文档库 最新最全的文档下载
当前位置:文档库 › 门电路7432646

门电路7432646

Preliminary

? 2001 Fairchild Semiconductor Corporation DS500635

https://www.wendangku.net/doc/a515464924.html,

August 2001Revised August 2001

74LCX32646 Low Voltage 32-Bit Transceiver/Register with 5V Tolerant Inputs and Outputs (Preliminary)

74LCX32646

Low Voltage 32-Bit Transceiver/Register

with 5V Tolerant Inputs and Outputs (Preliminary)

General Description

The LCX32646 contains thirty-two non-inverting bidirec-tional registered bus transceivers with 3-STATE outputs,providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Each byte has separate control inputs which can be shorted together for full 32-bit operation.The DIR n inputs determine the direction of data flow through the device. The CPAB n and CPBA n inputs load data into the registers on the LOW-to-HIGH transition (see Functional Description).

The LCX32646 is designed for low voltage (2.5V or 3.3V)V CC applications with capability of interfacing to a 5V signal environment.

The LCX32646 is fabricated with an advanced CMOS tech-nology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

s 5V tolerant inputs and outputs s 2.3V–3.6V V CC specifications provided s 5.2 ns t PD max (V CC = 3.3V), 20 μA I CC max s Power down high impedance inputs and outputs s Supports live insertion/withdrawal (Note 1)s ±24 mA Output Drive (V CC = 3.0V)

s Implements patented noise/EMI reduction circuitry s Latch-up performance exceeds 500 mA s ESD performance:

Human Body Model > 2000V Machine Model > 200V

s Packaged in plastic Fine-Pitch Ball Grid Array (FBGA)(Preliminary)

Note 1: To ensure the high-impedance state during power up or down, OE should be tied to V CC through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Note 2: BGA package available in Tape and Reel only.

Order Number Package Number Package Description

74LCX32646GX (Note 2)

BGA114A (Preliminary)

114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide [TAPE and REEL]

Preliminary

https://www.wendangku.net/doc/a515464924.html, 2

74L C X 32646

Connection Diagram

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

FBGA Pin Assignments

Pin Names Description

1A 0 - 1A 15Side A Inputs or 3-STATE Outputs

2A 0 - 2A 151B 0 - 1B 15Side B Inputs or 3-STATE Outputs

2B 0 - 2B 15OE n

Output Enable Inputs CPAB n , CPBA n Clock Pulse Inputs SAB n , SBA n Select Inputs

DIR n Direction Control Inputs NC

No Connect

1

23456A 1A 0SAB 1CPAB 1CPBA 1

SBA 11B 0B 1A 21A 1DIR 1OE 11B 11B 2C 1A 41A 3GND GND 1B 31B4D 1A 61A 5V CC V CC 1B 51B 6E 1A 81A 7GND GND 1B 71B 8F 1A 101A 9GND GND 1B 91B 10G

1A 121A 11V CC V CC 1B 111B 12H 1A 131A 14GND GND 1B 141B 13J 1A 15SAB 2CPAB 2CPBA 2

SBA 21B 15K NC CPAB 3DIR 2OE 2CPBA 3NC L 2A 0SAB 3DIR 3OE 3SBA 32B 0M 2A 22A 1GND GND 2B 12B 2N 2A 42A 3V CC V CC 2B 32B 4P 2A 62A 5GND GND 2B 52B 6R 2A 82A 7GND GND 2B 72B 8T 2A 102A 9V CC V CC 2B 92B 10U 2A 122A 11GND GND 2B 112B 12V 2A 132A 14CPAB 4CPBA 4

2B 142B 13W

2A 15

SAB 4

DIR 4

OE 4

SBA 4

2B 15

Preliminary

https://www.wendangku.net/doc/a515464924.html,

74LCX32646

Truth Table

(Note 3)

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

= LOW-to-HIGH Transition

Note 3: Data I/O paths (1A and 1B: 0 - 7) is shown. This also applies to data I/O (1A and 1B: 8 - 15) and #2 control pins, to data (2A and 2B: 0 - 7) and #3control pins, to data (2A and 2B: 8 - 15) and #4 control pins.

Note 4: The data output functions may be enabled or disabled by various signals at the OE and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.

Inputs

Data I/O (Note 4)Output Operation Mode

OE 1 DIR 1 CPAB 1 CPBA 1 SAB 1 SBA 1 1A 0–7

1B 0–7

H X H or L

H or L X X Isolation

H X

X

X X Input

Input

Clock A n Data into A Register H X X X X Clock B n Data Into B Register

L H X

X L X

A n to

B n — Real Time (Transparent Mode)

L H

X L X Input Output Clock A n Data to A Register

L H H or L

X H X A Register to B n (Stored Mode)

L H

X H X Clock A n Data into A Register and Output to B n L L X X

X L

B n to A n — Real Time (Transparent Mode) L L X X L Output

Input

Clock B n Data into B Register L L X H or L

X H B Register to A n (Stored Mode)

L

L

X

X

H

Clock B n into B Register and Output to A n

Preliminary

https://www.wendangku.net/doc/a515464924.html, 4

74L C X 32646

Logic Diagrams

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Preliminary

https://www.wendangku.net/doc/a515464924.html, 74LCX32646

Logic Diagrams (Continued)

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Preliminary

https://www.wendangku.net/doc/a515464924.html, 6

74L C X 32646

Functional Description

In the transceiver mode, data present at the HIGH imped-ance port may be stored in either the A or B register or

both. The select (SAB n , SBA n ) controls can multiplex stored and real-time. The examples shown below demon-strate the four fundamental bus-management functions that can be performed for data I/O 1A and 1B: 0 - 7.

The direction control (DIR n ) determines which bus will receive data when OE n is LOW. In the isolation mode (OE n HIGH), A data may be stored in one register and/or B data may be stored in the other register. When an output func-tion is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B, may be driven at a time.

Real-Time Transfer Bus B to Bus A Real-Time Transfer Bus A to Bus B

Transfer Storage Data to A or B

Storage

OE 1DIR 1CPAB 1CPBA 1SAB 1

SBA 1L

L

X

X

X

L

OE 1DIR 1CPAB 1CPBA 1SAB 1

SBA 1L

H

X

X

L

X

OE 1DIR 1CPAB 1CPBA 1SAB 1

SBA 1L L X H or L X H L

H

H or

L

X

H

X

OE 1DIR 1CPAB 1CPBA 1SAB 1SBA 1L H X L X L X X

X L H X X

X X H

X

X

X

X

Preliminary

https://www.wendangku.net/doc/a515464924.html,

74LCX32646

Absolute Maximum Ratings (Note 5)

Recommended Operating Conditions (Note 7)

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The “Recom-mended Operating Conditions ” table will define the conditions for actual device operation.Note 6: I O Absolute Maximum Rating must be observed.

