文档库 最新最全的文档下载
当前位置:文档库 › AT89S52芯片详细介绍

AT89S52芯片详细介绍

AT89S52芯片详细介绍
AT89S52芯片详细介绍

上集成了中央处理单元CPU、随机存储器RAM、只读存储器ROM、定时器/计数器和多种输入/输出(I/O),如并行I/O、串行I/O和A/D转换器等。就其组成而言一块单片机就是一台计算机。典型的结构如图1-1所示。由于它具有许多适用于控制的指令和硬件支持而广泛应用于工业控制、仪器仪表、外设控制、顺序控制器中,所以又称为微控制单元(MCU)。

MCS-51系列单片机,是Intel公司继MCS-48系列单片机之后,在1980年推出的高档8位单片机。当时MCS-51系列产品有8051、8031、8751、80C51、80C31等型号。它们的结构基本相同,其主要差别反映在寄存器的配置上有所不同。8051内部没有4K字节的掩膜ROM程序存储器,8031片内没有程序存储器,而8751是将8051片内的ROM换成EPROM。

ATMEL89系列单片机是ATMEL公司的以8031核构成的8位Flash单片机系列。这个系列单片机的最大特点就是在片内含有Flash存储器,

AT89S52单片机是一种低功耗高性能的CMOS8位微控制器,内置8KB可在线编程闪存。该器件采用Atmel 公司的高密度非易失性存储技术生产,其指令与工业标准的80C51指令集兼容。片内程序存储器允许重复在线编程,允许程序存储器在系统内通过SPI串行口改写或用同用的非易失性存储器改写。通过把通用的8位CPU与可在线下载的Flash集成在一个芯片上,AT89S52便成为一个高效的微型计算机。它的应用范围广,可用于解决复杂的控制问题,且成本较低。其结构框图如图1-2所示。

1.2 特性

AT89S52的主要特性如下:

兼容MCS51产品

8K字节可擦写1000次的在线可编程ISP 闪存

4.0V到

5.5V的工作电源范围

全静态工作:0Hz ~24MHz

3级程序存储器加密

256字节内部RAM

32条可编程I/O线

3个16位定时器/计数器

8个中断源

UART串行通道

低功耗空闲方式和掉电方式

通过中断终止掉电方式

看门狗定时器

双数据指针

灵活的在线编程(字节和页模式)

1.3 引脚功能与封装

按照功能,AT89S52的引脚可分为主电源、外接晶体振荡或振荡器、多功能I/O口、控制和复位等。1.多功能I/O口

AT89S52共有四个8位的并行I/O口:P0、P1、P2、P3端口,对应的引脚分别是P0.0 ~P0.7,P1.0 ~P1.7,P2.0 ~P2.7,P3.0 ~P3.7,共32根I/O线。每根线可以单独用作输入或输出。

①P0端口,该口是一个8位漏极开路的双向I/O口。在作为输出口时,每根引脚可以带动8个TTL输入负载。当把“1”写入P0时,则它的引脚可用作高阻抗输入。当对外部程序或数据存储器进行存取时,P0可用作多路复用的低字节地址/数据总线,在该模式,P0口拥有内部上拉电阻。在对Flash存储器进行编程时,P0用于接收代码字节;在校验时,则输出代码字节;此时需要外加上拉电阻。

②P1端口,该口是带有内部上拉电阻的8位双向I/O端口,P1口的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写“1”时,通过内部的上拉电阻把端口拉到高电位,此时可用作输入口。P1口作输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。在对Flash编程和程序校验时,P1口接收低8位地址。

另外,P1.0与P1.1可以配置成定时/计数器2的外部计数输入端(P1.0/T2)与定时/计数器2的触发输入端(P1.0/T2EX),如表1-1所示。

表1-1 P1口管脚复用功能

③P2端口,该口是带有内部上拉电阻的8位双向I/O端口,P2口的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写“1”时,通过内部的上拉电阻把端口拉到高电位,此时可用作输入口。P2口作输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在访问外部程序存储器或16位的外部数据存储器(如执行MOVX @DPTR指令)时,P2口送出高8位地址,在访问8位地址的外部数据存储器(如执行MOVX @RI指令)时,P2口引脚上的内容(就是专用寄存器(SFR)区中P2寄存器的内容),在整个访问期间不会改变。在对Flash编程和程序校验期间,P2口也接收高位地址或一些控制信号。

④P3端口,该口是带有内部上拉电阻的8位双向I/O端口,P3口的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。对端口写“1”时,通过内部的上拉电阻把端口拉到高电位,此时可用作输入口。P3口作输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流。

在AT89S52中,同样P3口还用于一些复用功能,如表1-2所列。在对Flash编程和程序校验期间,P3

口还接收一些控制信号。

表1-2 P3端口引脚与复用功能表

2.RST 复位输入端。在振荡器运行时,在此脚上出现两个机器周期的高电平将使其单片机复位。看门狗定时器(Watchdog)溢出后,该引脚会保持98个振荡周期的高电平。在SFR AUXR(地址8EH)寄存器中的DISRTO位可以用于屏蔽这种功能。DISRTO位的默认状态,是复位高电平输出功能使能。3.ALE/PROG 地址锁存允许信号。在存取外部存储器时,这个输出信号用于锁存低字节地址。在对Flash 存储器编程时,这条引脚用于输入编程脉冲PROG。一般情况下,ALE是振荡器频率的6分频信号,可用于外部定时或时钟。但是,在对外部数据存储器每次存取中,会跳过一个ALE脉冲。在需要时,可以把地

