 REXROTH力士乐方向阀特点: 1、先导式2级比例方向控制阀,无集成电子元件(OBE) 2、控制体积流量的方向和大小 3、通过带中心螺纹和可拆卸线圈的比例电磁阀驱动 4、用于板结构:根据ISO 4401的连接位置 5、辅助驱动装置,可选 6、以弹簧为中心的阀芯 REXROTH力士乐方向阀分类: 1、机动方向阀,机动方向阀又称行程阀。 2、电磁方向阀,电磁方向阀是利用电磁吸引力操纵阀芯换位的方向控制阀。 3、电液方向阀,电液方向阀是由电磁方向阀和液动方向阀组成的复合阀。 4、手动方向阀,手动方向阀是用手推杠杆 REXROTH力士乐方向阀优点: 动作准确、自动化程度高、工作稳定可靠,但需附设驱动和冷却系统,结构较为复杂;阀瓣式结构则较简单,多用于流量较小的生产工艺上。 在石油、化工、矿山和冶金等行业中,六通方向阀是一种重要的流体换向设备。该阀安装在稀油润滑系统输送润滑油的管道中。通过变换密封组件在阀体中的相对位

负载敏感型比例多路阀工作原理介绍

负载敏感型比例多路阀工作原理介绍 2012-12-3 PSL 和PSV 比例多路阀产品介绍 PSV 552/220-3-42 H 80/80 /D 2-32 H 40/40 /D 2-32 H 40/40 /D 2 -32 H 25/25 C100 /D 2-E 1 一运左星轮右星轮喷雾泵 介绍的内容提纲 1 构造组成 2 负荷传感多路阀优点 3 换向阀的节流阀本质 4 负荷信号的取得---梭阀作用 5 三通流量阀原理 6 两通流量阀原理 7 对两通流量阀的多种控制 8 效率比较 9 PSV 阀与V30D 的配合方案 构造

结构组成(一) 结构组成(二)

原理构成 1 换向阀的节流作用; 2 压力传递—多执行机构压力信号的收集与逻辑比较,选高前递; 3 三通流量阀工作原理—由头板的差压溢流阀实现,定量泵用阀(PSL )的配置; 4 两通流量阀工作原理—由换向阀片(52…、55…、32…、42…)的定差减压阀实现,复合动作要求时选用,而且控制更精准; 5 两通流量阀的其他作用:限压、限位、比例压力控制。 负荷传感多路阀优点 1 实现与负载变化无关的速度控制; 3 有减振作用,提高系统平稳性; 4 操作稳定,微动性能好; 5 压力适应,换向阀片按需取油,在变量泵系统节能效果特别好; 6 高集成性,模块设计,片式组装,节约安装空间,减轻整化机重量。 换向阀的节流阀本质 换向阀的节流阀本质 2012-12-3PSL 和PSV 比例多路阀产品介绍 阀芯中位时,有一定的掩盖量 通常型机能:、、口中位截止 阀芯移动:口几乎接通口, 口几乎接通口阀芯阀芯 阀芯移动:口接通口,开口为;口接通口,开口为 接通口、接通口前阀芯的移动 接通口、接通口,开口逐步增大 即将开口位置 开口 开口 负荷信号的产生: ---中位时负荷信号回零;换向时取工作压力

负载敏感泵

负载敏感泵 早在二十世纪六十年代后期,一些年轻的工程师对液压传动技术的优缺点进行了仔细的分析。中位开放式液压系统,采用了一个定排量的齿轮泵, 提供恒定的流量,系统压力是由作用于工作介质上的载荷决定的。为限制系统的最高工作压力,必须设置一个高压溢流阀。当系统工作压力达到设定值,液压泵近乎全部流量将通过溢流阀流回油箱,因而导致极高的功率损失,并在系统中产生大量的热损耗致使系统效率极低。 相比之下中位封闭的液压系统具有排量可调的优点,排量调节的范围可从最小排量至最大排量,甚至正向最大排量至反向最大排量;并且无需在系统中设置溢流阀。其最大工作压力的控制是通过液压泵内部的补偿器实现的。此类补偿器可在系统因负载超出额定范围导致系统受到阻滞的状态下通过 限压变量活塞使泵卸荷即液压泵处于高压运转状态、但排量近乎为零。此时液压泵将进入等待状态,并保持较高的工作压力,直至负载被克服或恢复操作阀的控制状态。中位闭式系统的缺点是液压泵试图在所有的工况下均实现所限定的最高工作压力附近的排量调节。但是液压系统还有这样一类工况,即期望获得较大的流量而所要求的工作压力却很低。中位闭式的系统在此种工况下导致了较高的压力降并在能量损失过程中产生大量的热。工程师们于是设想,若能将两种系统的优点进行合并将得到最佳的性能。理想的系统应具有这样一种特性:在载荷需要的工作压力下仅提供维持系统工作的必要流量。期望流量与工作压力二者都是可变的,但是无论开式还是闭式系统均未提供这样的工作性能。为实现这一特性,必须设计一种新型液压泵,该泵可以根据系统需求提供必要的的流量及压力,并在工况变化时,具有相应的压力-流量调节功能。显然,一种柱塞式变量泵是实现此种功能的基础元件, 但是如何令其同时响应压力和流量两个参数的变化呢?一位从事本项目研 究的工程师开发了一种新的液压补偿器以同时感应系统压力和流量的需求,并使柱塞泵能对流量压力需求的变化做出正确响应。负载敏感液压泵从此诞生了!从技术角度讲,这是一种压力-流量补偿式的变排量柱塞式液压泵。

相关文档
相关文档 最新文档