文档库 最新最全的文档下载
当前位置:文档库 › 机器人的运动控制

机器人的运动控制

机器人的运动控制
机器人的运动控制

2.4 手臂的控制

2.4.1 运动控制

对于机器人手臂的运动来说,人们通常关注末端的运动,而末端运动乃是由各个关节的运动合成实现的。因而必须考虑手臂末端的位置、姿态与各个关节位移之间的关系。此外,手臂运动,不仅仅涉与末端从某个位置向另外一个位置的移动,有时也希望它能沿着特定的空间路径进行移动。为此,不仅要考虑手臂末端的位置,而且还必须顾与它的速度和加速度。若再进一步从控制的观点来看,机器人手臂是一个复杂的多变量非线性系统,各关节之间存在耦合,为了完成高精度运动,必须对相互的影响进行补偿。

1. 关节伺服和作业坐标伺服

现在来研究n 个自由度的手臂,设关节位移以n 维向量12(,,,)T n n q q q q =∈?

表示,i q 是第i 个关节的位移,刚性臂的关节位移和末端位置、姿态之间

的关系以下式给出:

()r r f q = (1)

m r ∈?是某作业坐标系表示的m 维末端向量,当它表示三维空间内的位置姿态时,m=6。如式(1)所示,对刚性臂来说,由于各关节的位移完全决定了手臂末端的位置姿态,故如欲控制手臂运动,只要控制各关节的运动即可。

设刚性臂的运动方程式如下所示:

()(,)()M q q h q q q g q τ=++Γ+ (2)

式中,()n n M q ?∈?为手臂的惯性矩阵;(,)n h q q ∈?为表示离心力和哥氏力的向量,n n ?Γ∈?为粘性摩擦系数矩阵;()n g q ∈?为表示重力项的向量;1(,,)T n n τττ=∈?为关节驱动力向量。

机器人手臂的驱动装置是一个为了跟踪目标值对手臂当前运动状态进行反馈构成的伺服系统。无论何种伺服系统结构,控制装置的功能都是检测各关节的当前位置q 与速度q ,将它们作为反馈信号,最后直接或间接地决定各关节的驱动力τ。

图1给出了控制系统的构成示意图。来自示教、数值数据或外传感器的信号等构成了作业指令,控制系统根据这些指令,在目标轨迹生成部分产生伺服系统需要的目标值。伺服系统的构成方法因目标值的选取方法的不同而异,大体上可以分为关节伺服和作业坐标伺服两种。当目标值为速度、加速度量纲时,分别称之为速度控制或加速度控制,关于这些将在本节2.和3.中加以叙述。

图1 刚性臂控制系统的构成

1) 关节伺服控制

讨论以各关节位移的形式给定手臂运动目标值的情况。

令关节的目标值为12(,,,)T n d d d dn q q q q =∈?。图2给出了关节伺服的构

成。若目标值是以关节位移的形式给出的,那么如图2所示,各个关节可以独立构成伺服系统,因此问题就变得十分简单。目标值d q 可以根据末端

目标值d r 由式(1)的反函数,即逆运动学(inverse kinematics )的计算

得出

1()d r d q f r -= (3)

图2 关节伺服构成举例

如果是工业机器人经常采用的示教方法,那么示教者实际上都是一面看着手臂末端,一面进行示教的,所以不必进行式(3)的计算,d q 是直接给出的。如果想让手臂静止于某个点,只要对d q 取定值即可,当欲使手

臂从某个点向另一个点逐渐移动,或者使之沿某一轨迹运动时,则必须按时间的变化使d q 发生变化。

为了简单起见,假设驱动器的动态特性忽略不计,各个关节的驱动力i τ可以直接给出。这时,最简单的一种伺服系统如下所示:

()i pi di i vi i k q q k q τ=-- (4)

pi k 是比例增益,vi k 是速度反馈增益。对于全部关节,可以将式(4)

归纳表示为

()p v d K q q K q τ=-- (5)

