文档库 最新最全的文档下载
当前位置:文档库 › HA5832E-高精度的非隔离降压型LED 控制

HA5832E-高精度的非隔离降压型LED 控制

HA5832E-高精度的非隔离降压型LED 控制
HA5832E-高精度的非隔离降压型LED 控制

高精度的非隔离降压型LED控制器--HA5832E

概述

HA5832E 是一款高精度的非隔离降压型 LED 控制器,防闪烁,适用于 85V~265V 全电压范围的小功率非隔离降压型 LED 照明应用

HA5832E 内置了高精度的采样、补偿电路,使得电路能够达到±5%以内的恒流精度,并且能够实现输出电流对电感与输出电压的自适应,从而取得优异的线型调整率和负载调整率

HA5832E 内部集成了 500V 功率 MOSFET,无需次级反馈电路,也无需补偿电路,加之精准稳定的自适应技术,使得系统外围结构十分简单,可在外围器件数量少,参数范围宽松的条件下实现高精度恒流控制,极大地节约了系统成本和体积,并且能够确保在批量生产时LED 灯具参数的一致性

HA5832E 具有丰富的保护功能:输出开短路保护、采样电阻开短路保护、欠压保护、输出过压保护、过温自适应调节等

HA5832E 采用 SOP-8 封装

特性

· 内部集成 500V 功率管

· ±5%以内的系统恒流精度

· 芯片超低工作电流

· 无需辅助供电电路

· 电感电流临界连续模式

· 宽输入电压

· 输出短路保护

· 采样电阻开短路保护

· 输出过压保护

· 欠压保护

· 过温自适应调节功能

· 简洁的系统拓补,外围器件极少

功能说明

HA5832E 是一款专用于 LED 照明的恒流驱动芯片,芯片内部集成 500V 高压 MOSFET,工作在 CRM 模式,适合全电压范围工作,具有良好的线性调整率、负载调整率以及优异的恒流特性,只需很少的外围元器件就能实现,低成本高效率的 LED 恒流控制器

启动

HA5832E 启动电流很低,当系统上电后,启动电阻对 VDD电容进行充电,当 VDD达到开启阈值时,电路即开始工作。HA5832E 正常工作时,内部电路的工作电流可以低至 135μ A 以下,并且内部具有独特的供电机制,因此无需辅助绕组供电。

阻容降压原理图及电路图

阻容降压原理及电路 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁. 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏 V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。

阻容降压原理和计算公式修订稿

阻容降压原理和计算公 式 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

阻容降压原理和计算公式 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=*V/Zc=*220*2*Pi*f*C ?=*220*2**50*C=30000C ?=30000*==30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=*V/Zc=*220*2*Pi*f*C ?=*220*2**50*C=60000C ?=60000*==60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。

电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz 的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理

阻容降压原理及计算公式

阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。 采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(A V)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位(F)法拉;V为电源电压单位伏V;Zc=1/(2*Pi*f*C)为阻抗,阻值单位欧姆。 如果采用全波整流可得到双倍的电流(平均值)为: I(A V)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W 的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上

5V阻容串联降压电源电路

阻容串联降压电路 5V 输出电路解析 20131119 电路用于有双向可控硅系统的单片机控制电路。 半波阻容降压电路。经过电容降压的电源(市电,正弦波)有半个波经过D2被消耗掉, 另一半波,经过D1流过负载被使用,同时,D2反向击穿起稳定作用。 在有可控硅的系统中,应优选负电源。避免可控硅使用在第四象限。 稳压二极管D1过热损坏与其消耗的功率有关。在稳压二极管没有损坏之前,其端电压就会在5.6V左右,施加多少电压的说法不正确,关键是看你给它的电流是多少,不能超过其本身可承受的功率值(5.6V*电流值)。 稳压管之所以可以稳压就是要工作在反向击穿状态下,只要流过它的反向电流和 稳压电压的乘积不超过所允许的功率就不会造成永久性损坏,这种击穿是可逆的。至于热击穿的说法不切合稳压管的实际,只是针对三极管的说法。 UBN的交流电压波形,电容降压整流后味精稳压的直流电压一般会高于30V, 并且会随负 载电流的变化发生很大波动。 C1为275VAC交流耐压电容(X2型)。