Note 7: Unused inputs and I/Os must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol Parameter

Value Conditions

Units V CC Supply Voltage ?0.5 to +7.0 V V I DC Input Voltage ?0.5 to +7.0 V V O DC Output Voltage ?0.5 to +7.0 Output in 3-STATE

V ?0.5 to V CC + 0.5

Output in HIGH or LOW State (Note 6) I IK DC Input Diode Current ?50 V I < GND mA I OK DC Output Diode Current ?50 V O < GND mA +50 V O > V CC

I O DC Output Source/Sink Current ±50 mA I CC DC Supply Current per Supply Pin ±100 mA I GND DC Ground Current per Ground Pin ±100 mA T STG

Storage Temperature

?65 to +150

°C

Symbol Parameter

Min Max Units V CC Supply Voltage Operating 2.0 3.6 V Data Retention

1.5 3.6 V I Input Voltage 0 5.5 V V O Output Voltage HIGH or LOW State

0 V CC V

3-STATE

5.5 I OH /I OL

Output Current

V CC = 3.0V ? 3.6V ±24 mA V CC = 2.7V ? 3.0V ±12

V CC = 2.3V ? 2.7V

±8 T A Free-Air Operating Temperature

?40 85 °C ?t/?V

Input Edge Rate, V IN = 0.8V –2.0V, V CC = 3.0V

10

ns/V Symbol Parameter

Conditions

V CC T A = ?40°C to +85°C Units (V) Min Max

V IH HIGH Level Input Voltage 2.3 ? 2.7 1.7V

2.7 ?

3.6 2.0

V IL LOW Level Input Voltage 2.3 ? 2.70.7V

2.7 ?

3.60.8 V OH

HIGH Level Output Voltage

I OH = ?100 μA 2.3 ? 3.6 V CC ? 0.2

V

I OH = ?8 mA 2.3 1.8I OH = ?12 mA 2.7 2.2I OH = ?18 mA 3.0 2.4I OH = ?24 mA

3.0 2.2

V OL

LOW Level Output Voltage

I OL = 100 μA 2.3 ? 3.60.2V I OL = 8 mA 2.30.6I OL = 12 mA 2.70.4I OL = 16 mA 3.00.4I OL = 24 mA

3.00.55 I I Input Leakage Current 0 ≤ V I ≤ 5.5V 2.3 ? 3.6±5.0μA I OZ 3-STATE I/O Leakage 0 ≤ V O ≤ 5.5V 2.3 ? 3.6

±5.0μA V I = V IH or V IL I OFF

Power-Off Leakage Current

V I or V O = 5.5V

10

μA

Preliminary

https://www.wendangku.net/doc/a515464924.html, 8

74L C X 32646

DC Electrical Characteristics (Continued)

Note 8: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

Dynamic Switching Characteristics

Capacitance

Symbol Parameter

Conditions

V CC T A = ?40°C to +85°C Units

(V) Min

Max

I CC Quiescent Supply Current V I = V CC or GND

2.3 ?

3.6

20

μA 3.6V ≤ V I , V O ≤ 5.5V (Note 8) 2.3 ? 3.6±20?I CC

Increase in I CC per Input

V IH = V CC ?0.6V

2.3 ?

3.6

500μA

Symbol

Parameter

T A = ?40°C to +85°C, R L = 500?

Units

V CC = 3.3V ± 0.3V

V CC = 2.7V V CC = 2.5V ± 0.2V

C L = 50 pF C L = 50 pF C L = 30 pF Min

Max

Min

Max

Min

Max

f MAX Maximum Clock Frequency 170 ns t PHL Propagation Delay 1.5 5.2 1.5 6.0 1.5 6.2 ns t PLH Bus to Bus 1.5 5.2 1.5 6.0 1.5 6.2 t PHL Propagation Delay 1.5 6.0 1.5 7.0 1.57.2 ns t PLH Clock to Bus 1.5 6.0 1.5 7.0 1.57.2 t PHL Propagation Delay 1.5 6.0 1.5 7.0 1.57.2 ns t PLH Select to Bus 1.5 6.0 1.5 7.0 1.57.2 t PZL Output Enable Time

1.5 7.5 1.5 8.5 1.59.8 ns t PZH 1.5 7.5 1.5 8.5 1.59.8 t PLZ Output Disable Time 1.5 6.5 1.5 7.5 1.57.8 ns t PHZ 1.5 6.5

1.5 7.5

1.57.8

t S Setup Time 2.5 2.5 3.0 ns t H Hold Time 1.5 1.5 2.0 ns t W

Pulse Width 3.0

3.0

3.5

ns Symbol Parameter

Conditions

V CC T A = 25°C Units (V) Typical V OLP Quiet Output Dynamic Peak V OL C L = 50 pF, V IH = 3.3V, V IL = 0V 3.30.8 V C L = 30 pF, V IH = 2.5V, V IL = 0V 2.50.6 V OLV

Quiet Output Dynamic Valley V OL

C L = 50 pF, V IH = 3.3V, V IL = 0V 3.3?0.8 V

C L = 30 pF, V IH = 2.5V, V IL = 0V

2.5

?0.6

Symbol Parameter

Conditions

Typical

Units C IN Input Capacitance V CC = Open, V I = 0V or V CC 7 pF C I/O Input/Output Capacitance V CC = 3.3V, V I = 0V or V CC

8 pF C PD

Power Dissipation Capacitance

V CC = 3.3V, V I = 0V or V CC , F = 10 MHz

20

pF

Preliminary

https://www.wendangku.net/doc/a515464924.html,

74LCX32646

AC LOADING and WAVEFORMS Generic for LCX Family

FIGURE 1. AC Test Circuit (C L includes probe and jig capacitance)

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and t rec Waveforms

3-STATE Output Low Enable and

Disable Times for Logic

3-STATE Output High Enable and

Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

t rise and t fall

FIGURE 2. Waveforms

(Input Characteristics; f =1MHz, t r = t f = 3ns)

Test Switch t PLH , t PHL Open

t PZL , t PLZ 6V at V CC = 3.3 ± 0.3V, and 2.7V V CC x 2 at V CC = 2.5 ± 0.2V

t PZH , t PHZ

GND

Symbol V CC

3.3V ± 0.3V

2.7V 2.5V ± 0.2V V mi 1.5V 1.5V V CC /2V mo 1.5V 1.5V V CC /2V x V OL + 0.3V V OL + 0.3V V OL + 0.15V V y

V OH ? 0.3V

V OH ? 0.3V

V OH ? 0.15V

Preliminary

https://www.wendangku.net/doc/a515464924.html, 10

74L C X 32646

Schematic Diagram

Generic for LCX Family

Preliminary

https://www.wendangku.net/doc/a515464924.html, 74LCX32646 Low Voltage 32-Bit Transceiver/Register with 5V Tolerant Inputs and Outputs (Preliminary)