式中,()n n pi p diag k K ?=∈?;()n n vi v diag k K ?=∈?。这种关节伺服系统把每一个关节作为简单的单输入、单输出系统来处理,所以其结构简单,现在的工业机器人大部分都由这种关节伺服系统来控制。但是,从式(2)中可知,从手臂的动态特性来看,严格地说,每个关节都不是单输入、单输出系统,惯性项和速度项在关节彼此之间存在动态耦合。在式(5)所表示的关节伺服中,这些耦合均被视为外部干扰来进行处理,为了减少外部干扰的影响,在保持稳定性范围内应该尽量将增益pi k 、vi k 设置得大一

些。但无论怎样加大增益,由于重力项的影响,手臂在静止状态下,各个关节仍会产生稳态误差,即将式(5)代入式(6)中,若0q q ==,将产生下式所示的稳态误差e :

1()p d g e q q K q -=-= (6)

有时为了使稳态误差为零,可在式(5)中再加上积分项,构成

()()p v i d d dt K q q K q K q q τ=--+-? (7)

式中,n n i K ?∈?为积分环节的增益矩阵,和p K 、v K 一样,它是一个对角矩阵。

传统上,上述伺服系统是用模拟电路构成的。近年来,由于微处理器和信号处理器等高性能、低价格的计算器件的普与,将伺服系统的一部分或全部改成数字电路的所谓软件伺服已经很普遍了。与模拟电路的情况相比,软件伺服能进行更精细的控制。例如,不再让各个关节的增益pi k 、vi k 固定不变,而是让其按照手臂不同姿态时所期望的响应特性而变化,用

下式代替式(7),通过对重力项的计算,直接实现重力项的补偿

()()p v d g q K q q K q τ=--+ (8)

后续的内容中,都是在软件伺服假设的前提下展开讨论的。如后面所述,软件伺服系统方式还能有比式(7)和式(8)更高级的控制方法,但是即使用式(7)和式(8)的简单的控制方法,闭环系统的平衡点d q 也能达到渐进稳定,即经过无限长的时间,q 能收敛于d q 。即在多数场合,式

(7)和式(8)的控制方法已经足够了。

2)作业坐标伺服控制

关节伺服控制的结构简单,对软件伺服来说,计算量少,采样时间较短,所以是工业机器人经常采用的方法,这一点已经在前面有所论述。但在自由空间内对手臂进行控制时,在很多场合都希望直接给出手臂末端位置、姿态运动的显式表达。例如,让手臂从某个点沿直线运动至另一个点就是这种情况。

在这种情况下,很自然会取末端姿态向量r 的目标值d r 作为手臂运动

的目标值。一旦得到d r ,利用上述式(3)变换为d q ,当然也能应用关节

伺服方式。但是,为此不但需要事前求解末端目标值d r ,而且往往要在运

动中对其加以在线修正,于是必须实时计算式(3)的逆运动学方程式。此外,因为在关节伺服系统中各个关节是独立受控的,它们的实际响应结果导致的末端位置、姿态的响应比较难以预测,而且为了得到期望的末端响应,对各关节伺服系统的增益调节也十分困难。

因此,现在我们来研究不将d r 变为d q ,而把d r 本身作为目标值来构成

伺服系统。由于在很多情况下,末端位置、姿态d r 是用固定于空间内的某

一个作业坐标系来描述的,所以把以d r 作为目标值的伺服系统称为作业坐

标伺服。

下面举一最简单的作业坐标伺服的例子。为此,首先将式(1)的两边对时间进行微分,由此可得下式:

(9) 式中,()T m n r J q q f q ?=??∈?,称之为雅可比矩阵,雅可比矩阵为q 的函数。r 和q 通常如式(1)所示,为非线性关系。与此相反,由式(9)可知,r 和q 为线性关系。式中()J q 是q 的函数。

根据式(9)和虚功原理,可得下式:

()T J q f τ= (10)

式中,()T J q 表示()J q 的转置,当m=6时,6(,,,,,)T x y z f f f f m m m αβγ=∈?,是组合向量,包括作业坐标系所描述的三维平移力向量和以欧拉角等描述的r 的姿态所对应的三维旋转力向量,式(10)表示与手臂末端的力和旋转力等效的各关节驱动力的关系式。若取欧拉角(,,)αβγ作为r 的姿态分量,则,,m m m αβγ为绕欧拉角各自旋转轴的力矩,这从直观上非常难以理解。