概述: 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用阻容降压式电源。阻容降压包括电容降压和电阻降压两种。电容降压的原理用复函数来分析:电容的阻抗Xc=1/j ωC,电容上的压降IXc,此处I为复函数电流。也可近似表示为IoXc,此处Io为负载电流。 电容降压整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,故不适合大电流供电的应用场合。 1、单负电源电容降压半波整流电路 该电路常用于电流小,空间有限,电源单一,有可控硅控制的电路中。可避免可控硅 使用在第四象限。如无可控硅控制优先选用全波整流。 1.1原理图 1.3电路原理分析 上面图1是基本的半波阻容降压电路。经过电容的电流和电容阻抗的乘积就是电容的压降。经过电容降压的电源,有半个波经过ZD1被消耗掉。另一半波, 经D1流过负载被使用,ZD1稳定负载的电压。 1.5该类电路的应用场合说明 该电路常用于电流小,空间有限,成本要求高的系统中。特别是用可控硅控制的线路,可避免可控硅使用在第四象限,优势特别明显。

阻容降压原理和计算公式及LED照明应用原理基础

阻容降压原理和计算公式及LED照明应用原理基础 作者:113007060提交日期:2010-5-2 17:52:00 | 分类:照明技术应用 | 访问量:234 阻容降压原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏 V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理 电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号

频率下产生的容抗来限制最大工作电流。例如,在50Hz的工频条件下,一个1uF 的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。 将交流式电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1. 电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流 Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁. 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

普遍使用的非隔离型降压式电源设计及分析

普遍使用的非隔离型降压式电源设计及分析 非隔离降压型是现在普遍使用的电源结构,其几乎占了日光灯电源百分之九十以上。很多人都以为不隔离电源只有降压型一种,一说不隔离,就想到降压型,就想到说对灯不安全-指电源损坏后。其实降压型只是一种,还有两种基本结构,即升压,和升降压,即BOOST AND BUCK-BOOST,后两种电源即使损坏。不会影响到LED,有这种好处。 ?降压式电源也有其好处,主要第一点,适合用于220,但不适用于110,因为110V本来电压就低,一降就更低了,那样输出的电流大,电压低,效率做不太高。 ?降压式220V交流,整流滤波后约三百伏,经过降压电路,一般将电压降到直流150V左右,这样即可实现高压小电流输出,效率可以做高。一般用MOS做开关管,做这种规格的电源,我的经验是,可以做到百分之九十那样差不多,再往上也困难。原因很简单,芯片一般自损会有零点五W到一W,而日光灯管电源不过就是十W左右。所以不可能再往上走。现在电源效率这个东西很虚,很多人都是吹,实际根本达不到。常见有些人说什幺3W 的电源效率做到百分之八十五了,而且还是隔离型的。 ?告诉大家,即便是跳频模式的,空载功耗最小,也要0。3W,还什幺输出3W低压,能到百分之八十五,其实有百分之七十算很好了,反正现在很多人吹牛不打草稿,可以忽悠住外行,不过现在做LED的懂电源的也不多。?我说过,要效率高,首先就要做非隔离的,然后输出规格还要高压小电流,可以省去功率元件的导通损耗,所以象这种LED电源的主要损耗,一就是芯片自有损耗,这个损耗一般有零点几W到一W的样子,还有一个就是开关损耗了,用MOS做开关管可以显着减小这个损耗,用三极管开关损耗