址8EH中的SFR寄存器的0位置为“1”,从而屏蔽ALE的工作;而只有在MOVX或MOVC指令执行时ALE才被激活。在单片机处于外部执行方式时,对ALE屏蔽位置“1”并不起作用。

4.PSEN 程序存储器允许信号。它用于读外部程序存储器。当AT89S52在执行来自外部存储器的指令时,每一个机器周期PSEN被激活2次。在对外部数据存储器的每次存取中,PSEN的2次激活会被跳过。5.EA/Vpp 外部存取允许信号。为了确保单片机从地址为0000H~FFFFH的外部程序存储器中读取代码,故要把EA接到GND端,即地端。但是,如果锁定位1被编程,则EA在复位时被锁存。当执行内部程序时,EA应接到Vcc。在对Flash存储器编程时,这条引脚接收12V编程电压Vpp。

6.XTAL1 振荡器的反相放大器输入,内部时钟工作电路的输入。

7.XTAL2 振荡器的反相放大器输出。

1.4 存储器组织

所有的ATMEL Flash单片机都将程序存储器和数据存储器分为不同的存储空间。89系列单片机的典型存储器的结构如图1-4所示。

程序和数据存储器分为不同的逻辑空间,使得可用8位地址来访问数据存储器。这样可提高8位CPU的存储和处理速度。尽管如此,也可通过数据指针(DPTR)寄存器来产生16位的数据存储器地址。

程序存储器只可读不可写,用于存放编好的程序和表格常数。89系列单片机可寻址的程序存储器总空间为64KB。外部程序存储器的读选通脉冲为PSEN(程序存储允许信号)。

数据存储器在物理上和逻辑上都分为两个地址空间:一个内部和一个外部数据存储器空间。外部数据存储器的寻址空间可达64KB。访问外部数据存储器时,CPU发出读和写的信号--RD和WR。

将RD和PSEN两个信号加到一个与门的输入端,然后用与门的输出作为外部程序/数据存储器的读选通脉冲。这样就可将外部程序存储器空间和外部数据存储器空间合并在一起。

1.4.1 程序存储器

89系列单片机可寻址的内部和外部程序存储器总空间为64KB。每个外部程序和数据存储器的可寻址范围高达64KB。它没有采用程序存储器分区的方法,64KB的地址空间是统一的。

EA引脚接低电平时,单片机就从外部程序存储器中取指。

对于AT89S52,EA引脚接高电平时,程序直接从单片机内部存储器中的0000H到1FFFH单元执行,2000H 到FFFFH单元到外部存储器中执行。

程序存储器中有几个单元专门用来存放特定的程序。这几个单元的配置情况如图1-5所示。

由图1-5可知,0000H~0002H单元用于初始化程序。单片机复位后,CPU总是从0000H单元开始执行程

序。另外,每个中断在程序存储器中都分配有一个固定的入口地址。中断响应后,CPU便跳到该单元,在这里开始执行中断服务子程序。例如,外部中断0的入口地址被放在0003H单元,如果使用外部中断0,则它的中断服务子程序必须从0003H单元开始。如果中断没有使用,那么它的服务单元也可作一般用途的

程序存储器用。

每个中断入口地址的间隔为8个单元;外部中断0的入口地址为0003H;定时器0的入口地址为000BH;外部中断1的入口地址为0013H;定时器1的入口地址为001BH;以此类推。如果一个中断服务子程序足够短的话,则可全部存放在这8个单元中。对较长的服务子程序,则可利用一条跳转指令跳过后续的中断入口地址。

程序存储器最低端的地址可以在片内Flash中,或在外部存储器中。将外部存取(EA)引脚接Vcc或接地,就可进行这种选择。例如,在带有4KB片内Flash的AT89C51中,如果把EA引脚连到Vcc,当地址为0000H~0FFFH时,则访问内部Flash;当地址为1000H~FFFFH时,则访问外部程序存储器。在AT89C52(8KB Flash)中,当EA端保持高电平时,如果地址不超过1FFFH,则访问内部Flash;地址超过1FFFH (即为2000H~FFFFH)时,将自动转向外部程序存储器。如果EA端接地,则只访问外部程序存储器,不管是否有内部Flash存储器。

外部程序存储器读选通信号PSEN用于读取所以的外部程序;读取内部程序时,不产生PSEN信号。

执行外部程序是的硬件连接方法如图1-6所示。

注意,在访问外部程序存储器时,16条I/O线(P0和P2)作为总线使用。P0端口作为地址/数据总线使用。它先输出16位地址的低8位PCL,然后进入悬浮状态,等待程序存储器送出的指令字节。当有效地址PCL出现在P0总线上时,ALE(允许地址锁存)把这个地址锁存到地址锁存器中。同时,P2端口输出地址的高8外PCH。然后PSEN选通外部程序存储器,使指令送到P0总线上,由CPU取入。