所以,在机器人学中,雅可比矩阵经常不是根据式(9),而是根据速度的关系直接按照下式来定义:

(,)()T T T s s v J q q ω== (11)

在式(11)中,末端速度向量s 的姿态分量不是姿态分量的时间微分描述,而是用角速度向量3ω∈?来表示。不过,在s 中,3v ∈?是末端的平移速度,和r 的位置分量的时间微分一致。式(11)的矩阵()s J q 也称为雅可比矩阵,它表示末端速度向量S 与关节速度q 之间的关系。虽然它不是

从式(9)原本的数学意义出发的,但是在机器人学中通常称之为雅可比矩阵。

若采用式(11)所定义的雅可比矩阵,对应于式(10)右边的f 就成为()T z y x z y x m m m f f f ,,,,,,f 的旋转力分量就变成绕三维空间内某些轴旋转的力矩向量,这样从直觉就很容易理解。

有了上面一些预备知识,可以用下式给出一个作业坐标伺服的例子: ()[()()]T p v d J q g q K r r K q τ=--+ (12)

此时对应的控制系统示于图3中,再考虑附加积分环节,即如下式所示:

()[()()]T p v i d d J q dt K r r K r r K q τ=-+--? (13)

图3 作业坐标伺服举例

如果将末端位置、姿态的误差向量d r r -分解成位置和姿态分量,用[,]T T T p o e e 表示,各个分量可以用p d e p p =-,[,,]T o d d d

e ααββγγ=---来表示。3p ∈?是末端位置向量,d p 是目标值,(,,)αβγ是欧拉角或横摇角、纵摇角、偏转角,(,,)d d d αβγ是其目标值。由式(10)可知,与式(12)、式(13)右边第一项中的p K 有关的项产生的使r 与d r 一致的潜在的力()p d

f K r r =-可视为是施加在末端上的。式(12)、式(13)中手臂末端

全向移动机器人的运动控制

全向移动机器人的运动控制 作者:Xiang Li, Andreas Zell 关键词:移动机器人和自主系统,系统辨识,执行器饱和,路径跟踪控制。 摘要:本文主要关注全向移动机器人的运动控制问题。一种基于逆运动学的新的控制方法提出了输入输出线性化模型。对执行器饱和及驱动器动力学在机器人性能体现方面有重要影响,该控制法考虑到了以上两个方面并保证闭环控制系统的稳定性。这种控制算法常用于真实世界的中型组足球机器人全方位的性能体现。

1.介绍 最近,全方位轮式机器人已在移动机器人应用方面受到关注,因为全方位机器人“有一个满流动的平面,这意味着他们在每一个瞬间都可以移动,并且在任何方向都没有任何调整”。不同于非完整的机器人,例如轮式机器人,在执行之前具有旋转任何所需的翻译速度,全方位机器人具有较高的机动性并被广泛应用在动态环境下的应用,例如在中型的一年一度的足球比赛。 大多数移动机器人的运动控制方法是基于机器人的动态模型或机器人的运动学模型。动态模型直接描述力量施加于车轮和机器人运动之间的关系,以外加电压的每个轮作为输入、以机器人运动的线速度和角加速度作为输出。但动态变化所造成的变化的机器人惯性矩和机械组件的扰动使控制器设计变得较为复杂。假设没有打滑车轮发生时,传感器高精度和地面足够平坦,由于结构的简单,因而运动模型将被广泛应用于机器人的设计行为中。作为输入运动学模型是机器人车轮速度,输出机器人的线速度和角速度,机器人的执行器的动力都快足以忽略,这意味着所需的轮速度可以立即达到。然而,该驱动器的动态极限,甚至降低了机器人在真实的情况中的表现。 另一个重要方面是机器人控制的实践:执行器饱和。因机器人轮子的指挥电机速度是有饱和的界限的,执行器饱和能影响到机器人的性能,甚至使机器人运动变得不稳定。 本文提出了一个全方位的机器人的一种运动控制方法,这种控制方法是基于逆输入输出的线性的运动学模型。它需要不仅考虑到驱动器动力学的识别,但也需要考虑到执行器饱和控制器的设计,并保证闭环控制系统系统稳定性。 本文其余的部分:在2节介绍了运动学模型的一个全方位的中型足球机器人;在3节介绍了路径跟踪与定位跟踪问题基于逆运动学模型的输入输出线性化的解决方法,其中包括执行器饱和分析;4部分介绍了动态识别器及其在控制性能方面的影响;最后的实验结果和结论讨论部分分别在5和6。

