文档库 最新最全的文档下载
当前位置:文档库 › 线性代数复习重点

线性代数复习重点

线性代数复习重点
线性代数复习重点

复习重点:

第一部分 行列式

1. 排列的逆序数(P .5例4;P .26第2、4题)

2. 行列式按行(列)展开法则(P .21例13;P .28第9题) 3. 行列式的性质及行列式的计算(P .27第8题)

第二部分 矩阵 1. 矩阵的运算性质

2. 矩阵求逆及矩阵方程的求解(P .56第17、18题;P .78第5题) 3. 伴随阵的性质(P .41例9;P .56第23、24题;P .109第25题)、正交阵的性质(P .116) 4. 矩阵的秩的性质(P .69至71;P .100例13、14、15)

第三部分 线性方程组

1. 线性方程组的解的判定(P .71定理3;P .77定理4、5、6、7),带参数的方程组的解的

判定(P .75例13;P .80第16、17、18题)

2. 齐次线性方程组的解的结构(基础解系与通解的关系) 3. 非齐次线性方程组的解的结构(通解)

第四部分 向量组(矩阵、方程组、向量组三者之间可以相互转换) 1.向量组的线性表示 2.向量组的线性相关性 3.向量组的秩

第五部分 方阵的特征值及特征向量 1.施密特正交化过程

2.特征值、特征向量的性质及计算(P .120例8、9、10;P .135第7至13题)

3.矩阵的相似对角化,尤其是对称阵的相似对角化(P .135第15、16、19、23题)

要注意的知识点:

线性代数

1、行列式

1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;

2. 代数余子式的性质:

①、ij A 和ij a 的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

4. 行列式的重要公式:

①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积(1)2

(1)n n -? -;

③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2

(1)n n -? -;

⑤、拉普拉斯展开式:

A O A C A

B

C B O B ==、(1)m n C A O A

A B B O B C

==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值 5. 证明0A =的方法:

①、A A =-; ②、反证法;

③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

2、矩阵

1.

A 是n 阶可逆矩阵:

?0A ≠(是非奇异矩阵);

?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价;

?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵;

?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;

2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;

3.

1**111**()()()()()()T T T T A A A A A A ----=== ***

111()()()T T T

AB B A AB B A AB B A ---===

4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;

5. 关于分块矩阵的重要结论,其中均A 、B 可逆:

若12

s A A A A ?? ?

?= ? ??

?

,则: Ⅰ、12s A A A A = ;

Ⅱ、11112

1s A A A A ----??

?

?= ? ? ??

?

; ②、1

11A O A O O B O B ---????

=

? ????? ③、1

11O A O B B O A O ---??

??= ? ?

???? ④、11111A C A A CB O B O

B -----??

-??=

? ?????

⑤、1111

1A O A O C B B CA

B -----????= ? ?-????

3、矩阵的初等变换与线性方程组

1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:

r

m n

E O

F O

O ???

= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;

对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

①、只能通过初等行变换获得;

②、每行首个非0元素必须为1;

③、每行首个非0元素所在列的其他元素必须为0;

3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)

①、 若(,)(,)r

A E E X ,则A 可逆,且1X A -=;

②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)c

A B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r

A b E x ,则A 可逆,且1x A b -=;

4. 初等矩阵和对角矩阵的概念:

①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

②、12

n ??

?

?Λ= ? ??

?

λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i

λ乘A 的各列元

素;

③、对调两行或两列,符号(,)E i j ,且1

(,)

(,)

E i j E i j -=,例如:1

111111-????

? ?

= ? ? ? ?????

; ④、倍乘某行或某列,符号(())E i k ,且1

1

(())

(())E i k E i k

-=,例如:11

11(0)11k k k -????

?

? ?=≠ ? ? ? ???

?

?

; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:1

11

11(0)11k k k --???? ? ?

=≠ ? ? ? ?????