即使所用的程序存储器的实际空间可能小于64KB,程序存储器的地址总是为16位的。在访问外部程序存储器时,要用到两个8位端口--P0和P2来产生程序存储器的地址。

1.4.2 数据存储器

数据存储器在物理上逻辑上都分为两个地址空间:一个为内部数据存储器空间;一个为外部数据存储器空间。数据存储器的配置如图1-7所示。

图1-7是访问8KB外部RAM时的硬件连接图。在这种情况下,CPU执行内部Flash中的指令(EA接Vcc)。P0端口作用RAM的地址/数据总线,P2端口中的3位也作为RAM的页地址。访问外部RAM期间,CPU 根据需要发送RD和WR信号。

外部数据存储器的寻址空间可达64KB。外部数据存储器的地址可以是8位或16位的。使用8位地址时,要连同另外一条或几条I/O线作为RAM的页地址,如图1-7所示。这时P2的部分引线可作为为通用的I/O 线。若采用16位地址,则由P2端口传送高8位地址。

内部数据存储器的地址是8位的,也就是说其地址空间只有256字节,但内部RAM的寻址方式实际上可提供384字节。高于7FH的直接地址访问同一个存储空间,高于7FH的间接地址访问另一个存储空间。这样,在图1-8中,虽然高128字节区与专用寄存器,即特殊功能寄存器(SFR)区的地址是重合的

(80H~FFH),但实际上它们是分开的。究竟访问哪一区,是通过不同的寻址方式加以区分的。访问高128字节区时,采用间接寻址方式;访问SFR区时,采用直接寻址方式;访问低128字节区时,两种寻址方式都可采用。

低128字节区的分配情况如图1-9所示。最低32个单元(00H~1FH)是4个通用工作寄存器组。每个寄存器组含有8个8为寄存器,编号为R0~R7。专用寄存器PSW(程序状态字)中有2位(PS0,RS1)用来确定采用哪一个工作寄存器组。这种结构能够更有效地使用指令空间,因为寄存器指令比直接寻址指令更短。

工作寄存器组上面的16个单元(20H~2FH)构成了布尔处理机的存储器空间。这16个单元的128位各自都有专门的位地址,如图1-10所示,它们可以被直接寻址,这些位地址是00H~7FH。在89系列单片机的指令系统中,还包括了许多位操作指令,这些位操作指令可直接对这128位寻址。

低128字节区中的所以单元都既可通过直接寻址方式访问,又可通过间接寻址方式访问,又可通过间接寻址方式访问。而高128字节区则只能通过间接寻址方式来访问。仅在带有256字节RAM的单片机中才有高128字节区。

专用寄存器即特殊功能寄存器(SFR)区的分配情况如图1-11所示。这些专用寄存器包括端口锁存器

(P0/P1/P2/P3)、程序状态字(PSW)、定时/计数器方式控制(TMOD)、定时/计数器控制(TCON)、定时/计数器(THx/TLx)、累加器(ACC/B)、栈指针(SP),以及其他控制寄存器等等。专用寄存器只能通过直接寻址方式来访问。通常,在所有ATMEL单片机的专用寄存器(SFR)区中,寄存器的分配情况是相同的。

专用寄存器区中有一些单元是即可字节寻址又可位寻址的(见图1-11)。凡是地址以“0”和“8”结尾(能被8整除)的单元都是可位寻地址的,地址的范围是80H~FFH。

以下各讲中讲到的单片机都是指AT89S52单片机。

知识点

⒈对40脚PDIP封装的AT89S52来说,P0口对应管脚号是[39]到[32];P1口对应管脚号是[1]到[8];P2口对应管脚号是[21]到[28];P3口对应管脚号是[10]到[17]。

⒉管脚的第2功能:P1.0----T2时钟输出,P1.1----T2EX,P1.5----MOSI用于在系统编程,P1.6----MISO 用于在系统编程,P1.7----SCK用于在系统编程;P3.0----串行输入口RXD,P3.1----串行输出口TXD,P3.2----外部中断0(INT0),P3.3----外部中断1(INT1),P3.4----定时器0外部输入(T0),P3.5----定时器1外部输入(T1)。

⒊中断矢量地址:外部中断0地址----0003H,定时器0溢出----000BH,外部中断1地址----0013H,定时器1溢出----001BH,串行口中断----0023H,定时器2溢出----002BH。

⒋内部RAM可直接寻址的字节地址及位地址,图1-10。

⒌特殊功能寄存器的字节地址及其复位值,图1-11。

半导体封装制程简介

(Die Saw) 晶片切割之目的乃是要將前製程加工完成的晶圓上一顆顆之芯片(Die)切割分離。首先要在晶圓背面貼上蓝膜(blue tape)並置於鋼 製的圆环上,此一動作叫晶圓粘片(wafer mount),如圖一,而後再 送至晶片切割機上進行切割。切割完後,一顆顆之芯片井然有序的排 列在膠帶上,如圖二、三,同時由於框架之支撐可避免蓝膜皺摺而使 芯片互相碰撞,而圆环撐住膠帶以便於搬運。 圖一 圖二

(Die Bond) 粘晶(装片)的目的乃是將一顆顆分離的芯片放置在导线框架(lead frame)上並用銀浆(epoxy )粘着固定。引线框架是提供芯片一個粘着的位置+ (芯片座die pad),並預設有可延伸IC芯片電路的延伸腳(分為內 引腳及外引腳inner lead/outer lead)一個引线框架上依不同的設計可以有 數個芯片座,這數個芯片座通常排成一列,亦有成矩陣式的多列排法 。引线框架經傳輸至定位後,首先要在芯片座預定粘着芯片的位置上点