机器人控制与轨迹规划实验

机器人控制与轨迹规划 实验报告 姓名: 学号: 学院: 电话: 邮箱: 2016年5月

论述题(每题10分) 1)SSF2000机器人有哪几个轴,请对每一个轴的性能进行详细说明; 2)对于示教模式、再现模式、远程模式进行详细说明; 3)对于关节插补、直线插补、圆弧插补、自由曲线插补方法进行详细说明; 4)如何实现程序内容的删除; 5)请详细说明在示教模式下如何实现机器人第7轴的运动控制; 6)请对机器人常用坐标系进行详细说明; 7)机器人安全模式分为哪几种? 8)试述机器人示教编程的过程及特点。 现场操作题(20分)

一、SSF2000机器人有哪几个轴,请对每一个轴的性能进行详细说明: 答:SSF2000机器人具有6个控制轴,其中,基本轴3个,分别为S轴、L轴、U轴;腕部轴3个,分别为R轴、B 轴、T轴。各个轴的作用及性能如下: 1、S轴,控制本体左右回转,最大动作范围:±170°,最大速度:3.67 rad/s,210?/s; 2、L轴,控制下臂前后运动,最大动作范围:+155°,-90°,最大速度:3.32 rad/s,190?/s; 3、U轴,控制上臂上下运动,最大动作范围:+250°,-175°,最大速度:3.67 rad/s,210?/s; 4、R轴,控制上臂带手腕回旋,最大动作范围:±180°,最大速度:6.98 rad/s,400?/s,允许力矩:11.8N·m,允许惯性力矩:0.24Kg·m2; 5、B轴,控制手腕上下运动,最大动作范围:+225°,-45°,最大速度:6.98 rad/s,400?/s,允许力矩:8.8N·m,允许惯性力矩:0.17Kg·m2; 6、T轴,控制手臂回旋,最大动作范围:±360°,最大速度:10.47 rad/s,600?/s,允许力矩:5.9N·m,允许惯性力矩:0.06Kg·m2。 二、对于示教模式、再现模式、远程模式进行详细说明 答:1、示教模式:即“TEACH”模式,可用示教编程器进行轴操作和编辑,在此模式中,外部设备发出的启动信 号无效。在示教模式下可以进行:编制、示教程序、修改已登录程序、各种特性文件和参数的设定。示教时,必须把示教编程器的模式旋钮旋至“TEACH”。

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

基于图像的视觉伺服系统

基于图像的机器人视觉伺服系统研究 班级:自121 姓名:成佳宇 学号:3120413006

基于图像的机器人视觉伺服系统 摘要本文采用基于图像的眼在手(eye in hand)视觉伺服结构,通过计算图像雅克比矩阵实现机械手的定位任务。本文采用应用最广泛的机器人工具箱(Robotics Toolbox for Matlab),在该工具箱的基础上,运用Sub-system实现Matlab和Simulink的有机结合,建立基于图像反馈的六自由度PUMA560机器人视觉伺服系统Simulink模型,仿真验证该模型的有效性。 关键字:puma560机器人;视觉伺服;图像的雅可比矩阵Abstract:In this paper,we use Image-based visual servoing control system, via image jacobin matrix function the positioning of the manipulator by calculation task. on the basis of Robotics Toolbox for Matlab, and using Sub - system to realize the organic combination of Matlab and Simulink, based on the image feedback Simulink model of six degrees of freedom PUMA560 robot visual servoing system, the simulation verify the validity of the model. Keyword:PUMA560robot;IBVS;Image jacobin 引言: 机器人视觉伺服己成为机器人领域重要的研究内容之一,但是机器人视觉伺服系统是一个十分复杂的非线性系统。视觉是一种复杂的感官,视觉信息中包含有大量的数据,要从 中提取特征信息,需要复杂的算法及耗费大量的运算时间,