Physical Dimensions inches (millimeters) unless otherwise noted

114-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide

Package Number BGA114A

Preliminary

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1.Life support devices or systems are devices or systems

which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be rea-sonably expected to result in a significant injury to the user.2. A critical component in any component of a life support

device or system whose failure to perform can be rea-sonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

https://www.wendangku.net/doc/a515464924.html,

基本逻辑门电路符号

基本逻辑门电路符号1、与逻辑(AND Logic)与逻辑又叫做逻辑乘,下面通过开关的工作状况 加以说明与逻辑的运算。 从上图可以看出,当开关有一个断开时,灯泡处于灭的状况,仅当两个开关同时合上时,灯泡才会亮。于是我们可以将与逻辑的关系速记为:“有0出0,全1出1”。 图(b)列出了两个开关的所有组合,以及与灯泡状况的情况,我们用0表示开关处于断开状况,1表示开关处于合上的状况;同时灯泡的状况用0表示灭,用1表示亮。 图(c)给出了与逻辑门电路符号,该符号表示了两个输入的逻辑关系,&在英文中是AND的速写,如果开关有三个则符号的左边再加上一道线就行了。 逻辑与的关系还可以用表达式的形式表示为:F=A·B 上式在不造成误解的情况下可简写为:F=AB。 2、或逻辑(OR Logic) 上图(a)为一并联直流电路,当两只开关都处于断开时,其灯泡不会亮;当A,B两个开关中有一个或两个一起合上时,其灯泡就会亮。如开关合上的状况用1表示,开关断开的状况用0表示;灯泡的状况亮时用1表示,不亮时用0表示,则可列出图(b)所示的真值表。这种逻辑关系就是通常讲的“或逻辑”,从表中可看出,只要输入A,B两个中有一个为1,则输出为1,否则为0。所以或逻辑可速记为:“有1出1,全0出0”。 上图(c)为或逻辑门电路符号,后面通常用该符号来表示或逻辑,其方块中的“≥1”表示输入中有一个及一个以上的1,输出就为1。逻辑或的表示式为:F=A+B 3、非逻辑(NOT Logic) 非逻辑又常称为反相运算(Inverters)。下图(a)所示的电路实现的逻辑功能就是非运算的功能,从图上可以看出当开关A合上时,灯泡反而灭;当开关断开时,灯泡才会亮,故其输出F的状况与输入A的状相 反。非运算的逻辑表达式为

基本逻辑门电路1教案

题目:模块六数字电路的基本知识 第二节基本逻辑门 教学目的: 1、掌握与门、或门、非门的逻辑功能及逻辑符号; 2、掌握基本逻辑运算、逻辑函数的表示方法; 3、掌握三种基本的逻辑电路。 重点与难点:重点:基本逻辑关系:“与”关系、“或”关系、“非”关系 难点:基本逻辑门电路的工作原理及其逻辑功能 教学方法: 1、讲授法 2、演示法 组织教学: 1、检查出勤 2、纪律教育 课时安排: 2课时 教学过程(教学步骤、内容等) 模块六数字电路的基本知识 复习回顾: 1、什么叫模拟电路?什么叫数字电路? 2、常用的数制有哪几种?(要会换算) 导入新课: 数字电路为什么又叫逻辑电路?因为数字电路不仅能进行数字运算,而且还能进行逻辑推理运算,所以又叫数字逻辑电路,简称逻辑电路。 定义:所谓逻辑电路是指在该电路中,其输出状态(高、低电平)由一个或多个输入状态(高、低电平)来决定。 数字电路的基本单元是基本逻辑电路,它们反映的是事物的基本逻辑关系。 什么是门? 新课讲解: 基本逻辑门 三种基本逻辑关系 一、“与”逻辑 1、定义:如果决定某事物成立(或发生)的诸原因(或条件)都具备,事件才发生,而只要其中一个条件不具备,事物就不能发生,这种关系称为“与”关系。

2、示例:两个串联的开关控制一盏电灯。 A B 3、“与”逻辑关系真值表 0---开关断开/灯不亮 1---开关闭合/灯亮 4、逻辑规律:有“0”出“0”,全“1”出“1” 5、逻辑符号:二、“或”逻辑 1、定义:A 、B 等多个条件中,只要具备一个条件,事件就会发生,只有所有条件均不具备的时候,事件才不发生,这种因果关系称为“或”逻辑。 2、示例:两个并联的开关控制一盏电灯。 A 3、“或”逻辑关系真值表 0---开关断开/灯不亮 1---开关闭合/灯亮 4、逻辑规律:有“1”出“1”,全“0”出“0” 5、逻辑符号:三、“非”逻辑 1、定义:决定事件结果的条件只有一个A ,A 存在,事件Y 不发生,A 不存在,事件Y 发生,这种因果关系叫做“非”逻辑。 R

数电实验__门电路逻辑功能及测试

一、实验目的 1、熟悉门电路逻辑功能。 2、学习数字电路实验的一般程序及方法。 3、熟悉数字电路设备的使用方法。 二、实验仪器及材料 1、数字万用表 2、器件: 74LS00 二输入端四“与非”门2片 4LS20 四输入端二“与非”门1片 74LS86 二输入端四“异或”门1片 三、预习要求 1、复习门电路的工作原理及相应的逻辑表达式。 2、熟悉所用集成电路的引脚位置及各引脚用途(功能)。 四、实验内容 实验前先检查设备的电源是否正常。然后选择实验用的集成电路,按设计的实验原理图(逻辑图)接好连线,特别注意V CC及地线(GND)不能接错。线接好后经检查无误方可通电实验。实验中改动接线须断开电源,改接好线后再通电实验。 1、测试门电路逻辑功能 ⑴、选用四输入端二“与非”门芯片74LS20一片,按图1.1接线。输入端接四只电平开关(电平开关输出插口),输出端接任意一个电平显示发光二极管。 ⑵、将电平开关按表1.1置位,分别测输出电压及逻辑状态。 2、异或门逻辑功能测试 ⑴、选二输入端四“异或”门芯片74LS86一片,按图1.2接线。输入端A、B、C、D接四只电平开关,E点、F点和输出端Y分别接三只电平显示发光二极管。 ⑵、将电平开关按表1.2置位,将结果填入表中。

4、用“与非”门组成其它门电路并测试验证⑴、组成“或非”门。用一片二输入端四“与非”门芯组成一个“或非”门:Y=A+B,画出逻辑电路图,测试并填表1.5。 ⑵、组成“异或”门。 A、将“异或”门表达式转化为“与非”门表达式。 B、画出逻辑电路图。 C、测试并填表1.6。