SM7075-18非隔离式小家电电源芯片7V0.1A_18V0.35A_Buck方案

SM7075-18 非隔离Buck (7V/0.1A;18V/0.35A)方案简介_V1.0 芯片概述 SM7075-18是采用电流模式PWM控制方式的功率开关芯片,集成高压启动电路和高压功率管,为低成本开关电源系统提供高性价比的解决方案。 芯片应用于BUCK系统方案,支持18V输出电压,很方便的应用于小家电产品领域。并提供了过温、过流、过压、欠压等完善的保护功能,保证了系统的可靠性。 SM7075-18芯片应用领域:电磁炉、电饭煲等小家电产品电源。 系统规格 输入电压 85Vac~264Vac 输出规格 (7V/0.1A;18V/0.35A) 恒压精度 7V: ±1.42%;18V: ±2.73% 方案优势 ◆系统元器件少,成本低,调试简单; ◆系统空载功耗低、转换效率高; 系统BOM NO. 元件类型 型号描述 位号 1 保险丝 FUS-RST-1A-250V F1 2 线绕电阻 RES-22R-5%-2W R1 3 插件二极管 DIO-REC-DO41-1.00A-1KV-IN4007 D1 4 插件二极管 DIO-REC-DO41-1.00A-1KV-IN4007 D2 5 插件二极管 DIO-REC-DO41-1.00A-1KV-IN4007 D3 6 插件二极管 DIO-REC-DO41-1.00A-1KV-IN400 7 D4 7 插件二极管 DIO-FAS-DO41-1.00A-600V-BYV26C D5 8 插件二极管 DIO-FAS-DO41-1.00A-1KV-UF4007 D6 9 插件二极管 DIO-FAS-DO41-1.00A-1KV-FR107 D7 10 电解电容 CAP-ELE-4.7u-400V-Ф8*12 C1 11 电解电容 CAP-ELE-4.7u-50V-Ф5*11 C2 12 电解电容 CAP-ELE-100u-16V-Ф6*12.5 C3 13 电解电容 CAP-ELE-220u-25V-Ф6.5*12 C4 14 变压器 TR-EE10卧式/1.6mH(140T:65T) T1 15 芯片 IC-SM7075-18-TO252 U1 系统电路图 图1 系统应用原理图 测试数据(输入电压220Vac条件下) 纹波测试 7V:96mV;18V:124mV 空载功耗 30mW 转换效率 75.5% 启动时间 194mS 实物图及PCB图 图2 系统方案板正面图 图3 系统方案板背面图 图4 PCB bottomlayer - 1 -

隔离非隔离三种常用LED驱动电源详解

三种常用LED驱动电源详解 时间:2014-5-30 LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。 1、开关恒流源 采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。开关电源技术成熟,性能稳定,是目前LED照明的主流电源。 图1:开关恒流隔离式日光灯管电源

图2:开关恒流隔离式电源原理图 图3:开关恒流非隔离式球泡灯电源 图4:开关恒流非隔离式电源原理图 2、线性IC电源 采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。

图5:线性IC电源 图6:线性IC电源原理图 3、阻容降压电源 采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。 图7:阻容降压电源

阻容降压的几种电路(优.选)

电容降压原理 最近见到几张用电容降压做电源的电路图,随即对这种结构简单,成本低廉,占用空间小的电路产生了兴趣。上网查了查资料,发现这算是一个比较古老的技术,但是如此运用电容,确实是很巧妙。网上关于这方面的交流也不少,但是大多是转载的,主要有两个版本,出处已经无从考证,但是很少有较为严谨的计算。笔者查阅了一些资料,在此对其原理和参数的计算作一些总结, 基本原理: 电容降压主要是用在直流稳压电源电路里。直流稳压电源电路的大致结构是: 市电——变压(降压)——整流——滤波——稳压——直流输出 第一个环节,也就是变压,主要是降压,一般使用变压器来完成。但是变压器体积较大,成本也较高,如果电路简单,例如声光控制开关,那么加一个变压器就显得大材小用。这个时候用一个电容,就可以解决降压的问题,简化电路,节约成本。基本电路如图1: 图1半波整流 市电经过C1降压后到D2,D2完成半波整流,C2对整流后的脉动直流滤波,D3稳压,输出稳定的直流电压给负载。R1是电源关闭后C1的电荷泄放电阻。D1是为了在市电的负半周给C1提供充放电通路。因为要保证C1在整个交流电周期内都是工作的。