上銀浆(此一動作稱為点浆),然後移至下一位置將芯片置放其上。 而經過切割的晶圓上的芯片則由焊臂一顆一顆地置放在已点浆的晶 粒座上。装片完後的引线框架再由传输设备送至料盒(magazine) 。装片后的成品如圖所示。 引线框架装片成品 胶的烧结 烧结的目的是让芯片与引线框晶粒座很好的结合固定,胶可分为银浆(导电胶)和绝缘胶两种,根据不同芯片的性能要求使用不同的胶,通常导电胶在200度烤箱烘烤两小时;绝缘胶在150度烤箱烘烤两个半小时。 (Wire Bond) 焊线的目的是將芯片上的焊点以极细的金或铜线(18~50um)連接到引线框架上的內引腳,藉而將IC芯片的電路訊號傳輸到外界。當

常见芯片封装类型的汇总

常见芯片封装类型的汇总 芯片封装,简单点来讲就是把制造厂生产出来的集成电路裸片放到一块起承载作用的基板上,再把管脚引出来,然后固定包装成为一个整体。它可以起到保护芯片的作用,相当于是芯片的外壳,不仅能固定、密封芯片,还能增强其电热性能。所以,封装对CPU和其他大规模集成电路起着非常重要的作用。 今天,与非网小编来介绍一下几种常见的芯片封装类型。 DIP双列直插式 DIP是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。DIP封装结构形式有多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP (含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。 DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存储器和微机电路等。 DIP封装 特点: 适合在PCB(印刷电路板)上穿孔焊接,操作方便。 芯片面积与封装面积之间的比值较大,故体积也较大。 最早的4004、8008、8086、8088等CPU都采用了DIP封装,通过其上的两排引脚可插到主板上的插槽或焊接在主板上。 在内存颗粒直接插在主板上的时代,DIP 封装形式曾经十分流行。DIP还有一种派生方式SDIP(Shrink DIP,紧缩双入线封装),它比DIP的针脚密度要高六倍。 现状:但是由于其封装面积和厚度都比较大,而且引脚在插拔过程中很容易被损坏,可靠性较差。同时这种封装方式由于受工艺的影响,引脚一般都不超过100个。随着CPU内

芯片封装大全(图文对照)

封装有两大类;一类是通孔插入式封装(through-hole package);另—类为表面安装式封装(surface moun te d Package)。每一类中又有多种形式。表l和表2是它们的图例,英文缩写、英文全称和中文译名。图6示出了封装技术在小尺寸和多引脚数这两个方向发展的情况。 DIP是20世纪70年代出现的封装形式。它能适应当时多数集成电路工作频率的要求,制造成本较低,较易实现封装自动化印测试自动化,因而在相当一段时间内在集成电路封装中占有主导地位。 但DIP的引脚节距较大(为2.54mm),并占用PCB板较多的空间,为此出现了SHDIP和SKDIP等改进形式,它们在减小引脚节距和缩小体积方面作了不少改进,但DIP最大引脚数难以提高(最大引脚数为64条)且采用通孔插入方式,因而使它的应用受到很大限制。 为突破引脚数的限制,20世纪80年代开发了PGA封装,虽然它的引脚节距仍维持在2.54mm或1.77mm,但由于采用底面引出方式,因而引脚数可高达500条~600条。 随着表面安装技术(surface mounted technology, SMT)的出现,DIP封装的数量逐渐下降,表面安装技术可节省空间,提高性能,且可放置在印刷电路板的上下两面上。SOP应运而生,它的引脚从两边引出,且为扁平封装,引脚可直接焊接在PCB板上,也不再需要插座。它的引脚节距也从DIP的2.54 mm减小到1.77mm。后来有SSOP和TSOP改进型的出现,但引脚数仍受到限制。 QFP也是扁平封装,但它们的引脚是从四边引出,且为水平直线,其电感较小,可工作在较高频率。引脚节距进一步降低到1.00mm,以至0.65 mm和0.5 mm,引脚数可达500条,因而这种封装形式受到广泛欢迎。但在管脚数要求不高的情况下,SOP以及它的变形SOJ(J型引脚)仍是优先选用的封装形式,也是目前生产最多的一种封装形式。 方形扁平封装-QFP (Quad Flat Package) [特点] 引脚间距较小及细,常用于大规模或超大规模集成电路封装。必须采用SMT(表面安装技术)进行焊接。操作方便,可靠性高。芯片面积与封装面积的比值较大。 小型外框封装-SOP (Small Outline Package) [特点] 适用于SMT安装布线,寄生参数减小,高频应用,可靠性较高。引脚离芯片较远,成品率增加且成本较低。芯片面积与封装面积比值约为1:8 小尺寸J型引脚封装-SOJ (Smal Outline J-lead) 有引线芯片载体-LCC (Leaded Chip Carrier) 据1998年统计,DIP在封装总量中所占份额为15%,SOP在封装总量中所占57%,QFP则占12%。预计今后DIP的份额会进一步下降,SOP也会有所下降,而QFP会维持原有份额,三者的总和仍占总封装量的80%。 以上三种封装形式又有塑料包封和陶瓷包封之分。塑料包封是在引线键合后用环氧树脂铸塑而成,环氧树脂的耐湿性好,成本也低,所以在上述封装中占有主导地位。陶瓷封装具有气密性高的特点,但成本较高,在对散热性能、电特性有较高要求时,或者用于国防军事需求时,常采用陶瓷包封。 PLCC是一种塑料有引脚(实际为J形引脚)的片式载体封装(也称四边扁平J形引脚封装QFJ (quad flat J-lead package)),所以采用片式载体是因为有时在系统中需要更换集成电路,因而先将芯片封装在一种载体(carrier)内,然后将载体插入插座内,载体和插座通过硬接触而导通的。这样在需要时,只要在插座上取下载体就可方便地更换另一载体。 LCC称陶瓷无引脚式载体封装(实际有引脚但不伸出。它是镶嵌在陶瓷管壳的四侧通过接触而导通)。有时也称为CLCC,但通常不加C。在陶瓷封装的情况下。如对载体结构和引脚形状稍加改变,载体的引脚就可直接与PCB板进行焊接而不再需要插座。这种封装称为LDCC即陶瓷有引脚片式载体封装。 TAB封装技术是先在铜箔上涂覆一层聚酰亚胺层。然后用刻蚀方法将铜箔腐蚀出所需的引脚框架;再在聚酰亚胺层和铜层上制作出小孔,将金属填入铜图形的小孔内,制作出凸点(采用铜、金或镍等材料)。由这些凸点与芯片上的压焊块连接起来,再由