思考题: (1)、怎样判断门电路的逻辑功能是否正常? 答:门电路功能正常与否的判断:(1)按照门电路功能,根据输入和输出,列出真值表。(2)按真值表输入电平,查看它的输出是否符合真值表。(3)所有真值表输入状态时,它的输出都是符合真值表,则门电路功能正常;否则门电路功能不正常。 (2)、“与非”门的一个输入端接连续脉冲,其余端什么状态时允许脉冲通过?什么状态时禁止脉冲通过? 答:与非门接髙电平则其他信号可以通过,接低电平则输出恒为0,与非门的真值表是“有0出1,全1出0”。所以一个输入接时钟,就是用时钟控制与非门,当时钟脉冲为高电平时,允许信号通过,为低电平时关闭与非门。 (3)、“异或”门又称可控反相门,为什么? 答:“异或”函数当有奇数个输入变量为真时,输出为真! 当输入X=0,Y=0 时输出S=0 当输入X=0,Y=1 时输出S=1 0代表假1代表真 异或门主要用在数字电路的控制中! 实验小结 由于是第一次数字电路动手试验,操作不是很熟悉,搞得有些手忙脚乱,加之仪器有一点陈旧,电路板上有些地方被烧过,实验中稍不留神接到了烧过的电路板就很难得出正确的结果。 本次试验加深了我对门电路逻辑功能的掌握,对数字电路实验的一般程序及方法有了一定的了解,对数字电路设备的使用方法也有了初步掌握。 在以后的实验中,我会好好预习,认真思考,实验的时候小心仔细,对实验结果认真推敲,勤于思考勤于动手,锻炼自己的动手能力。

基本逻辑关系和常用逻辑门电路

第2章 基本逻辑关系和常用逻辑门电路 通常,把反映“条件”和“结果”之间的关系称为逻辑关系。如果以电路的输入信号反映“条件”,以输出信号反映“结果”,此时电路输入、输出之间也就存在确定的逻辑关系。数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。 2.1 基本逻辑关系和逻辑门 2.1.1 基本逻辑关系和逻辑门 逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门。 一、与逻辑及与门 与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。 如图2.1.1所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。 这种因果关系就是与逻辑关系,可表示为Y =A ?B ,读作“A 与B”。在逻辑运算中,与逻辑称为逻辑乘。 与门是指能够实现与逻辑关系的门电路。与门具有两个或多个输入端,一个输出端。其逻辑符号如图2.1.2所示,为简便计,输入端只用A 和B 两个变量来表示。 与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y =A ?B =AB 两输入端与门的真值表如表2.1.1所示。波形图如图2.1.3所示。 表2.1.1 与门真值表 (a )常用符号 (b )国标符号

由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。 二、或逻辑及或门 或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。 如图2.1.4所示电路,只要开关A 或B 其中任一个闭合,灯泡Y 就亮;A 、B 都不闭合,灯泡Y 才不亮。这种因果关系就是或逻辑关系。可表示为: Y =A +B 读作“A 或B”。在逻辑运算中或逻辑称为逻辑加。 或门是指能够实现或逻辑关系的门电路。或门具有两个或多个输入端,一个输出端。其逻辑符号如图 2.1.5所示。 或门的输出与输入之间的逻辑关系用逻辑表达式表示为: Y =A +B 两输入端或门电路的真值表和波形图分别如表2.1.2和图2.1.6所示。 图2.1.3 与门的波形图 表2.1.2 图2.1.4 或逻辑举例

基本逻辑关系和常用逻辑门电路

第2章 基本逻辑关系和常用逻辑门电路 通常,把反映条件”和结果”之间的关系称为逻辑关系。如果以电路的输入信号反映 条 件”以输出信号反映 结果”此时电路输入、输出之间也就存在确定的逻辑关系。数字电 路就是实现特定逻辑关系的电路, 因此,又称为逻辑电路。逻辑电路的基本单元是逻辑门, 它们反映了基本的逻辑关系。 2.1 基本逻辑关系和逻辑门 2.1.1 基本逻辑关系和逻辑门 逻辑电路中用到的基本逻辑关系有与逻辑、 或逻辑和非逻辑,相应的逻辑门为与门、 或 门及非门。 一、与逻辑及与门 与逻辑指的是:只有当决定某一事件的全部条件都具备之后, 该事件才发生,否则就不 发生的一种因果关系。 如图2.1.1所示电路,只有当开关 A 与B 全部闭合时,灯泡 Y 才亮;若开关 A 或B 其 中有一个不闭合,灯泡Y 就不亮。 这种因果关系就是与逻辑关系, 可表示为Y = A.B,读作A 与B ”在逻辑运算中,与逻 辑称为逻辑乘。 A — & —Y B ― ____ (b )国标符号 图2.1.1与逻辑举例 图2.1.2与逻辑符号 与门是指能够实现与逻辑关系的门电路。 与门具有两个或多个输入端, 一个输出端。其 逻辑符号如图2.1.2所示,为简便计,输入端只用 A 和 B 两个变量来表示。 与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y = A ?B = AB 两输入端与门的真值表如表 2.1.1所示。波形图如图2.1.3所示。 表2.1.1 与门真值表 A B Y 0 0 亠 1 0 亠 (a )常用符号 母—

图2.1.3与门的波形图由此可见,与 门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。 二、或逻辑及或门 或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。 如图2.1.4所示电路,只要开关A或B其中任一个闭合,灯泡Y就亮;A、B都不闭合,灯泡Y才不亮。这种因果关系就是或逻辑关系。可表示为: Y= A+ B 读作A或B”在逻辑运算中或逻辑称为逻辑加。 崖禺>■:甘, 图2.1.4 或逻辑举例(a)常用符号(b)国标符号 图2.1.5或逻辑符号 或门是指能够实现或逻辑关系的门电路。或门具有两个或多个输入端,一个输出端。其 逻辑符号如图2.1.5所示。 或门的输出与输入之间的逻辑关系用逻辑表达式表示为: =A+ B 表2.1.2 两输入端或门电路的真值表和波形图分别如表 2.1.2和图2.1.6所示。

数字电路 门电路教案

《数字电子技术》课程 门电路 1)二,三极管的开关特性:BJT:b控制c,e之间的通或断,I B 饱和或截止 FET:G控制d,s之间的导通 u GS D,S 恒流或夹断 2)简单门电路:二极管:与,或 三极管:非门 与非,或非门 3)集成门电路: TTL门电路:反相器,静动态特性, 其它TTL门:与非门,或非门,异或,与或非门,OC,TS门 CMOS门电路:反相器 其它门:OD,TS,TG门 注意:各种门电路的工作原理,只要求一般掌握;而各种门电路的外部特性和应用是要求重点。 概述 门电路:实现基本逻辑运算和复合逻辑运算的单元电路。 门电路的两种输入,输出电平:高电平、低电平。它们分别对应逻辑电路的1,0状态。 正逻辑:1代表高电平;0代表低电平。 负逻辑:0代表高电平;1代表低电平。

+ u i R L - + u o - D 开关电路 授 课 内 容 及 过 程 当代门电路(所有数字电路)均已集成化。 根据制造工艺不同可分为单极型和双极型两大类。 门电路中晶体管均工作在开关状态。 首先介绍晶体管和场效应管的开关特性。 然后介绍两类门电路。 注意:各种门电路的工作原理,只要求一般掌握; 而各种门电路的外部特性和应用是要求重点。 半导体二极管门电路 一、二极管的开关特性 1.开关电路举例 2.静态特性 输入信号慢变化时的特性。 ? 伏安特性 ? 等效电路 在数字电路中重点在判断二极管开关状态, 因此必须把特性曲线简化。(见右侧电路图) 15分钟 20分钟