带有视觉识别模块的分拣机器人

带有视觉识别模块的分拣机器人 传统的机器人分拣操作一般采用示教或离线编程方式,当机器人所处的工作环境发生改变时机器人很难即时作出相应的调整,为了使机器人具有更加智能化的功能,以阿童木并联机器人和工业智能相机为基础,组成一套带有视觉模块的机器人分拣系统。这样的分拣系统结合了并联型机器人和视觉模块两个方面的优势,通过视觉模块智能的识别不同的对象,系统可以完成高速的分拣工作,显著提升了机器人对工作环境的适应能力,提高了工作效率。同时,实验结果证明了该系统软硬件设计正确,分拣成功率高。 随着我们国家生产需求的不断增加,机器人越来越多的参与到各行各业的生产过程中来。其中,对工件的分拣作业是当前生产过程中的一个重要环节,传统的机器人分拣,其动作和目标的摆放位置都需要根据程序预先严格的设定。一旦机器人所处的环境有所改变,很容易导致抓取错误。本文模拟工业生产中的分拣作业环境,引入视觉模块,用摄像机来模拟人类的视觉功能来对待测的对象进行识别分类,可以使分拣作业拥有更高的可靠性和灵活性,作业对象以及分拣工序可以随时随地的变换,也提高了工作的效率和机器人的智能化程度。 1机器人系统组成介绍 我们设计的机器人分拣系统主要由并联机器人、视觉模块、传送带装置以及分拣对象组成,结构如图1所示: 1.1并联机器人 相比于其他工业机器人,并联机器人占用较小的空间,其更具有高速度、高精度、灵活性等特点,更能適合苛刻的工业生产需求。我们在实验中采用的是阿童木4轴并联型机器人,如图2所示,它能够完成空间中X、Y、Z方向的移动及角度的转动。除了并联型机器人本体之外,机器人配套设施还包括机器人控制柜、控制编程器和驱动机器人各关节运动的伺服交流电机。机器人末端执行机构为气动吸盘,用于吸附传送带上的分拣对象,完成抓取动作。 1.2 视觉模块 视觉模块我们采用康奈视公司的In-Sight7000型智能相机,如图3所示。该视觉模块能够智能的识别出实验中不同种类的实验对象,以及采集各个实验对象的位置信息。 1.3网络交换机 实验中,我们使用一般的家用路由器来替代网络交换机。视觉模块采集到的信息要通过局域网来络传递给机器人,因此我们要用到网络交换机来搭建局域网络,进而使各个模块间完成信息传输。

机器人视觉系统(Robot Vision)简介

机器人视觉系统(Robot Vision)简介 【字体:大中小】时间:2014-08-28 11:00:06 点击次数:23次 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器人视觉伺服系统综述

机器人视觉伺服系统综述 摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。 关键词:机器人;视觉伺服;综述 Survey of robot visual servoing system Abstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field. Key words:robot, visual servoing, summary 1.引言 随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。 机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。随着摄像技术和计算机技术的发展,以及相关理论的日益完善和实践的不断检验,视觉伺服已具备了在实际中应用的条件;而随着机器人应用领域的不断扩展,重要性也不断提高,与其相关技术问题已经成为了当前的研究热点[2]。所以实现机器人视觉伺服控制有相当的难度,是机器人研究领域中具有挑战性的课题。 2.机器人视觉伺服系统 2.1机器人视觉伺服系统的定义

机器人视觉算法 参考答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。 系统可再分为: 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡 图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器 视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

AUV水下机器人运动控制系统设计方案(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告课程名称:运动控制技术 姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中

机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”