芯片封装介绍

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板得背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板得正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,就是多引脚LSI 用得一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1、5mm 得360 引脚BGA 仅为31mm 见方;而引脚中心距为0、5mm 得304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样得引脚变形问题。该封装就是美国Motorola 公司开发得,首先在便携式电话等设备中被采用,今后在美国有 可能在个人计算机中普及。最初,BGA 得引脚(凸点)中心距为1、5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚得BGA。BGA 得问题就是回流焊后得外观检查。现在尚不清楚就是否有效得外观检查方法。有得认为, 由于焊接得中心距较大,连接可以瞧作就是稳定得,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封得封装称为OMPAC,而把灌封方法密封得封装称为 GPAC(见OMPAC 与GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫得四侧引脚扁平封装。QFP 封装之一,在封装本体得四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器与ASIC 等电路中采用此封装。引脚中心距0、635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 得别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装得记号。例如,CDIP 表示得就是陶瓷DIP。就是在实际中经常使用得记号。 5、Cerdip 用玻璃密封得陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口得Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 得微机电路等。引脚中心距2、54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封得意思)。 6、Cerquad 表面贴装型封装之一,即用下密封得陶瓷QFP,用于封装DSP 等得逻辑LSI 电路。带有窗口得Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1、5~2W 得功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1、27mm、0、8mm、0、65mm、0、5mm、0、4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚得陶瓷芯片载体,表面贴装型封装之一,引脚从封装得四个侧面引出,呈丁字形。带有窗口得用于封装紫外线擦除型EPROM 以及带有EPROM 得微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,就是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板得电气连接用引线缝合方法实现,芯片与基板得电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 就是最简单得裸芯片贴装技术,但它得封装密度远不如TAB 与倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。就是SOP 得别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic package)

cc2590 芯片手册

FEATURES APPLICATIONS DESCRIPTION CC2590BLOCK DIAGRAM RF_P RXTX RF_N PAEN EN CC2590 https://www.wendangku.net/doc/a615255203.html,........................................................................................................................................................................................SWRS080–SEPTEMBER2008 2.4-GHz RF Front End,14-dBm output power ?All2.4-GHz ISM Band Systems ?Seamless Interface to2.4-GHz Low Power RF Devices from Texas Instruments?Wireless Sensor Networks ?Wireless Industrial Systems ?Up to+14-dBm(25mW)Output Power ?IEEE802.15.4and ZigBee Systems ?6-dB Typical Improved Sensitivity on CC24xx ?Wireless Consumer Systems and CC2500,CC2510,and CC2511 ?Wireless Audio Systems ?Few External Components –Integrated Switches –Integrated Matching Network CC2590is a cost-effective and high performance RF –Integrated Balun Front End for low-power and low-voltage 2.4-GHz –Integrated Inductors wireless applications. –Integrated PA CC2590is a range extender for all existing and future –Integrated LNA 2.4-GHz low-power RF transceivers,transmitters and ?Digital Control of LNA Gain by HGM Pin System-on-Chip products from Texas Instruments.?100-nA in Power Down(EN=PAEN=0)CC2590increases the link budget by providing a power amplifier for increased output power,and an ?Low Transmit Current Consumption LNA with low noise figure for improved receiver –22-mA at3-V for+12-dBm,PAE=23% sensitivity. ?Low Receive Current Consumption CC2590provides a small size,high output power RF – 3.4-mA for High Gain Mode design with its4x4-mm QFN-16package. – 1.8-mA for Low Gain Mode CC2590contains PA,LNA,switches,RF-matching,? 4.6-dB LNA Noise Figure,including T/R Switch and balun for simple design of high performance and external antenna match wireless applications. ?RoHS Compliant4×4-mm QFN-16Package ? 2.0-V to3.6-V Operation Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

半导体封装简介(精)

半导体封装简介: 半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋和成型(Trim&Form)、电镀(Plating)以及打印等工艺。典型的封装工艺流程为:划片装片键合塑封去飞边电镀打印切筋和成型外观检查成品测试包装出货。 各种半导体封装形式的特点和优点: 一、DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP 结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。