授课内容及过程有三种简化方法: 3.动态特性 输入信号快变化时的特性。 当外加电压突然由正向变为反向时,二极 管会短时间导通。 这段时间用t re表示,称为反向恢复时间。 它是由于二极管正向导通时PN结两侧的 多数载流子扩散到对方形成电荷存储引起的。 10分钟 10分钟

电路图符号大全

电路图形大全一、图形

电位器 表示符号:VR,RP,W 可调电阻 表示符号:VR,RP,W 电位器 表示符号:VR,RP,W 三脚消磁电阻表示符号:RT 二脚消磁电阻 表示符号:RT 压敏电阻 表示符号:RZ,VAR 光敏电阻CDS 电容(有极性电容) 表示符号: 电容(有极性电容) 表示符号:C 电容(无极性电容)表示符号:C 四端光电光电耦合器 表示符号:IC,N 六端光电光电耦合器 表示符号:IC,N 场效应管增强型N-MOS 电阻电阻器或固定电阻表 示符号:R 可调电阻 表示符号:VR,RP,W 热敏电阻 表示符号:RT 可调电容 表示符号:C 单向可控硅(晶闸 管) 双向可控硅(晶闸管) 双向可控硅(晶闸管) 晶振石英晶体振荡器 表示符号:X 石英晶体滤波器 表示符号:X 双列集成电路 表示符号:IC或U 运算放大器倒相放大器 AND gate 非门 NAND gate与非门NOR gate 或非门 保险管 表示符号:F 变压器永久磁铁电感

二、电工电路图符号大全 电流表PA 电压表PV 有功电度表PJ 无功电度表PJR 频率表PF 相位表PPA 最大需量表(负荷监控仪) PM 功率因数表PPF 有功功率表PW 无功功率表PR 无功电流表PAR

声信号HA 光信号HS 指示灯HL 红色灯HR 绿色灯HG 黄色灯HY 蓝色灯HB 白色灯HW 连接片XB 插头XP 插座XS 端子板XT 电线,电缆,母线W 直流母线WB 插接式(馈电)母线WIB 电力分支线WP 照明分支线WL 应急照明分支线WE 电力干线WPM 照明干线WLM 应急照明干线WEM 滑触线WT 合闸小母线WCL 控制小母线WC 信号小母线WS 闪光小母线WF 事故音响小母线WFS 预告音响小母线WPS 电压小母线WV 事故照明小母线WELM 避雷器F 熔断器FU 快速熔断器FTF 跌落式熔断器FF 限压保护器件FV 电容器C

门电路逻辑功能及测试实验报告记录

门电路逻辑功能及测试实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

深圳大学实验报告实验课程名称:数字电路实验 实验项目名称:门电路逻辑功能及测试学院:信息工程学院 报告人:许泽鑫学号:201 班级:2班同组人: 指导教师:张志朋老师 实验时间:2016-9-27 实验报告提交时间:2016-10-11

一、实验目的 (1)熟悉门电路逻辑功能,并掌握常用的逻辑电路功能测试方法。 (2)熟悉RXS-1B数字电路实验箱。 二、方法、步骤 1.实验仪器及材料 1)RXS-1B数字电路实验箱 2)万用表 3)器件 74LS00四2输入与非门1片 74LS86四2输入异或门1片 2.预习要求 1)阅读数字电子技术实验指南,懂得数字电子技术实验要求和实验方 法。 2)复习门电路工作原理及相应逻辑表达式。 3)熟悉所用集成电路的外引线排列图,了解各引出脚的功能。 4)学习RXB-1B数字电路实验箱使用方法。 3.说明 用以实现基本逻辑关系的电子电路通称为门电路。常用的门电路在逻辑功能上有非门、与门、或门、与非门、或非门、与或非门、异或门等几种。 非逻辑关系:Y=A 与逻辑关系:Y=A B + 或逻辑关系:Y=A B 与非逻辑关系:Y=A B + 或非逻辑关系:Y=A B + 与或非逻辑关系:Y=A B C D ⊕ 异或逻辑关系:Y=A B

三、实验过程及内容 任务一:异或门逻辑功能测试 集成电路74LS86是一片四2输入异或门电路,逻辑关系式为1Y=1A ⊕1B ,2Y=2A ⊕2B , 3Y=3A ⊕3B ,4Y=4A ⊕4B ,其外引线排列图如图1.3.1所示。它的1、2、4、5、9、10、12、13号引脚为输入端1A 、1B 、2A 、2B 、3A 、3B 、4A 、4B ,3、6、8、11号引脚为输出端1Y 、2Y 、3Y 、4Y ,7号引脚为地,14号引脚为电源+5V 。 (1)将一片四2输入异或门芯片74LS86插入RXB-1B 数字电路实验箱的任意14引脚的IC 空插座中。 (2)按图1.3.2接线测试其逻辑功能。芯片74LS86的输入端1、2、4、5号引脚分别接至数字电路实验箱的任意4个电平开关的插孔,输出端3、6、8分别接至数字电路实验箱的电平显示器的任意3个发光二极管的插孔。14号引脚+5V 接至数字电路实验箱的+5V 电源的“+5V ”插孔,7号引脚接至数字电路实验箱的+5V 电源的“⊥”插孔。 (3)将电平开关按表1.3.1设置,观察输出端A 、B 、Y 所连接的电平显示器的发光二极管的状态,测量输出端Y 的电压值。发光二极管亮表示输出为高电平(H ),发光二极管不亮表示输出为低电平(L )。把实验结果填入表1.3.1中。 图1.3.1 四2输入异或门74LS86外引线排列图 1A 1B 1Y 2A 2B 74LS86 V CC 4B 4A 4Y 3B 4A 3Y 1 2 3 4 5 14 13 12 11

基本逻辑门电路

课题:基本逻辑门电路 学校:莱州市高级职业学校姓名:贾春兰 二○○七年九月

讲授新课一、与逻辑和与门电路 1、与逻辑 实验: 结论:当决定某一事件的所有条 件都满足时,结果才会发生,这种条 件和结果之间的关系称为与逻辑关 系。 屏幕显示实验 电路,教师启 发、引导学生观 察:观察开关S1 和S2在不同工 作状态时,照明 灯HL的亮暗, 从而引导学生 归纳出与逻辑 关系 学生观察电 路,发现规 律:只有当 S1、S2都闭合 时,照明灯才 会亮,若有一 个开关不闭 合,照明灯就 不会亮 集中学生注 意力,活跃学 生思维,激发 学生学习兴 趣,培养学生 观察问题、分 析问题的能 力 教学过程 教学环节简明教学内容教师活动学生活动活动目的 课堂练习(一)与逻辑关系在生活中的应用举例。屏幕显示密 码保险柜的 开启,教师引 导学生思考, 并提出问题 学生观察电 路,回答问题 巩固新知 识,及时反 馈

