文档库 最新最全的文档下载
当前位置:文档库 › SAE J2464-2009电动和混合动力电动汽车充电储能安全和滥用试验

SAE J2464-2009电动和混合动力电动汽车充电储能安全和滥用试验

SAE J2464-2009电动和混合动力电动汽车充电储能安全和滥用试验
SAE J2464-2009电动和混合动力电动汽车充电储能安全和滥用试验

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ? 2009 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@https://www.wendangku.net/doc/ab15794186.html, SAE WEB ADDRESS: h ttp://https://www.wendangku.net/doc/ab15794186.html,

SURFACE VEHICLE RECOMMENDED

PRACTICE J2464 NOV2009 Issued 1999-03 Revised 2009-11

Superseding J2464 MAR1999

(R) Electric and Hybrid Electric Vehicle Rechargeable Energy

Storage System (RESS) Safety and Abuse Testing

RATIONALE

Abuse testing is performed to characterize the response of a Rechargeable Energy Storage System (RESS) to off-normal conditions or environments. The primary purpose of abuse testing is to gather response information to external/internal inputs that are designed to simulate actual use and abuse conditions. This response information is used to expose the hazards, if any, associated with a given RESS under a given set of use and abuse conditions and to help quantify the hazard mitigation efforts that should be taken for a particular RESS design.

The revisions are intended to expand the scope of SAE J2464 to include other types of electric energy storage devices and vehicular applications, make the test results more quantitative as well as incorporate improvements in test procedures and data analysis.

TABLE OF CONTENTS

1.

SCOPE .......................................................................................................................................................... 3 1.1

Purpose (3)

2.

REFERENCES .............................................................................................................................................. 4 2.1

Applicable Publications ................................................................................................................................. 4 2.1.1

SAE Publications ........................................................................................................................................... 4 2.2

Related Publications ..................................................................................................................................... 4 2.2.1

Electrochemical Society Publications ........................................................................................................... 4 2.2.2

Sandia National Laboratories Publications ................................................................................................... 4 2.2.3

AIHA Publication ........................................................................................................................................... 5 2.2.4

EUCAR Publication ....................................................................................................................................... 5 2.2.5

United Nations Publication ............................................................................................................................ 5 3.

DEFINITIONS ............................................................................................................................................... 5 3.1

Active Protection Device ............................................................................................................................... 5 3.2

Ambient Temperature ................................................................................................................................... 5 3.3

Battery ........................................................................................................................................................... 5 3.4

Capacitor

....................................................................................................................................................... 5 3.5

Capacity ........................................................................................................................................................ 5 3.6

Cell ................................................................................................................................................................ 5 3.7

Combustible and Flammable Liquids ............................................................................................................ 6 3.8

Device Under Test (DUT) ............................................................................................................................. 6 3.9

Effluent .......................................................................................................................................................... 6 3.10

Emergency Response Planning Guidelines, Level 2 (ERPG-2) ................................................................... 6 3.11

Explosion (6)

3.12 Fire or Flame (6)

3.13Flammable Gas (6)

3.14Flammable Solid (6)

3.15Flash Point (6)

3.16Fully Charged (7)

3.17Fully Discharged (7)

3.18Integrator (7)

3.19Leak (7)

3.20LFL (7)

3.21Overcharge (7)

3.22Percent of Overcharge (7)

3.23OSHA (7)

3.24Over Current Protection Device (7)

3.25Overdischarge (7)

3.26Pack (7)

3.27Passive Protection Device (7)

3.28Release (8)

3.29Reversal (8)

3.30RESS (8)

3.31RESS Cell (8)

3.32RESS Module (8)

3.33RESS Pack (8)

3.34Rupture (8)

3.35State of Charge (SOC) (8)

3.36Test Article (8)

3.37Thermal Runaway (8)

3.38Thermal Stability Limit (8)

3.39UFL (8)

3.40Venting (9)

4.TECHNICAL REQUIREMENTS (9)

4.1General Test Guidelines (9)

4.1.1Number, Condition, and Size of Batteries to be Tested (9)

4.1.2Types of Abuse Tests Addressed in this Document (10)