芯片手册

74系列 74ls48 BCD—7段译码器-内部上拉输出驱动 1 7473 TTL 带清除负触发双J-K触发器 1 7474 TTL 带置位复位正触发双D触发器 2 7476 TTL 带预置清除双J-K触发器 2 7483 TTL 四位二进制快速进位全加器 3 7485 TTL 四位数字比较器 4 7486 TTL 2输入端四异或门 5 7490 TTL 可二-五分频十进制计数器 5 7495 TTL 四位并行输入-输出移位寄存器7 74107 TTL 带清除主从双J-K触发器8 74109 TTL 带预置清除正触发双J-K触发器8 74122 TTL 可再触发单稳态多谐振荡器9 74126 TTL 三态输出低有效四总线缓冲门9 74138 TTL 3-8线译码器-复工器10 74139 TTL 双2-4线译码器-复工器11 74150 TTL 16选1数据选择-多路开关12 74154 TTL 4线—16线译码器13 74157 TTL 同相输出四2选1数据选择器14 74160 TTL 可预置BCD异步清除计数器15 74165 TTL 八位并行入-串行输出移位寄存器16 74166 TTL 八位并入-串出移位寄存器16 74169 TTL 二进制四位加-减同步计数器17 74173 TTL 三态输出四位D型寄存器18 74174 TTL 带公共时钟和复位六D触发器18 74175 TTL 带公共时钟和复位四D触发器19 74180 TTL 9位奇数-偶数发生器-校验器20 74185 TTL 二进制—BCD代码转换器21 74192 TTL 可预置BCD双时钟可逆计数器22 74194 TTL 四位双向通用移位寄存器22 74197 TTL 二进制可预置锁存器-计数器23 74245 TTL 八同相三态总线收发器23 74247 TTL BCD—7段15V输出译码-驱动器23 74248 TTL BCD—7段译码-升压输出驱动器24 74273 TTL 带公共时钟复位八D触发器24 74299 TTL 三态输出八位通用移位寄存器25 74323 TTL 三态输出八位双向移位-存贮寄存器25 CD系列 4008 CMOS 4位二进制并行进位全加器26 4013 CMOS 带置位-复位的双D触发器28 4014 CMOS 8级同步并入串入-串出移位寄存器29

74HC595中文芯片手册

74HC595 8位移位寄存器与输出锁存器 功能描述 这种高速移位寄存器采用先进的硅栅CMOS技术。该装置具有高的抗干扰性和标准CMOS集成电路的低功率消耗,以及用于驱动15个LS-TTL负载的能力。 此装置包含馈送一个8位D型存储寄存器的8位串行入,并行出移位寄存器。存储寄存器具有8 TRI-STATE e输出。提供了用于两个移位寄存器和存储寄存器独立的时钟。 移位寄存器有直接首要明确,串行输入和串行输出(标准)引脚级联。两个移位寄存器和存储寄存器的使用正边沿触发的时钟。如果两个时钟被连接在一起时,移位寄存器的状态 将总是提前存储寄存器的一个时钟脉冲。 该54HC/74HC逻辑系列就是速度,功能和引脚输出与标准54LS/74LS逻辑系列兼容。所有输入免受损害,由于静电放电由内部二极管钳位到VCC和地面。 产品特点 1低静态电流:80 mA最大值(74HC系列) 2低输入电流为1mA最大 38位串行输入,并行出移位寄存器以存储 4宽工作电压范围:2V ± 6V 5级联 6移位寄存器直接明确 7保证移频率:DC至30兆赫

TL/F/5342-1 Top View Order Number MM54HC5S5 or MM74HC595 DuaHn-Line Package RCK SCK SCLR G Function X X X H Q A thruQH = TRI-STATE X X L L Shift Register cleared Q H -O X T H L Shift Register clocked C)N = Qnd ,Qo = SER T X H L Con tents of Shift Register transferred to output latches Operating Conditions Supply Voltage (V QC ) -0.5 to +7.0V DC Input Voltage (V IM ) -1.5 toV C c+15V DC OutpiX Voltage (V OUT ) -0.5 toVcc+0.5V Clamp Diode Current (I IK . I(X ) ±20 mA DC Output Current, per pin (lour) ±35 mA DC Vcc or GND Current, per pin (Icc) ±70 mA Storage Temperature Range (T STG ) -65"Cto+15(rC Power Dissipation (P Q ) (Note 3) 600 mW S.O. Package only 500 mW Lead Temp. (TO (Sobering 10 seconds) 2?TC Min Max Units Supply Voltage (Vcc) 2 6 V DC Input or Outpu* Voltage 0 Vcc V (Vw. VOUT ) Operating Temp. Range (T A ) MM74HC -40 +85 ?c MM54HC -55 + 125 ?c Input Rise or Fall Times VOC-20V 1000 ns V QC -4.5V 500 ns Vcc-6.0V 400 ns Absolute Maximum Ratings (Notes 1&2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications ?