讲授新课2、与门电路 1)逻辑符号 2)二极管与门电路 V A V B VD1 VD2 V L 0V 0V 3V 3V 0V 3V 0V 3V 导通 优先导通 截止 导通 导通 截止 优先导通 导通 0V 0V 0V 3V 3)真值表 A B L 0 0 0 1 1 0 1 1 1 4)逻辑功能 有0出0,全1出1 5)逻辑表达式 L=A·B或L=AB 教师直接绘 制与门电路 的逻辑符号, 并分析其特 点 屏幕显示二 极管与门电 路,介绍电路 的特点 教师引导学 生分析电路, 总结输出电 位V L和输入 电位V A和V B 的关系。 教师引导学 生绘制与门 电路的真值 表。 教师引导学 生观察真值 表,总结出逻 辑功能,写出 逻辑表达式。 学生观察逻 辑符号 学生观察电 路 学生在教师 的引导下,总 结输出电位 V L和输入电 位V A和V B的 关系。 学生总结规 律 学生总结规 律 增强学生的 直观性 理论联系实 际,激发学 生学习兴趣 培养学生分 析问题的能 力 提高学生归 纳总结能力 有利于学生 掌握规律, 便于应用 教学过程 教学环节简明教学内容教师活动学生活动活动目的

电子线路基础数字电路实验1 门电路逻辑功能及逻辑变换

实验一门电路逻辑功能及逻辑变换 一、实验目的 1、熟悉门电路逻辑功能及测试方法。 2、熟悉门电路的逻辑变换方法。 3、熟悉数字电路实验箱的使用方法。 二、实验仪器 1、示波器1台 2、数字电路实验箱1台 3、器件 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 74LS04 六反相器1片 三、实验原理 集成逻辑门是最基本的集成数字部件,任何复杂的逻辑电路都可以用多个逻辑门通过适当的连接方式组合而成。目前,虽然中、大规模数字集成器件的应用已很普遍,在设计数字电路时,不必从单个逻辑门出发去组合,但为了满足所有数字电路的需要,各种逻辑门电路仍然是不可缺少的。 基本逻辑门有与门、或门和非门。除基本门以外,常用的门电路还有与非门、或非门、异或门等。其中与非门有较强的通用性,其通用性在于任何复杂的逻辑电路都可以用多个与非门组合而成,而且用与非门可以组合成其它各种逻辑门。下面以异或逻辑为例,介绍用与非门组成其它逻辑门的方法和步骤。 (1)利用逻辑代数将异或逻辑表达式变换成与非逻辑表达式。变换过程如下:Y+ = A B B A A A+ = B + + ( ) B ) (B A A+ = AB B AB A =(1-14-1) AB B AB (2)按与非逻辑表达式画出与非门组成的逻辑图。图1-14-1为用与非门实现异或逻辑的逻辑图。

图1-14-1 用与非门实现异或逻辑的逻辑图 三、实验内容及步骤 1、测试门电路逻辑功能 (1)选用双四输入与非门74LS20一只, 按图1-14-2接线,输入端接逻辑电平开关, 输出端接电平显示发光二极管。 (2)将逻辑电平开关按表1-14-1置位, 分别测输出电压及逻辑状态。 图1-14-2 表1-14-1

电路图符号大全

电流表PA 电压表PV 有功电度表PJ 无功电度表PJR 频率表PF 相位表PPA 最大需量表(负荷监控仪) PM 功率因数表PPF 有功功率表PW 无功功率表PR 无功电流表PAR 声信号HA 光信号HS 指示灯HL 红色灯HR 绿色灯HG 黄色灯HY 蓝色灯HB

白色灯HW 连接片XB 插头XP 插座XS 端子板XT 电线,电缆,母线W 直流母线WB 插接式(馈电)母线WIB 电力分支线WP 照明分支线WL 应急照明分支线WE 电力干线WPM 照明干线WLM 应急照明干线WEM 滑触线WT 合闸小母线WCL 控制小母线WC 信号小母线WS 闪光小母线WF 事故音响小母线WFS 预告音响小母线WPS 电压小母线WV 事故照明小母线WELM 避雷器F 熔断器FU 快速熔断器FTF 跌落式熔断器FF 限压保护器件FV 电容器C 电力电容器CE 正转按钮SBF 反转按钮SBR 停止按钮SBS 紧急按钮SBE 试验按钮SBT 复位按钮SR 限位开关SQ 接近开关SQP 手动控制开关SH 时间控制开关SK 液位控制开关SL 湿度控制开关SM 压力控制开关SP

速度控制开关SS 温度控制开关,辅助开关ST 电压表切换开关SV 电流表切换开关SA 整流器U 可控硅整流器UR 控制电路有电源的整流器VC 变频器UF 变流器UC 逆变器UI 电动机M 异步电动机MA 同步电动机MS 直流电动机MD 绕线转子感应电动机MW 鼠笼型电动机MC 电动阀YM 电磁阀YV 防火阀YF 排烟阀YS 电磁锁YL 跳闸线圈YT 合闸线圈YC 气动执行器YPA,YA 电动执行器YE 光电池,热电传感器 B 压力变换器BP 温度变换器BT 速度变换器BV 时间测量传感器BT1,BK 液位测量传感器BL 温度测量传感器BH,BM 发热器件(电加热) FH 照明灯(发光器件) EL 空气调节器EV 电加热器加热元件EE 感应线圈,电抗器L 励磁线圈LF 消弧线圈LA

门电路逻辑功能及测试

实验一 门电路逻辑功能及测试 、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图 2. 掌握数字电路实验箱及示波器的使用方法。 3. 学会检测基本门电路的方法。 、实验仪器及材料 1、 仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门 2片 74LS20 四输入端双与非门 1片 74LS86 二输入端四异或门 1片 三、 预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、 实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集 成块芯片插入实验箱中对应的IC 座,按自己设计的实验接线图接好连线。注意集成块 芯片不能插反。线接好后经实验指导教师检 电实验。实验中改动接线须先断开电源,接 实验。 1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20 —片, 实验 箱中对应的IC 座,按图接线、输入端1、 接到K 1~K 4的逻辑开关输出插口,输出端接 二极管D 1~D 4任意一个。 (2)将逻辑开关按表的状态,分别测输出电压及 逻辑 图 状态 查无误方可通 好线后再通电 插入数字电路 2、4、5、分别 电平显示发光

输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H L H H H L L H :H L L L H L L L L 2.异或门逻辑功能的测试 图 (1)选二输入四异或门电路74LS86按图接线,输入端1、2、4、5接逻辑开关 (K i~K4),输出端A、B、丫接电平显示发光二极管。 (2)将逻辑开关按表的状态,将结果填入表中。 输入输出 1(K1) 2(K2) 4(K3) 5(K4) A B Y 电压(V)L L L L H L L L H H L L H H H L H H H H L H L H 3.逻辑电路的逻辑关系测试 (1)用74LS00按图,接线,将输入输出逻辑关系分别填入表、表中 厂p.刊与非门组成其它逻辑门电路(1))组成与门电路输入 A输入 表 表- B 输出 ^出L ))写出上面两个电路逻辑表达式,寸输出(选做)并画Z出等效逻辑图。 4.利用^门控制… 74LS00按图接线,S接任 T7L ? 用一片 作用。 L L H 电平开关,用示波器观察S对输出 H H H L - 脉冲的控制