4.1.3Test Conditions and Measurement Accuracies (11)

4.1.4Hazardous Substance Monitoring (11)

4.1.5Flammability Determination (12)

4.1.6Identification of Severity (12)

4.1.7Measured Data (13)

4.1.8Test Plans and Reporting (13)

4.2Hazardous Substance Monitoring Tests (Cell Level and Above) (13)

4.2.1Test Description (13)

4.2.2Measured Data (14)

4.3Mechanical Abuse Tests (15)

4.3.1Shock Tests (Cell Level or Above) (15)

4.3.2Drop Test (Pack Level Only) (16)

4.3.3Penetration Test (Cell Level or Above) (16)

4.3.4Roll-over Test (Module and Pack Level) (17)

4.3.5Immersion Test (Module or Pack Level) (17)

4.3.6Crush Test (Cell Level or Above) (18)

4.4Thermal Abuse Tests (19)

4.4.1High Temperature Hazard Test (Pack Module Level and Above) (19)

4.4.2Thermal Stability Test (Cell Level) (21)

4.4.3Cycling without Thermal Management (Module and Pack Level) (22)

4.4.4Thermal Shock Cycling (Cell Level or Above) (22)

4.4.5Passive Propagation Resistance Test (Module or Pack Level) (23)

4.5Electrical Abuse Tests (24)

4.5.1Short Circuit Tests (Cell and Module or Pack) (24)

4.5.2Overcharge Test (Cell and Module or Pack) (26)

4.5.3Overdischarge (Forced Discharge) Test (Cell Level and Module) (27)

4.5.4Separator Shutdown Integrity Test (28)

5.NOTES (28)

5.1Marginal Indicia (28)

APPENDIX A (29)

APPENDIX B (31)

TABLE 1 RECOMMENDED AND OPTIONAL ABUSE TOLERANCE TESTS, INCLUDING THE NUMBER OF RESS CELLS, MODULES AND PACKS FOR EACH TEST (10)

TABLE 2 MEASUREMENT ACCURACIES (11)

TABLE 3 HAZARD SEVERITY LEVELS AND DESCRIPTIONS (ADAPTED FROM EUCAR AND

SAND2005-3123) (12)

TABLE 4 SHOCK LEVELS AND DURATIONS (15)

TABLE 5 PENETRATION CHARACTERISTICS (16)

FIGURE 1 EXAMPLE OF A CRUSH TEST PLATEN FOR MODULES AND PACKS (18)

FIGURE 2 PHOTOGRAPH OF AN EXAMPLE OF A CYLINDRICAL CRUSH TEST FIXTURE FOR CELLS (18)

FIGURE 3 RADIANT HEATING FIXTURE TEST FIXTURE (20)

FIGURE 4 SCHEMATIC REPRESENTATION OF CELL LOCATIONS 1 THRU 5 AT WHICH CELLS ARE TRIGGERED INTO THERMAL RUNAWAY CONDITION IN PASSIVE PROPAGATION TEST (24)

1. SCOPE

This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. It describes a body of tests which may be used as needed for abuse testing of electric or hybrid electric vehicle Rechargeable Energy Storage Systems (RESS) to determine the response of such electrical energy storage and control systems to conditions or events which are beyond their normal operating range. Abuse test procedures in this document are intended to cover a broad range of vehicle applications as well as a broad range of electrical energy storage devices, including individual RESS cells (batteries or capacitors), modules and packs. This document applies to vehicles with RESS voltages above 60 volts. This document does not apply to RESS that uses mechanical devices store energy (e.g., electro-mechanical flywheels).

1.1 Purpose

This document is designed to provide a common framework of tests to evaluate the response of various RESS technologies to abusive conditions. These tests are intended to characterize the RESS response to undesirable abusive conditions also termed “off-normal” conditions or environments that may arise as a result of operator negligence, vehicle accidents, device or system defects, poorly informed or trained users or mechanics, failure of specific RESS control and support hardware, or transportation/handling incidents or accidents.

Tests in this document represent conditions for which the RESS was not designed or intended for use, but can reasonably be expected to be encountered infrequently during field use.