如果将C1后面的电路都看作负载的话,那么相当于C1和一个电阻串联在市电通路里,电容和电阻在交流下都是有阻抗的,串联分压,自然负载上的电压就小了。这样理解也对。但是更准确的理解应该是:C1起到了限流的作用,它决定了电路中的最大电流,当负载一定的情况下,C1也就决定了负载上可以得到的电压,最终起到了降压的作用。 例如:图1中如果负载短路,220V 交流电全部加在C1上,电路中的电流等于C1的充放电电流。 /*69 1C U I U Z U jwC mA jwC ====。 这个电流也就是电路中的最大电流。这里取得都是有效值。 当加上负载后,如果输出直流电压比较低(稳压管决定),则可以近似认为全部电压都加在电容上。由于是半波整流,所以电容C1后面的电路只能得到C1半个周期的充放电电流,也就是有效值的一半,大约34.5mA 左右。由于负载上有电压,所以实际电流要小一点,大约30mA 。当负载需要的电流不超过30mA 时,电路就可以正常工作,电容也就起到了类似变压器的作用——降压。 对于桥式整流,C1后面的电路能得到C1整个周期的充放电电流,大约60mA 。 图2 全波整流

阻容降压原理设计详解

阻容降压原理设计详解 一、概述 普通的线性直流稳压电源电路效率比较低,电源的变压器体积大,重量重,成本较高。 开关电源电路结构较复杂,成本高,电源纹波大,RFI和EMI干扰是难以解决的。 下文介绍的是一种新颖的电容降压型直流稳压电源电路。 这种电路无电源变压器,结构非常简单,具体有:体积小、重量轻、成本低廉、动态响应快、稳定可靠、高效(可达90%以上)等特点。 二、电容降压原理 当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。 即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。 电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。 三、原理方框图 电路由降压电容,限流,整流滤波和稳压分流等电路组成。 1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。 2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。 3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。 4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。 四、设计势实例 1.桥式全波整流稳压电路:

非隔离小功率电源芯片方案选型

非隔离小功率电源芯片方案选型 非隔离小功率电源芯片LED供电照明驱动系列产品,系统采用Buck、Boost或Buck-Boost拓扑结构,仅需电感而无需变压器,整 体BOM成本低。内部集成钲铭科电子高精度的恒流技术,高压自启 动及供电技术和高功率因数控制技术等专利技术。可通过EFT、雷击、 浪涌等可靠性测试,可通过3C、UL、CE等认证。 非隔离小功率电源芯片主要应用于球泡灯、射灯、灯丝灯、吸顶灯、筒灯、T5/T8日光灯等LED照明驱动领域。 非隔离小功率电源芯片方案选型如下: IC name Topology MOSFET Ptype/Lout PF Eff Package Application SM7305PB BUCK集成550V5-9w/120mA>0.5>88%SOP8,SOT2 3-6 球泡,筒灯 SM7315P BUCK集成730V5-9w/120mA>0.5>88%SOP8,SOT2 3-6 球泡、灯芯合一、灯 丝灯 SM7317P BUCK集成730V9-18w/120mA>0.5>90%SOP8球泡、灯芯合一、灯丝灯 SM7307BUCK集成550V5-18w/150mA>0.5>88%DIP8/SOP8T5、T8、球泡灯SM7320BUCK集成550V8-24w/300mA>0.5>90%DIP8/SOP8T5、T8、球泡灯 SM7301C BUCK/BUCK- BOOST 外置 5-12w/100-30 0mA >0.5>80%SOP8 可控硅调光球泡、T 管