机器人的运动控制

2.4 手臂的控制 2.4.1 运动控制 对于机器人手臂的运动来说,人们通常关注末端的运动,而末端运动乃是由各个关节的运动合成实现的。因而必须考虑手臂末端的位置、姿态与各个关节位移之间的关系。此外,手臂运动,不仅仅涉及末端从某个位置向另外一个位置的移动,有时也希望它能沿着特定的空间路径进行移动。为此,不仅要考虑手臂末端的位置,而且还必须顾及它的速度和加速度。若再进一步从控制的观点来看,机器人手臂是一个复杂的多变量非线性系统,各关节之间存在耦合,为了完成高精度运动,必须对相互的影响进行补偿。 1.关节伺服和作业坐标伺服 现在来研究n个自由度的手臂,设关节位移以n i个关节的位移,刚性臂的关节位移和末端位置、姿态之间的关系以下式给出: (1) m维末端向量,当它表示三维空间内的位置姿态 时,m=6。如式(1)所示,对刚性臂来说,由于各关节的位移完全决定了手臂末端的位置姿态,故如欲控制手臂运动,只要控制各关节的运动即可。 设刚性臂的运动方程式如下所示: (2) 量为粘性摩擦系数矩阵;表示重力项的向量; 机器人手臂的驱动装置是一个为了跟踪目标值对手臂当前运动状态进行反馈构成的伺服系统。无论何种伺服系统结构,控制装置的功能都是检测各关节的 1给出了控制系统的构成示意图。来自示教、数值数据或外传感器的信号等构成了作业指令,控制系统根据这些指令,在目标轨迹生成部分产生伺服系统需要的目标值。伺服系统的构成方法因目标值的选取方法的不同而异,大体上可以分为关节伺服和作业坐标伺服两种。当目标值为速度、加速度量纲时,分别称之为速度控制或加速度控制,关于这些将在本节2.和3.中加以叙述。

图1 刚性臂控制系统的构成 1) 关节伺服控制 讨论以各关节位移的形式给定手臂运动目标值的情况。 令关节的目标值为12(,,,)T n d d d dn q q q q =∈?。图2给出了关节伺服的构成。若目标值是以关节位移的形式给出的,那么如图2所示,各个关节可以独立构成伺服系统,因此问题就变得十分简单。目标值d q 可以根据末端目标值d r 由式(1)的反函数,即逆运动学(inverse kinematics )的计算得出 1()d r d q f r -= (3) 图2 关节伺服构成举例 如果是工业机器人经常采用的示教方法,那么示教者实际上都是一面看着手臂末端,一面进行示教的,所以不必进行式(3)的计算,d q 是直接给出的。如果想让手臂静止于某个点,只要对d q 取定值即可,当欲使手臂从某个点向另一个点逐渐移动,或者使之沿某一轨迹运动时,则必须按时间的变化使d q

机器人视觉伺服系统的控制结构

机器人视觉伺服系统的控制结构

机器人视觉伺服系统的控制结构 1 前言 对机器人视觉伺服系统的研究是机器人领域中的重要内容之一,其研究成果可直接用于机器人手—眼系统、移动机器人的自动避障及对周围环境的自适应、轨线跟踪等问题中。通常所说的机器视觉是指:自动获取并分析图像,以得到一组可对景物描述的数据或控制某种动作的数据。而视觉伺服则不同于机器视觉,它利用机器视觉的原理对图像进行自动获取与分析,以实现对机器人的某项控制为目的。正是由于系统以实现某种控制为目的,所以视觉伺服系统中的图像处理过程必须快速准确。 视觉伺服系统采用视觉反馈环形成闭环,在视觉反馈环中抽取某种图像特征。图像特征可以是点、曲线、图像上的某一区域等,比如,它可以是点在图像平面的坐标位置,或投影面的形心及其惯量的高次幂。 2 视觉伺服系统的分类 视觉伺服的控制策略主要基于以下两个问题: 1)是否采用分层控制结构?即机器人是否需要闭环关节控制器?进一步说,就是系统的视觉反馈是为机器人的关节控制闭环提供输入量,还是由视觉控制器直接控制机器人各关节。 2)误差输入量是以机器人所在空间的三维坐标表示,还是以图像特征? 按控制策略2)区分,视觉伺服系统分为两类:基于位置的控制系统(position-based control,又称3D视觉伺服,3Dvisualservoing),基于图像的控制系统(image-base control,或称2D视觉伺服,2Dvisualservoing)。由于基于位置和基于图像的视觉伺服各有其优缺点,于是近年有学者综合上述两类视觉伺服系统的优点,设计出2-1/2D视觉伺服系统。 按控制策略1)区分,视觉伺服系统可分为动态观察—移动系统和直接视觉伺服。前者采用机器人关节反馈内环稳定机械臂,由图像处理模块计算出摄像机应具有的速度或位置增量,反馈至机器人关节控制器;后者则由图像处理模块直接计算机械壁各关节运动的控制量。 3 视觉伺服系统的控制结构 3.1 基于位置的视觉伺服控制结构