This document is not intended to certify the RESS for shipping. These tests were derived from Failure Mode and Effect Analysis, user input and historical abuse testing. The outcome of testing shall be documented for use by potential users of the tested RESS. It is not the intent of this procedure to establish acceptance criteria since each application has its own unique safety requirements. Moreover, cell safety is only one component of the safety approach that will employ active and passive protection devices such as thermal and electronic controls, state of health monitoring, automatic disconnects as well as ancillary support systems. Users of these technologies shall make their own determination as to what measures to take to ensure a sound application of said technology. The test data from SAE J2464 may be used as input to “Battery Safety and Hazards Risk Mitigation” approach that has been developed (see “Analysis of Battery Safety and Hazards' Risk Mitigation”, Cyrus Ashtiani, ECS Trans. 11 (19), 1 (2008)).

The scope of this document is to evaluate the response to abusive conditions at the cell, module and pack levels of RESS integration. While the abusive conditions developed in this test are intended to be representative of potential hazardous conditions in the vehicle environment, not all types of vehicle level hazards are within the scope of this document.

The tests described in this document should be supplemented with additional testing (performed at the test sponsor’s or manufacturer’s discretion) based on their need for data and their determination of the most susceptible condition of the technology. The primary purpose of the tests is to gather response information to external/internal inputs. Specific tests and/or measurements in this document may not be appropriate for some RESS technologies and designs if it can be demonstrated by the RESS users (or system integrators) that the test is not applicable or the results will be duplicated by other tests.

2. REFERENCES

2.1 Applicable Publications

The following publications form a part of this specification to the extent specified herein. Unless otherwise specified, the latest issue of SAE publications shall apply.

2.1.1 SAE

Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), https://www.wendangku.net/doc/ab15794186.html,.

SAE J1715 Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

SAE J1739 Potential Failure Mode and Effects Analysis in Design (Design FMEA), Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Process FMEA)

SAE J1950 Proving Ground Vehicle Corrosion Testing

SAE J2344 Guidelines for Electric Vehicle Safety

2.2 Related Publications

The following publications are provided for information purposes only and are not a required part of this document.

2.2.1 Electrochemical Society Publications

Available from the Electrochemical Society, 65 South Main Street, Building D, Pennington, NJ 08534-2839, Tel: 609-737-1902, https://www.wendangku.net/doc/ab15794186.html,/vsearch/servlet/VerityServlet?KEY=ECSTF8&ONLINE=YES.

“Analysis of Battery Safety and Hazards' Risk Mitigation”, Cyrus Ashtiani, ECS Transactions 11 (19), 1 (2008))

2.2.2 Sandia National Laboratories Publications

Available from https://www.wendangku.net/doc/ab15794186.html,/.

Electrochemical Storage System Abuse Test Procedure Manual, February 1999 Version 1.0, T. Unkelhaeuser and D.

Smallwood, published as Sandia Laboratories report SAND99-0497

FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, June 2005, Daniel H. Doughty and Chris C. Crafts, published as Sandia National Laboratories report SAND2005-3123

2.2.3 AIHA

Publication

Available from American Industrial Hygiene Association, 2700 Prosperity Ave., Suite 250, Fairfax, VA 22031, Tel: 703-849-8888, https://www.wendangku.net/doc/ab15794186.html,. See the following link for Emergency Response Planning Guidelines, Level 2 (ERPG-2) description.

https://www.wendangku.net/doc/ab15794186.html,/topic_subtopic_entry.php?RECORD_KEY%28entry_subtopic_topic%29=entry_id,su btopic_id,topic_id&entry_id(entry_subtopic_topic)=663&subtopic_id(entry_subtopic_topic)=24&topic_id(entry_subtopi c_topic)=1

2.2.4 EUCAR

Publication

Available from EUCAR Office, Avenue des Nerviens 85, 1040 Brussels, Belgium, Tel: +32-2-73-87-352, www.eucar.be.

Josefowitz, W., et al. “Assessment and Testing of Advanced Energy Storage Systems for Propulsion–European Testing Report”. Proceedings of the 21st Worldwide Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition.