; 5. 矩阵秩的基本性质:

①、0()min(,)m n r A m n ?≤≤;

②、()()T r A r A =;

③、若A B ,则()()r A r B =;

④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)

⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);

Ⅱ、()()r A r B n +≤

⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;

6. 三种特殊矩阵的方幂:

①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;

②、型如101001a c b ?? ?

? ???

的矩阵:利用二项展开式

③、利用特征值和相似对角化: 7. 伴随矩阵:

①、伴随矩阵的秩:*()()1

()10()1

n

r A n r A r A n r A n = ??

==-??<-?

; ②、伴随矩阵的特征值:*1*(,)A

A

AX X A A A A X X λλ

λ

- == ? =

③、*1A A A -=、1

*n A A -=

8. 关于A 矩阵秩的描述:

①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;

9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:

①、m 与方程的个数相同,即方程组Ax b =有m 个方程;

②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:

①、对增广矩阵B 进行初等行变换(只能使用初等行变换);

②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;

11. 由n 个未知数m 个方程的方程组构成n 元线性方程:

①、11112211211222221122n n n n m m nm n n

a x a x a x

b a x a x a x b a x a x a x b +++= ??+++= ??

??+++=? ; ②、111211121

222221

2

n n m m mn m m a a a x b a a a x b Ax b a a a x b ??????

??? ?

??? ?=?= ??? ?

??? ?

??????

(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)

③、()121

2

n n x x a

a a x β

??

? ?= ?

?

??

(全部按列分块,其中12n b b b β?? ? ?= ? ??? ); ④、1122n n a x a x a x β+++= (线性表出)

⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)

4、向量组的线性相关性

1.

m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ?矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T T

m βββ 构成m n ?矩阵12T T T m B βββ??

? ?= ? ? ???

含有有限个向量的有序向量组与矩阵一一对应;

2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)

②、向量的线性表出 Ax b ?=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)

3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;

(101P 例14) 4. ()()T r A A r A =;(101P 例15)

5.

n 维向量线性相关的几何意义:

①、α线性相关 ?0α=;

②、,αβ线性相关

?,αβ坐标成比例或共线(平行);

③、,,αβγ线性相关 ?,,αβγ共面;

6. 线性相关与无关的两套定理:

若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;

若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶)

若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :

若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)

简言之:无关组延长后仍无关,反之,不确定;

7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;

向量组A 能由向量组B 线性表示,则()()r A r B ≤;

向量组A 能由向量组B 线性表示

AX B ?=有解;

()(,)r A r A B ?= 向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==

8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;

①、矩阵行等价:~r

A B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ?=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9. 对于矩阵m n A ?与l n B ?:

①、若A 与B 行等价,则A 与B 的行秩相等;

②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;

③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ???=,则:

①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;

②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)

11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证

明;

①、0ABx = 只有零解0Bx ? =只有零解;

②、0Bx = 有非零解0ABx ? =一定存在非零解;

12. 设向量组12:,,,n r r B b b b ? 可由向量组12:,,,n s s A a a a ? 线性表示为:

1212(,,,)(,,,)r s b b b a a a K = (B AK =)

其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)

(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;

13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;

②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关

?存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)

?1212(,,,)0s s x x x ααα?? ?

?= ? ???

有非零解,即0Ax =有非零解;

?12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;

15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:

()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线

性无关;

5、相似矩阵

1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:

①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0

T i j i j

a a i j n i j

=?==?

≠? ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a

11b a =;

1222111[,][,]b a b a b b b =-

121

121

112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----

=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;

对于实对称阵,不同特征值对应的特征向量正交;