门电路的逻辑功能

实验一门电路的逻辑功能 一、实验目的 1.掌握门电路逻辑功能的测试方法; 2.熟悉脉冲示波器和逻辑箱的使用方法; 3.了解TTL器件和CMOS器件的使用特点。 二、实验原理(简要) 测试门电路的逻辑功能有两种方法。一是静态测试法,其特点是给门电路输入端加固定的高(H)、低(L)电平。用示波器、万用表或发光二极管(LED)测出门电路的输出响应。二是动态测试法,其特点是给门电路的输入端加一串脉冲信号,用示波器观测输入波形与输出波形的同步关系。 在测试时,示波器的探头或三用表的表笔必须与被测门电路的引脚直接接触,以免电路其他部分接触不良而产生错误判断。 门电路的逻辑符号对各类不同器件虽是通用的,但由于电路结构不同,使用时应注意各自的特点。 在实验中,正确使用实验仪器和设备是非常重要的,这不仅有助于获得正确的实验结果,而且有利于提高工作效率,还能避免仪器设备不必要的损坏。另外,还应了解安装和调试数字电路的一般知识。 三、器件 1.74LS00四2输入与非门1片 2.74LS02四2输入或非门1片 3.74LS512-3输入、2-2输入与或非门1片 4.74LS86四异或门1片 5.CD4011CMOS四2输入与非门1片 6.CD4001CMOS四2输入或非门1片 7.CD4070CMOS四异或门1片 8.晶体二极管2只 9.发光二极管(LED)3只 10.阻容元件若干(数百?~数百k?) 四、实验内容与主要步骤 1.用静态测试法测试门电路的逻辑功能。

图一 表一 2.用动态测试法测试门电路的逻辑功能。(需自行补绘原理图) a图b图c图d图e图f图实验结果(波形图)(需绘制输入、输出信号,信号边沿纵向对齐) a波形图

门电路逻辑功能及测试(完成版)

实验一门电路逻辑功能及测试 计算机一班组员:2014217009赵仁杰 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片

三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。实验中改动接线须先断开电源,接好线后再通电实验。每个芯片的电源和GND引脚,分别和实验台的+5V 和“地(GND)”连接。芯片不给它供电,芯片是不工作的。用实验台的逻辑开关作为被测器件的输入。拨动开关,则改变器件的输入电平。开关向上,输入为1,开关向下,输入为0。 将被测器件的输出引脚与实验台上的电平指示灯连接。指示灯亮表示输出电平为1,指示灯灭表示输出电平为0。 1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显示发光二极管D1~D4中任意一个。注意:芯片74LS20的14号引脚要接试验箱下方的+5V电源,7号引脚要接试验箱下方的地(GND)。用万用表测电压时,万用表要调到直流20V档位,因为芯片接的电源是直流+5V。 表1.1

第1章 数字电路和集成逻辑门电路习题解答

思考题与习题 1-1 填空题 1)三极管截止的条件是U BE ≤0V。三极管饱和导通的条件是I B≥ I BS。三极管饱和导通的I BS是I BS≥(V CC-U CES)/βRc。 2)门电路输出为高电平时的负载为拉电流负载,输出为低 电平时的负载为灌电流负载。 3)晶体三极管作为电子开关时,其工作状态必须为饱和状态或截止 状态。 4) 74LSTTL电路的电源电压值和输出电压的高、低电平值依次约为 5V、2.7V、 0.5V 。74TTL电路的电源电压值和输出电压的高、低电平值依次约为 5V、2.4V、 0.4V 。 5)OC门称为集电极开路门门,多个OC门输出端并联到一起可实现线与功能。 6) CMOS 门电路的输入电流始终为零。 7) CMOS 门电路的闲置输入端不能悬空,对于与门应当接到高电平,对于 或门应当接到低电平。 1-2 选择题 1)以下电路中常用于总线应用的有 abc 。 A.TSL门 B.OC门 C.漏极开路门 D.CMOS与非门 2)TTL与非门带同类门的个数为N,其低电平输入电流为1.5mA,高电平输入电流为10uA,最大灌电流为15mA,最大拉电流为400uA,选择正确答案N最大为 B 。 A.N=5 B.N=10 C.N=20 D.N=40 3)CMOS数字集成电路与TTL数字集成电路相比突出的优点是 ACD 。 A.微功耗 B.高速度 C.高抗干扰能力 D.电源范围宽 4)三极管作为开关使用时,要提高开关速度,可 D 。 A.降低饱和深度 B.增加饱和深度 C.采用有源泄放回路 D.采用抗饱和三极管 5)对于TTL与非门闲置输入端的处理,可以 ABD 。 A.接电源 B.通过电阻3kΩ接电源 C.接地 D.与有用输入端并联 6)以下电路中可以实现“线与”功能的有 CD 。 A.与非门 B.三态输出门

电气电路图符号大全

=============================================== ============================================== 电路图符号大全: AAT 电源自动投入装置 AC 交流电 DC 直流电 FU 熔断器 G 发电机 M 电动机 HG 绿灯 HR 红灯 HW 白灯 HP 光字牌 K 继电器 KA(NZ) 电流继电器(负序零序) KD 差动继电器 KF 闪光继电器 KH 热继电器 KM 中间继电器 KOF 出口中间继电器 KS 信号继电器 KT 时间继电器 KV(NZ) 电压继电器(负序零序) KP 极化继电器 KR 干簧继电器 KI 阻抗继电器 KW(NZ) 功率方向继电器(负序零序) KM 接触器 KA 瞬时继电器;瞬时有或无继电器;交流继电器 KV电压继电器 L 线路 QF 断路器 QS 隔离开关 T 变压器 TA 电流互感器 TV 电压互感器 W 直流母线 YC 合闸线圈 YT 跳闸线圈 PQS 有功无功视在功率 EUI 电动势电压电流 SE 实验按钮 SR 复归按钮 f 频率

Q——电路的开关器件 FU——熔断器 FR——热继电器 KM——接触器 KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KT——延时有或无继电器 SB——按钮开关 Q——电路的开关器件 FU——熔断器 KM——接触器 KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KT——延时有或无继电器 SB——按钮开关 SA 转换开关 电流表 PA 电压表 PV 有功电度表 PJ 无功电度表 PJR 频率表 PF 相位表 PPA 最大需量表(负荷监控仪) PM 功率因数表 PPF 有功功率表 PW 无功功率表 PR 无功电流表 PAR 声信号 HA 光信号 HS 指示灯 HL 红色灯 HR 绿色灯 HG 黄色灯 HY 蓝色灯 HB 白色灯 HW 连接片 XB 插头 XP 插座 XS 端子板 XT 电线电缆母线 W 直流母线 WB 插接式(馈电)母线 WIB 电力分支线 WP 照明分支线 WL 应急照明分支线 WE 电力干线 WPM 照明干线 WLM 应急照明干线 WEM 滑触线 WT 合闸小母线 WCL