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

水下清洁机器人运动控制系统设计研究

? 117 ? ELECTRONICS WORLD? 技术交流 本文主要结合相关的研究背景设计了一种水下清洁机器人,作为一种水下设备的清洁维护的机器人,保障水下设备的正常运行。文章首先在引言部分对本文的研究背景及意义进行阐述,然后重点提出了水下清洁机器人运动控制系统的总体设计方案,并对其运动模型进行设计和仿真。 1 引言 海洋开发逐渐向特殊领域以及高深度领域转变,难度越来越大,人力开发已经完全不能够满足开发的需求,机器人开发已经成为了新趋势。本文主要在此背景下分析和研究水下清洁机器人的运动控制系统的设计。本文设计的水下清洁机器人主要是用于对水下的一些大型设备,例如海底搜救设备、勘测设备、取样设备等进行水下维护和修复等,能够在水下特殊环境中对海底设备进行维护和处理,能够较大程度上的促进海底开发技术的发展。 2 水下清洁机器人运动控制系统总体设计 2.1 水下清洁机器人运动控制流程 本文设计的水下清洁机器人的控制系统主要由主机、控制算法、控制电路、指令转换、机器人载体、采样设备等组成,具体的控制流程为:主机控制算法进行水下机器人的动力分配,并结合指令转换算法进行整理转换,结合控制电路开启操控箱,下达操作指令,机器人载体接到命令驱动机器人进行采样,采集样本之后将样本信息传递到主机处理系统当中,进行处理。 2.2 模拟运动控制平台结构设计 水下机器人的运动控制平台主要包括六个部分:步进电机、云台、安装板、推进器、U型板以及轴承等。其中云台主要实现的是2自由度的运动,包括水平和横向两个方向。本文模拟的控制平台主要实现的是3自由度的运动控制,除了上述2自由度之外,还包括前后摇摆自由度。由于多了一个自由度,因此需要对运动进行定位,该运动平台的定位主要由带套轴承和法兰轴组成固定左侧,由带套轴承和电机轴固定右侧,右侧的电机由法兰固定,由此就设计出了一个6自由度的模拟运动控制平台(边宇枢,高志慧,贠超,6自由度水下机器人动力学分析与运动控制:机械工程学报,2007)。 2.3 地面操控台结构设计 地面操控台主要是对上述的模拟运动控制平台进行控制,地面操控台主要包括显示器、操纵杆、按钮以及指示灯等。其中操纵杆有2个,一个用来控制云台的摄像机,一个用来控制模拟运动平台,面板主要是结合人体舒适度进行设计,角度定为70°(裴文良,郭映言,陈金山,申龙,水下机器人的研发及其应用:制造业自动化,2018)。 3 水下机器人运动模型及仿真分析 该部分主要对上述设计的水下机器人的运动模型以及仿真进行分析: 3.1 水下机器人的运动学建模 为了便于我们对机器人参数和变量的统一管理,可以定义以下 状态变量: 其中 ,,即用η1和η2分别表示稳定系下水下机器人的位置向量和方向向量,用v1和v2分别表示动态系下水下机器人的线速度和角度,用τ1和τ2表示在动态系下作用于水下机器人的力和力矩向量。 水下机器人的速度变量由稳定系转换成为动态系,从而通过动态控制器实现对运动的控制,同时要获得水下机器人的静态位置和姿态就必须要将水下机器人的速度变量由动态系转换成为稳定系,从而得到水下机器人的位置矢量。由此可知,在研究水下机器人状态时,需要分析和研究机器人速度变量的动态和静态的转变。 3.2 基于神经网络的轨迹控制器 本文主要设计了基于神经网络模型的水下机器人的运动轨迹控制器,具体的控制流程如下:当机体接收到信号后,传递到控制器,再通过执行器作用于机体,做出相应的动作,机器人本身还具有抗干扰的功能。输出与控制器之间用RBF网络连接。(朱大奇,陈亮,刘乾,一种水下机器人传感器故障诊断与容错控制方法:控制与决策,2009) 3.3 水下机器人神经网络轨迹控制的仿真 结合上述设计的基于神经网络模型的水下机器人的运动轨迹控制器,采用MATLAB进行仿真如下。该控制器设计的目的是实现对水下机器人运动状态的识别和跟踪,通过分析水下机器人的水下运动情况,结合轨迹参考实现了未知动力学的局部精确逼近和部分神经网络权值的收敛,从而奠定一定的学习控制器基础。 结合神经网络的训练实验得到,在神经网络权值的训练过程中,一些神经网络的权值最终收敛,可以作为神经网络的常数权值存储。在自适应神经网络控制器的作用下,将被控系统未知动态分量的局部精确逼近。 水下清洁机器人运动控制系统设计研究 (下转第121页)