《线性代数》教学中若干难点的探讨.doc

《线性代数》教学中若干难点的探讨- 摘要:在《线性代数》的教学过程中,有很多抽象的概念学生很难理解,比如线性相关、线性无关,极大线性无关组、向量组的秩等等。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,化抽象为具体,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 关键词:线性相关;线性无关;极大线性无关组;向量组的秩 《线性代数》是高等学校理、工、经、管类各专业的一门重要基础课程。通过对本课程的学习,学生可以获得线性代数的基本概念、基本理论和基本运算技能,为后继课程的学习和进一步知识的获得奠定必要的数学基础。通过各个教学环节的学习,可以逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力以及自学能力,并具有比较熟练的运算能力和综合运用所学知识分析和解决问题的能力。另外,通过《线性代数》的学习,还可以培养学生的综合素质和提高学生的创新意识。因此,只有熟练掌握这门课程,才能较好地运用到各个专业中。由于该课程内容抽象,教学课时短,这无疑对教师的教学和学生的学习造成了极大的困扰。本文从笔者个人的教学实际出发,浅谈教学过程中的若干个教学难点,帮助学生理解并掌握这些难点,以提高学生对《线性代数》的学习兴趣。 一、线性相关性与线性无关性 线性方程组理论是线性代数的基本内容之一,而向量组的线性相关性和线性无关性又是解线性方程组的基础。教材第三章线性方程组开门见山,直接给出了线性相关及线性无关的定义。

线性相关是指一个向量组α1,α2,…,αs,如果存在一组不全为零的数λ1,λ2,…,λs,使得λ1α1+λ2α2+…+λsαs=0,则称该向量组α1,α2,…,αs线性相关。如果不存在这样一组不全为零的数,则称该向量组α1,α2,…,αs线性无关。单纯地称某向量组线性相关或线性无关,对于学生来说是比较抽象的,他们对这一定义总是感觉很模糊,很难理解,如何才能更好地更形象地理解这一定义呢?如果在教学中,把这块知识与解析几何联系起来,用几何知来解释什么是线性相关或线性无关,那么学生肯定更容易接受。例如,对于定义中λ1α1+λ2α2+…+λsαs=0,可以理解为b=(λ1,λ2,…,λs)这样的一个行向量。如果向量组有两个列向量构成,即α1,α2,则b=(λ1,λ2),λ1α1+λ2α2=0。若λ1≠0,则经过变换可以得到α1=■,这说明α1和α2共线。对于有三个向量构成的向量组,λ1α1+λ2α2+λ3α3=0,b=(λ1,λ2,λ3),若λ1≠0,经变换得到α1=■+■,这说明α1,α2,α3三个向量共面。 对于两个向量,线性相关指两向量平行(或者说是共线),此时只是在线上的关系,仅仅是一维,线性无关指两向量相交,确定了一个二维平面。线性无关提供了另一种维度,使得向量所在空间增加了一维。对于三个向量,线性相关指三向量共面,研究的是二维平面,而线性无关指三向量不共面,使得向量所在空间增加了一维,即三个向量若线性无关,那么它们不共面,存在于三维立体空间中。四个向量,五个向量,…,研究方法类似。结合几何知识,通过几何图像可以更直观地呈现出新的概念,学生更易于接受,而且还有助于提高学生对《线性代数》的学习兴趣。 二、极大线性无关组及向量组的秩

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数重点难点

自考《线性代数》重难点解析 2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看: 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点 行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1、若A为n阶方阵,则│kA│= kn│A│ 2、若A、B均为n阶方阵,则│AB│=│A│。│B│ 3、若A为n阶方阵,则│A*│=│A│n-1 若A为n阶可逆阵,则│A-1│=│A│-1 4、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi 四、题型及解题思路 1、有关行列式概念与性质的命题 2、行列式的计算(方法)

1)利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D =│A│≠0,则Ax=b有唯一解,即 x1=D1/D,x2= D2/D,…,xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式│A│判别方程组解的问题 1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解) 2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数易错点及重点知识点