SM736X BUCK集成500V3-9w/60mA>0.5>92%TO-92蜡烛灯、球泡灯

实用可靠地阻容降压电路分析

以前在论坛上看到阻容降压电路,很多人都说不稳定,不可靠,比较危险,但是仔细想想声控开关、触摸开关、定时插座等等那么小的东西,如果不采用阻容降压的方式,怎么取电呢?那么多大量实际应用,足以说明阻容降压电路可以设计的稳定可靠。当然如果是电力行业、工业领域等要求比较严格的场合,那就另当别论了。 先转载一下阻容降压电路的原理吧: 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA f为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆. 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电容降压式电源将交流式电转换为低压直流 电容降压原理

几个实用电路阻容降压原理

几个实用电路阻容降压原理 将交流市电转换为低压直流的常规方法是采用变压器 降压后再整流滤波,当受体积和成本等因素的限制时,最简单 实用的方法就是采用电容降压式电源 采用电容降压时应注意以下几点 根据负载的电流大小和交流电的工作频率选取适当的电容 而不是依据负载的电压和功率 .而且限流电容必须采用无极性电容,绝对不能采用电解电容 电容的耐压须在400V 以上.最理想的电容为铁壳油浸电容 电容降压不能用于大功率条件,因为不安全. 4 电容降压不适合动态负载条件 5 同样,电容降压不适合容性和感性负载 当需要直流工作时,尽量采用半波整流.不建议采用桥式整流. 而且要满足恒定负载的条件

电路 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳 稳压管。所能提供的电流大小正比于限流电容容量。采用半 波整流时,每微法电容可得到电流(平均值)为:国际标 准单位) I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 如果采用全波整流可得到双倍的电流(平均值)为: I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安

全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V 交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V ),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 电路 最简单的电容降压直流供电电路及其等效电路如图 1 ,C1 为降压电容,一般为0.33~3.3uF 。假设C1=2uF ,其容抗 XCL=1/(2PI*fC1)=1592 。由于整流管的导通电阻只有几欧姆,稳压管VS 的动态电阻为10 欧姆左右,限流电阻R1 及负载电阻RL 一般为100~200 ,而滤波电容一般为

阻容降压电源电路稳压二极管可靠性分析

阻容降压电源电路 稳压二极管可靠性分析 编制:曾招前 审核: 赖建君 审批: 刘晓峰 品质管理部产品评价与测试 二0一二年十月三十一日 发:品质管理部 送:风扇公司品质部油汀吊扇公司品质部研发中心 1、目的:品质管理部产品评价与测试在日常电路板初品评价中,稳压二极管被击穿(浪涌测试)不良占比17%。 为此,产品评价与测试对稳压二级管在电路中的位置和电压、电流波形进行分析和研究,来发现电路存在的缺陷和质量隐患,以达到改善和提升电路板质量的目的。 风扇电路板电源电路大部分采用阻容降压,如图1所示。阻容降压电路在待机状态电路所有电流流过稳压二极管;降压电容在上电、断电和电压波动瞬间会产生尖峰脉冲电流冲击稳压二极管;由于电路与市电隔离性差和电容感性特性,电路对电网中的谐波、脉冲、浪涌等干扰信号抑制能力差甚至起放大的作用,会对电源电路本身、后级电路产生冲击和伤害,尤其是稳压二级管。从以上分析可以看出,整个电源电路中对稳压二极管质量要求较高,产生故障概率也较高。 图1 阻容降压电路图 2、稳压二极管电压、电流测试:以典型风扇FS40-6DR电路板为样板,分别在正常工作、电磁炉干扰、浪涌干 扰三种工况下对稳压二极管电压、电流波形进行测试。