机器人抓取运动目标轨迹规划与控制

I.引言 机器人抓取运动目标是指机器人基于内部控制系统的控制,完成运动目标的跟踪和抓取,是智能机器人的一个前沿应用课题,在工业、航天和娱乐等领域有良好的应用前景。在运动目标的捕捉中,一方面,机器人手爪必须快速跟踪并接近目标;另一方面必须能够感知环境以避开可能的障碍,其中状态反馈和路径规划需要很高的实时性和抗干扰能力。此外,系统还受到动力学约束、关节几何约束等限制,而这一切都必须在实时条件下完成。 抓取运动目标技术在航空航天、工业生产、遥感技术、军事技术、特殊环境作业等多领域有着广泛的应用。该技术的研究最典型的应用就在于太空卫星捕捉机器人,众所周知由宇航员来接近和捕捉正在旋转的卫星很危险而且困难,从而使人们意识到应该使用机器人进行太空服务,近年来越来越多的机器臂装配到了航天设备上。此外,抓取运动目标的技术还可以应用在工业生产过程中抓取装配线传送带上正在运动的零部件;球类机器人(如:足球机器人,排球机器人等);太空、深海等场合的自动对接和作业。 对于机器人抓取运动目标,其末端机械手的动作规划和目标检测等问题就需要传感技术与机器人控制技术的完美结合。目前,对于目标状态的测取一般采用图像传感(CCD摄像机),但是单视觉反馈有着它自身的缺陷,单摄像机模型往往能够获得较为精确的平面位置信息,而不能获得精确的深度信息。为此,在状态测取时,一般采用多摄像机模型或摄像机与位置传感器相结合模型。对于抓取运动目标动作规划目前一般存在有三种方法:直接瞄准法、比例导引法、以及预测-规划-执行( Prediction Planning and Execution,PPE) 方法。后文将具体讨论以上内容。 II.系统组成 下图是一个典型的机器人抓取运动目标的系统方框图。抓取运动咪表的机器人与一般的机器人相比,其操作对象大多为状态参数不确定的运动目标,同时机器人与目标之间的接触速度较高。因此必须着重研究以下问题: 实时状态测

AUV水下机器人运动控制系统方案设计书(李思乐)

封面

作者:PanHongliang 仅供个人学习 中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告

课程名称:运动控制技术姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中剖面,上和下、前和后都不对称[2]。 图2-1AUV水下机器人物理模型 1.2微小型水下机器人动力学分析 微小型水下机器人总长 1.5m,采用锂电池作为能源,尾部为一对水平舵和一对垂直舵,单桨推进,可携带惯导设备、探测声纳、水下摄像机、深度计等设备,设计巡航速度约 2 节。首先建立适合描述水下机器人空间运动的坐标

相关文档
相关文档 最新文档