S3C2416芯片手册-中文不完整版

微软中国[键入公司地址] [键入电话号码] [键入传真号码] [选取日期]微软中国 [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

目录 1、产品概述 (3) 1、引言 (3) 2、特点 (3) 3、框图 (3) 4、引脚分配 (1) 4.1信号说明 (13) 2系统控制器 (35) 1概述 (35) 2、特点 (35) 3、框图 (36) 4、功能说明 (36) 4.1复位管理及类型 (36) 4.2硬件复位 (37) 4.3看门狗复位 (38) 4.4软件复位 (38) 4.5唤醒复位 (38) 5时钟管理 (39) 5.1时钟发生器概述 (39) 5.2时钟源选择 (39) 5.3PLL(锁相回路) (40) 5.4在正常操作下,改变PLL设置 (41) 5.5系统时钟控制 (41) 5.6ARM和总线时钟分频比 (42) 5.7配置时钟寄存器以产生AMBA时钟特定的频率 (42) 5.8ESYSCLK控制 (43) 6、电源管理 (43) 6.1功率模式状态图 (43) 6.2节能模式 (44) 6.3唤醒事件 (47) 6.4输出端口状态,以及停止和睡眠模式 (47) 6.5省电模式进入/退出条件 (48) 7寄存器说明 (48) 7.1地址映射 (48) 8独立的寄存器说明 (49) 8.1时钟源控制寄存器(LOCKCON0,LOCKCON1,OSCSET,MPLLCON,与 EPLLCON) (49) 8.2时钟控制寄存器(CLKSRC,CLKDIV,HCLKCON,PCLKCON,与SCLKCON) (51) 8.3电源管理寄存器(PWRMODE与PWRCFG) (54) 8.4复位控制寄存器(SWRST和RSTCON) (56) 8.5在普通模式和从休眠模式唤醒下,(I/O)保持位控制。 (56) 8.6系统控制器状态寄存器(WKUPSTAT与RSTSTAT) (57)

常见的几种芯片封装介绍

常见的几种芯片封装介绍 一、DIP双列直插式封装 DIP(Dual In-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: (1)适合在PCB(印刷电路板)上穿孔焊接,操作方便。 (2)芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 二、QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。 QFP/PFP封装具有以下特点: (1)适用于SMD表面安装技术在PCB电路板上安装布线。 (2)适合高频使用。 (3)操作方便,可靠性高。 (4)芯片面积与封装面积之间的比值较小。 Intel系列CPU中80286、80386和某些486主板采用这种封装形式。 三、PGA插针网格阵列封装 PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。ZIF(Zero Insertion Force Socket)是指

集成电路封装工艺

集成电路封装工艺 摘要 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个发挥集成电路芯片功能的良好环境,以使之稳定,可靠,正常的完成电路功能.但是集成电路芯片封装只能限制而不能提高芯片的功能. 关键词: 电子封装封装类型封装技术器件失效 Integrated Circuit Packaging Process Abstract The purpose of IC package, is to protect the chip from the outside or less environmental impa ct, and provide a functional integrated circuit chip to play a good environment to make it stable an d reliable, the completion of the normal circuit functions. However, IC chip package and not only restricted to enhance the function of the chip. 引言 电子封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。 1.电子封装 什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。 2.部分封装的介绍 金属封装是半导体器件封装的最原始的形式,它将分立器件或集成电路置于一个金属容器中,用镍作封盖并镀上金。金属圆形外壳采用由可伐合金材料冲制成的金属底座,借助封接玻璃,在氮气保护气氛下将可伐合金引线按照规定的布线方式熔装在金属底座上,经过引线端头的切平和磨光后,再镀镍、金等惰性金属给与保护。在底座中心进行芯片安装和在

芯片封装类型图解

集成电路封装形式介绍(图解) BGA BGFP132 CLCC CPGA DIP EBGA 680L FBGA FDIP FQFP 100L JLCC BGA160L LCC

LDCC LGA LQFP LQFP100L Metal Qual100L PBGA217L PCDIP PLCC PPGA PQFP QFP SBA 192L TQFP100L TSBGA217L TSOP

CSP SIP:单列直插式封装.该类型的引脚在芯片单侧排列,引脚节距等特征和DIP基本相同.ZIP:Z型引脚直插式封装.该类型的引脚也在芯片单侧排列,只是引脚比SIP粗短些,节距等特征也和DIP基本相同. S-DIP:收缩双列直插式封装.该类型的引脚在芯片两侧排列,引脚节距为1.778mm,芯片集成度高于DIP. SK-DIP:窄型双列直插式封装.除了芯片的宽度是DIP的1/2以外,其它特征和DIP相同.PGA:针栅阵列插入式封装.封装底面垂直阵列布置引脚插脚,如同针栅.插脚节距为2.54mm或1.27mm,插脚数可多达数百脚. 用于高速的且大规模和超大规模集成电路. SOP:小外型封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,字母L状.引脚节距为 1.27mm. MSP:微方型封装.表面贴装型封装的一种,又叫QFI等,引脚端子从封装的四个侧面引出,呈I字形向下方延伸,没有向外突出的部分,实装占用面积小,引脚节距为1.27mm. QFP:四方扁平封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈L字形,引脚节距为 1.0mm,0.8mm,0.65mm,0.5mm,0.4mm,0.3mm,引脚可达300脚以上. SVP:表面安装型垂直封装.表面贴装型封装的一种,引脚端子从封装的一个侧面引出,引脚在中间部位弯成直角,弯曲引脚的端部和PCB键合,为垂直安装的封装.实装占有面积很小.引脚节距为0.65mm,0.5mm. LCCC:无引线陶瓷封装载体.在陶瓷基板的四个侧面都设有电极焊盘而无引脚的表面贴装型封装.用于高 速,高频集成电路封装. PLCC:无引线塑料封装载体.一种塑料封装的LCC.也用于高速,高频集成电路封装. SOJ:小外形J引脚封装.表面贴装型封装的一种,引脚端子从封装的两个侧面引出,呈J字形,引脚节距为 1.27mm. BGA:球栅阵列封装.表面贴装型封装的一种,在PCB的背面布置二维阵列的球形端子,而不采用针脚引脚. 焊球的节距通常为1.5mm,1.0mm,0.8mm,和PGA相比,不会出现针脚变形问题. CSP:芯片级封装.一种超小型表面贴装型封装,其引脚也是球形端子,节距为0.8mm,0.65mm,0.5mm等. TCP:带载封装.在形成布线的绝缘带上搭载裸芯片,并和布线相连接的封装.和其他表面贴装型封装相比,芯片更薄,引脚节距更小,达0.25mm,而引脚数可达500针以上. 介绍:

CY7C1051DV33芯片手册

PRELIMINARY 8-Mbit (512K x 16) Static RAM CY7C1051DV33 Features ?High speed —t AA = 10 ns ?Low active power —I CC = 110 mA @ 10 ns ?Low CMOS standby power —I SB2 = 20 mA ?2.0V data retention ?Automatic power-down when deselected ?TTL-compatible inputs and outputs ?Easy memory expansion with CE and OE features ? Available in lead-free 48-ball FBGA and 44-pin TSOP II packages Functional Description [1] The CY7C1051DV33 is a high-performance CMOS Static RAM organized as 512K words by 16 bits. Write to the device by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte LOW Enable (BLE) is LOW,then data from IO pins (IO 0–IO 7), is written into the location specified on the address pins (A 0–A 18). If Byte HIGH Enable (BHE) is LOW, then data from IO pins (IO 8–IO 15) is written into the location specified on the address pins (A 0–A 18). Read from the device by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH.If Byte LOW Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on IO 0–IO 7.If Byte HIGH Enable (BHE) is LOW, then data from memory will appear on IO 8 to IO 15. See the “Truth Table” on page 8 for a complete description of Read and Write modes. The input/output pins (IO 0–IO 15) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or a Write operation (CE LOW,and WE LOW) is in progress. The CY7C1051DV33 is available in a 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package. Note 1.For guidelines on SRAM system design, please refer to the “System Design Guidelines” Cypress application note, available on the internet at https://www.wendangku.net/doc/a615255203.html, . 1415Logic Block Diagram A 1A 2A 3A 4A 5A 6A 7A 8 COLUMN DECODER R O W D E C O D E R S E N S E A M P S INPUT BUFFER 512K × 16ARRAY A 0A 11A 13A 12A A A 16A 17A 18 A 9A 10IO 0–IO 7OE IO 8–IO 15 CE WE BLE BHE

介绍各种芯片封装形式的特点和优点..

介绍各种芯片封装形式的特点和优点。常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 由于电视、音响、录像集成电路的用途、使用环境、生产历史等原因,使其不但在型号规格上繁杂,而且封装形式也多样。我们经常听说某某芯片采用什么什么的封装方式,比如,我们看见过的电板,存在着各种各样不同处理芯片,那么,它们又是是采用何种封装形式呢?并且这些封装形式又有什么样的技术特点以及优越性呢?那么就请看看下面的这篇文章,将为你介绍各种芯片封装形式的特点和优点。 1) 概述 常见的封装材料有:塑料、陶瓷、玻璃、金属等,现在基本采用塑料封装。 按封装形式分:普通双列直插式,普通单列直插式,小型双列扁平,小型四列扁平,圆形金属,体积较大的厚膜电路等。 按封装体积大小排列分:最大为厚膜电路,其次分别为双列直插式,单列直插式,金属封装、双列扁平、四列扁平为最小。 两引脚之间的间距分:普通标准型塑料封装,双列、单列直插式一般多为2.54±0.25 mm,其次有2mm(多见于单列直插式)、1.778±0.25mm(多见于缩型双列直插式)、1.5±0.25mm,或1.27±0.25mm(多见于单列附散热片或单列V 型)、1.27±0.25mm(多见于双列扁平封装)、1±0.15mm(多见于双列或四列扁平封装)、0.8±0.05~0.15mm(多见于四列扁平封装)、0.65±0.03mm(多见于四列扁平封装)。 双列直插式两列引脚之间的宽度分:一般有7.4~7.62mm、10.16mm、12.7mm、1 5.24mm等数种。 双列扁平封装两列之间的宽度分(包括引线长度:一般有6~6.5±mm、7.6mm、10.5~10.65mm等。 四列扁平封装40引脚以上的长×宽一般有:10×10mm(不计引线长度)、13.6×1 3.6±0.4mm(包括引线长度)、20.6×20.6±0.4mm(包括引线长度)、8.45×8.45±0.5mm(不计引线长度)、14×14±0.15mm(不计引线长度)等。 2)DIP双列直插式封装 DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 DIP封装具有以下特点: 1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。 3)QFP塑料方型扁平式封装和PFP塑料扁平组件式封装 QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在

相关文档