实验一 逻辑门电路的逻辑功能及测试

实验一逻辑门电路的逻辑功能及测试 一.实验目的 1.掌握了解TTL系列、CMOS系列外形及逻辑功能。 2.熟悉各种门电路参数的测试方法。 3. 熟悉集成电路的引脚排列,如何在实验箱上接线,接线时应注意什么。 二、实验仪器及材料 a)TDS-4数电实验箱、双踪示波器、数字万用表。 b)1)CMOS器件: CC4011 二输入端四与非门 1 片 CC4071 二输入端四或门 1片2)TTL器件: 74LS86 二输入端四异或门 1 片 74LS02 二输入端四或非门 1 片 74LS00 二输入端四与非门 1片 74ls125 三态门 1片 74ls04 反向器材 1片 三.预习要求和思考题: 1.预习要求: 1)复习门电路工作原理及相应逻辑表达式。 2)常用TTL门电路和CMOS门电路的功能、特点。 3)三态门的功能特点。 4)熟悉所用集成电路的引线位置及各引线用途。 5)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 1)TTL门电路和CMOS门电路有什么区别? 2)用与非门实现其他逻辑功能的方法步骤是什么? 四.实验原理 1.本实验所用到的集成电路的引脚功能图见附录。 2.门电路是最基本的逻辑元件,它能实现最基本的逻辑功能,即其输入与输出之间存在一定的逻辑关系。 TTL集成门电路的工作电压为“5V±10%”。本实验中使用的TTL集成门电路是双列直插型的集成电路,其管脚识别方法:将TTL集成门电路正面(印有集成门电路型号标记)正对自己,有缺口或有圆点的一端置向左方,左下方第一管脚即为管脚“1”,按逆时针方向数,依次为1、2、3、4············。如图1—1所示。具体的各个管脚的功能可通过查找相关手册得知,本书实验所使用的器件均已提供其功能。 图1—1

常用电路图符号最全汇总

常用电路图符号最全汇总 电路图,是一种以物理电学标准符号来绘制各电子元器件组成和关系的电路原理布局图,它被广泛应用于人类工程规划和电路研究。通过分析电路图,可以得知电子元器件之间的工作原理,并为性能、安装线路提供规划方案。在设计的过程,可以在纸上或电脑上进行绘制,等确定无误之后,在付诸实际。 电路图符号大全 电路图符号是绘制电路图的基础,只有了解对应的电路图符号,才能轻松上手绘制。电路图符号数量众多,大致可以分为四个类别:传输路径、集成电路组件、限定符号、开关和继电器符号;齐全的电路图符号便于用户随时选用,帮助用户更高效率地完成任务。 基本电路符号

汇聚基本的电路图符号,例如:电池、接地线、二极管等,可以满足基础电路的绘制需求。 传输路径符号 基本的电路符号,用于连接各元器件,起到“桥梁互通”的作用。 集成电路组件符号

以寄存器、转换器、计数器为代表的基础集成电路元器件,在电路图中较为常见。 限定符号 用于表示电路的属性,如脉冲、材料、温度等。 开关和继电器符号 是电路图中的控制元件,能够调节或改变电路的工作性能。

字符电路图符号大全 AAT 电源自动投入装置AC 交流电DC 直流电EUI 电动势电压电流f 频率FR——热继电器FU 熔断器FU——熔断器FU——熔断器G 发电机HG 绿灯HP 光字牌HR 红灯HW 白灯K 继电器KA 瞬时继电器;瞬时有或无继电器;交流继电器KA(NZ)电流继电器(负序零序)KA——1、瞬时接触继电器 2、瞬时有或无继电器 3、交流继电器KD 差动继电器KF 闪光继电器KH 热继电器KI 阻抗继电器KM 接触器KM 中间继电器KM——接触器KM——接触器KOF 出口中间继电器KP 极化继电器KR 干簧继电器KS 信号继电器KT 时间继电器KT——延时有或无继电器KT——延时有或无继电器KV(NZ)电压继电器(负序零序)KV电压继电器KW(NZ)功率方向继电器(负序零序)L 线路M 电动机PQS 有功无功视在功率QF 断路器QS 隔离开关Q— —电路的开关器件Q——电路的开关器件SA 转换开关SB——按钮开

数字门电路结构与原理

数字门电路结构与原理 一·引言 如果您已阅读了博闻网有关布尔逻辑方面的文章,您就会知道数字设备取决于布尔。在布尔逻辑的应用一文中,我们了解了七种基本的门。这些门是所有数字设备的基本组成部分。。如果回顾一下计算机技术的发展历史,从最初的继电器制造的电子门到现在包含多达2000个晶体管的芯片!实现这些门的技术已发生了根本性变化。 CMOS逻辑门电路是在TTL电路问世之后,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地 位的逻辑器件。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件,以及PLD器件都采用CMOS艺制造,且费用较低。 早期生产的CMOS门电路为4000系列,随后发展为4000B系列。当前与TTL兼容的CMO 器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO 逻辑门电路。 MOS管结构图 二.正文 (一)·MOS管主要参数: 1.开启电压VT ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压; ·标准的N沟道MOS管,VT约为3~6V; ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。 2. 直流输入电阻RGS ·即在栅源极之间加的电压与栅极电流之比 ·这一特性有时以流过栅极的栅流表示 ·MOS管的RGS可以很容易地超过1010Ω。 3. 漏源击穿电压BVDS

·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS ·ID剧增的原因有下列两个方面: (1)漏极附近耗尽层的雪崩击穿 (2)漏源极间的穿通击穿 ·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后 ,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID 4. 栅源击穿电压BVGS ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。 5. 低频跨导gm ·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导 ·gm反映了栅源电压对漏极电流的控制能力 ·是表征MOS管放大能力的一个重要参数 ·一般在十分之几至几mA/V的范围内 6. 导通电阻RON ·导通电阻RON说明了VDS对ID的影响,是漏极特性某一点切线的斜率的倒数 ·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间·由于在数字电路中,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似 ·对一般的MOS管而言,RON的数值在几百欧以内 7. 极间电容 ·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS ·CGS和CGD约为1~3pF ·CDS约在0.1~1pF之间 8. 低频噪声系数NF ·噪声是由管子内部载流子运动的不规则性所引起的 ·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化 ·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB) ·这个数值越小,代表管子所产生的噪声越小 ·低频噪声系数是在低频范围内测出的噪声系数 ·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小 (二)、CMOS反相器 由教科书模拟部分已知,MOSFET有P沟道和N沟道两种,每种中又有耗尽型和增强型两类。由N沟道和P沟道两种MOSFET组成的电路称为互补MOS或CMOS电路。 下图表示CMOS反相器电路,由两只增强型MOSFET组成,其中一个为N沟道结构,另一个为P沟道结构。为了电路能正常工作,要求电源电压VDD大于两个管子的开启电压的绝对值之和,即 VDD>(VTN+|VTP|) 。

相关文档
相关文档 最新文档