2.1稳压二极管正常工作电压、电流波形: 图2 电压波形图3 电流波形 小结:稳压管接在交流电源端(如图1所示),从图2波形可以看出,稳压管正向反 向轮流导通。电流波形(图3)毛刺较多,意味着电流突变较大。 2.2稳压二极管电磁炉干扰下工作电压、电流波形: 图4电压波形图5 电流波形 小结:电路板在电磁炉干扰下,稳压二极管电压、电流波形受较大,峰值功率约达1.3W,超出其额定功率1W。 2.3稳压二极管浪涌干扰下工作电流波形: 图6 电流波形 小结:电路板在浪涌(1.2/50μs-8/20μs)1000V干扰下,稳压二极管电流瞬间峰值约达到5.88A左右, 大大超出最大允许浪涌电流:0.81A。 2.4结论:电路板在正常工作状态下,稳压二极管参数在正常范围内,但在正反向轮流导通工作状态 下工作,电流突变较大,稳压二极管工作强度较高。在受到电磁炉干扰和浪涌干扰后波形变形严 重,且瞬间峰值电压和功率超出额定值,稳压管存在被击穿的质量风险。 3、改善建议:将稳压二极管移到整流二极管后面,并增加一个整流二极管旁路正半周电流,使得稳 压二极管在直流电的环境下工作,并与市电之间增加了一道屏障,在有干扰信号时可消减峰值脉 冲电压,降低稳压二极管被击穿的风险。改善后电路如图7所示。 图7改善后电路

电容降压电路原理详解

电容降压电路原理详解和案例 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为:

Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C 的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电 电容降压电源原理和计算公式 这一类的电路通常用于低成本取得非隔离的小电流电源。它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。所能提供的电流大小正比于限流电容容量。采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位) I(A V)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C =30000*0.000001=0.03A=30mA 如果采用全波整流可得到双倍的电流(平均值)为: I(A V)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C =60000*0.000001=0.06A=60mA 一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。 使用这种电路时,需要注意以下事项: 1、未和220V交流高压隔离,请注意安全,严防触电! 2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。 3、注意齐纳管功耗,严禁齐纳管断开运行。 采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。 图一为一个实际的采用电容降压的LED驱动电路﹕请注意﹐大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管﹐建议连接上﹐因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间( 如雷电﹑大用电设备起动等)有效地将突变电流泄放﹐从而保护二级关和其它晶体管﹐它们的响应时间一般在微毫秒级。

开关电源非隔离高低压混合布板方式

开关电源非隔离高低压混合布板方式变频器的研发,这是一款低成本紧凑式小功率变频器,因为低成本而且紧凑式,所以单片机没有采用光耦隔离而 是直接驱动,此外因为低成本紧凑要求,采用双面板,并 且按键,指示灯,数码管都跟高压区交织混合在一起。 因为以前没有做变频器的经验,所以采购了市场上的同类产品作为参考,恢复了电路图并且基于对方的控制时序,样机很快就出来了,测试也没有发现什么问题,感觉难度 不大,比较顺利,于是我也就没怎么管,让同事直接负责。 去年年底亿曼那边反馈,长期测试下发现按键偶尔会乱跳,比如按“+”键,结果“-”键也会起作用,而电路设计中不应该出现这个问题,考虑到当时我为了简化设计,去掉了 一些电容,于是想着这个问题可能是因为去掉的电容引起的,所以开年之后调整了电路设计,在按键这儿加了滤波 电容,让按键的硬件设计足够稳定,之前是采用软件滤波 来实现。此外局部改进了单片机的供电设计,原来的辅助 电源310VDC通过开关电源(VIPERA12A)转到15VDC,15VDC再通过开关电源(MC34063)转到3.3VDC,我把后级15VDC转3.3VDC改成了更低成本更可靠的AMS1117,提高可靠性。因为开关电源存在上电冲击的可能,改成模 拟电源可靠性可以提高。此外为了解决高温带来的小电解 电容失效,改用瓷片电容替换小电解电容。