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不 3 24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A 反三角行列式为A*(-1)^n(n-1)/2 行列式的一行的代数余子式分别乘以另一行元素,值为零。 正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。 克莱姆法则D=222112 11a a a a ,D1=22 2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1) 若一个线性方程组有非零解,则它的行列式式值等于零。 行列式中行叫c ,列叫r 写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。 n 维向量分横向量和列向量。 写向量时一定要记得在上面加箭头 任意一个n 维向量都能由n 个n 维单位向量线性表示 如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。 如果一个向量a 线性相关,则a=0 由一个非零向量构成的向量组一定线性无关。即a ≠0则a 这个向量组线性无关。 含有零向量的向量组一定线性相关 例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关 解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0 K1+2k2=0 k1+3k2=0 3 121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关 一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零 两个向量线性相关除非他们对应分量成比例。 如果一个向量组一部分向量线性相关,则,整个向量组线性相关。 一个向量组线性无关,那么它的一部分也线性无关 向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。 应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。 要证线性无关,则减少维,如果减少后无关,则原向量组无关。 要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。 要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。 向量个数大于维数一定线性相关 一个向量组的每个最大线性无关组中的向量个数一定相等 向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基

自考《线性代数》重难点解析与全真练习

自考《线性代数》重难点解析与全真练习 第一章行列式 一、重点 1、理解:行列式的定义,余子式,代数余子式。 2、掌握:行列式的基本性质及推论。 3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。 二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。 三、重要公式 1若A为n阶方阵,则|kA| = kn | A I 2、若A、B均为n阶方阵,AB丨=| A |。丨B丨 3、若A为n阶方阵,则|A* | = | A | n-1 若A为n阶可逆阵,则|A-1 | = | A | -1 4、若A为n阶方阵,入i (i=1 , 2,…,n)是A的特征值,| A | =口入i 四、题型及解题思路 1 、有关行列式概念与性质的命题 2、行列式的计算(方法) 1 )利用定义 2)按某行(列)展开使行列式降阶 3)利用行列式的性质 ①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。 ②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。 ③逐次行(列)相加减,化简行列式。 ④把行列式拆成几个行列式的和差。 4)递推法,适用于规律性强且零元素较多的行列式 5)数学归纳法,多用于证明 3、运用克莱姆法则求解线性方程组 若D = | A |丰0,则Ax=b有解,即 x1=D1/D, x2= D2/D ,…, xn= Dn/D 其中Dj是把D中xj的系数换成常数项。 注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。 4、运用系数行列式A 判别方程组解的问题 1)当| A | = 0时,齐次方程组Ax= 0有非零解;非齐次方程组解,也可 能有无穷多解) 2)当| A |丰0时,齐次方程组Ax= 0仅有零解;非齐次方程组克莱姆法则求出。 、重点 1 、理解:矩阵的定义、性质, 几种特殊的矩阵(零矩阵,上(下)对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵) 2、掌握: 1)矩阵的各种运算及运算规律 2)矩阵可逆的判定及求逆矩阵的各种方法Ax= b 不是解(可能无Ax= b 有解,此解可由三角矩阵,对称矩阵,

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数 复习提纲(一天就过)

《线性代数》复习提纲 第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表

示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;

(2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:

(完整版)自考本科线性代数(经管类)知识汇总

自考高数线性代数笔记 第一章行列式 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减 次对角线的乘积) 例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如

例1a为何值时, [答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解:. 解得0

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

线性代数教学方案(正式打印版)

第(1)次课授课时间()

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公式 (2)中 2 x的表达式的分子。

于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D 例1.解线性方程组. 1 2 12 2 3 2 1 2 1 ? ? ? ? ? = + = - x x x x 同样,在解三元一次方程组 ? ? ? ? ? = + + = + + = + + 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义. 二、三阶行列式的定义 设三元线性方程组 ? ? ? ? ? = + + = + + = + + 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x a x a x a b x a x a x a b x a x a x a 用消元法解得 定义设有9个数排成3行3列的数表 33 32 31 23 22 21 13 12 11 a a a a a a a a a 记 33 32 31 23 22 21 13 12 11 a a a a a a a a a D=32 21 13 31 23 12 33 22 11 a a a a a a a a a+ + = 33 21 12 32 23 11 31 22 13 a a a a a a a a a- - -,称为三阶行列式,则

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

相关文档
相关文档 最新文档