本来期望这个版本会比较好的,板子回来焊接调试好交给亿曼测试,很快亿曼反馈按键问题还是存在,这个问题不仅没解决,反而更频繁了,这一下引起我的重视,因为马上要下批量订单了,这些看起来无关痛痒的乌云,往往会酿成大祸。但是当时的第一反应应该是软件设计存在bug,让负责软件的同事好好分析一下。 因为有多个变频器项目在运行,其中有一个箱式的变频器,面板上有数码管和按键,它跟功率板分离的,两者通过较长的排线连接,一般的设计方式是在面板上放一颗stm8这类的单片机,两者通讯连接,而我们考虑到低成本,也为了简化设计,不想在面板上加单片机,但这样因为较长的引线,会出现较强的干扰进入功率板的单片机中。于是专门跟硬件设计人员讲解这类强干扰PCB的设计方式,尤其强调如何抗干扰。 这个时候,负责软件的同事找不出按键问题,于是把问题矛头引向了硬件,恰好硬件人员听了我的抗干扰设计原理,想到原来的板子按键中有两颗滤波电容的位置就放在高压区内,于是怀疑是否是这个电容引起的,参考我给的方案,把这两颗电容移入单片机所在的地平面内,靠近单片机,这个按键乱的问题就消失了,之后长期测试都没有发现,于是把这个结果告诉我,我过来看了一下,确实是PCB布线不规范,按键线被高频高压干扰了导致的问题。

阻容分压原理详解

二、电容降压原理 当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。 即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。 电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。 三、原理方框图 电路由降压电容,限流,整流滤波和稳压分流等电路组成。 1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。 2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。 3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。 4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。 四、设计势实例 1.桥式全波整流稳压电路:

规格要求:输出DC电压12V,DC电流300mA;输入电源220V AC/50HZ 市电。 1)降压电容C1的选择: a. C1容值的选择: 电容值取决于负载电流,负载电流I确定后,可得: C1≥1/2лfU 式中交流电源U值计算时取负10%,即:I=300mA,U=220V*(-10%) =198V,f=50HZ, C1≥0.3(2*3.14156*50*198)=4.82uF) 电容值只可取大,不可取小,本例电容C1取值5uF。 b. 耐压值的选择: 要考虑电源正10%的情况,如本例用市电,C1要选择250V AC的金属膜电容。 c. 耐瞬间冲击电流的选择: 金属膜电容的内阻是很低的,允许电容在吞吐能量时,有大的电流流过,这个电流的大小取决于电容值和它的du/dt值,此值由电容的结构,金属膜的类型,引出线的方式决定的。 du/dt值与电容的耐压值有关,耐压越高,du/dt值越大,不同厂家产品du/dt值也有很大的差别,如耐压为250VAC电容值为5uF的金属膜电容的 du/dt值一般在3-30之间选择。 在本例中:C1=5uF,du/dt值取3,则C1耐瞬间冲击电流值为: I=Cdu/dt=5*3=15(A) 2)限流电阻R1的选择: 先求C1的容抗:Xc=1/2лfC=1/(2*3.1416*50*0.000005)=636.36Ω 则复阻抗:|Z|=638.3Ω(R1取值为47Ω) 求得电流有效值为:I=U/|Z|=220/638.3344.7mA 电阻实际承受的有效电压值:UR=344.7mA*47Ω =16.2V 求出电阻实际承受的功率:PR=16.2V*344.7mA=5.58W(R1选用线绕电阻器,功率取7.5W) 3)稳压分流电路: 稳压管ZD1和T1管E-B结,R3组成稳压电路,T1,R2组成分流电路。 ZD1选用11.3V的稳压管;R3阻值取180Ω1/6W;T1管响应负载电流的大小变化,负载电流可在0-300mA内变化,T1选用2W的PNP管,电流放大倍数≥200;R2用作负载电流较小时,分担一部分T1管的功率,R2取值30Ω/3W。

相关文档
相关文档 最新文档