Monaco, EU. April 2-6, 2005. p. 6

2.2.5 United Nations Publication

Available from UN Economic Commission for Europe, Information Service, Palais des Nations, CH-1211 Geneva 10, Switzerland, Tel: +41-0-22-917-44-44, https://www.wendangku.net/doc/ab15794186.html,.

Transportation of Dangerous Goods, Manual of Tests and Criteria, 4th Edition Revised, 2003. ST/SG/AC.10/11/Rev.4

3. DEFINITIONS

3.1 Active Protection Device

Safety device that consists of a sensor and actuator and is intended for protection from or mitigation of abusive, out-of range conditions experienced by the DUT.

3.2 Ambient Temperature

The ambient temperature for any test defined in this document shall be within the range of 25 °C ± 5 °C.

3.3 Battery

Energy storage device that relies on oxidation/reduction (Faradaic) reactions. See RESS.

3.4 Capacitor

Energy storage device that does not rely on Faradaic reactions. See RESS.

3.5 Capacity

The charge measured in amp-hours (Ah) of a RESS from the fully charged to the fully discharged state using the discharge profile as specified by the manufacturer.

3.6 Cell

See RESS Cell.

3.7 Combustible and Flammable Liquids

A combustible liquid has a flash point between 100 °F to 200 °F (37.8 °C to 93.3 °C); a flammable liquid has a flash point that is below 100 °F (38 °C).

3.8 Device Under Test (DUT)

A general term used to describe the device being tested. This term includes all levels of integration of the test article and can refer to a single unit (cell), a multiple unit assembly (module or pack), or a complete system.

3.9 Effluent

Liquid or gas released when a RESS cell leaks or vents.

3.10 Emergency Response Planning Guidelines, Level 2 (ERPG-2)

ERPG-2 levels are defined as the maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 h without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual’s ability to take protective action. This guideline is taken from the American Industrial Hygiene Association (https://www.wendangku.net/doc/ab15794186.html,/Content).

3.11 Explosion

Very fast release of energy sufficient to cause pressure waves and/or projectiles that may cause considerable structural and/or bodily damage, depending on the size of the RESS. The kinetic energy of flying debris from the RESS may be sufficient to cause damage as well.

3.12 Fire or Flame

Ignition and sustained combustion of flammable gas or liquid (approximately more than one second). Sparks are not flames.

3.13 Flammable Gas

The OSHA Hazard Communication Standard (29 CFR 1910 is available at https://www.wendangku.net/doc/ab15794186.html,/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=10099) definition for flammable gas is "a gas that, at ambient temperatures and pressures, forms a flammable mixture with air at a concentration of less than thirteen (13) percent by volume; or forms a range of flammable mixtures with air wider than twelve (12) percent by volume." Thus, a gas can be categorized as flammable if the gas burns in air at a concentration of less than 13% by volume or the difference between the lower flammability limit (LFL) and the upper flammability limit (UFL) is greater than 12% by volume.

3.14 Flammable Solid

The OSHA Hazard Communication Standard (29 CFR 1910 is available at https://www.wendangku.net/doc/ab15794186.html,/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=10099) definition of a flammable solid is "a solid, other than a blasting agent or explosive as defined in 29 CFR 1910.109(a), that is liable to cause fire through friction, absorption of moisture, spontaneous chemical change, or retained heat from manufacturing or processing, or which can be ignited readily and when ignited burns so vigorously and persistently as to create a serious hazard. A chemical shall be considered a flammable solid if, when tested by the method described in 16 CFR 1500.44, it ignites and burns with a self-sustained flame at a rate greater than one tenth of an inch per second along its major axis." 3.15 Flash Point

Flash point is defined in OSHA's 29 CFR 1910.106 as the minimum temperature at which a liquid gives off vapor within a test vessel in sufficient concentration to form an ignitable mixture with air near the surface of the liquid.

3.16 Fully Charged

100% State of Charge. The charge state of a RESS after completion of charging procedure specified by the RESS manufacturer (such as reaching the voltage, current and/or temperature limits). For purposes of this document, a RESS is considered fully charged after the completion of the charge cycle provided that the state of charge shall not fall below 95% before initiating the test sequence.

3.17 Fully Discharged

0% State of Charge. The state of a RESS after reaching the minimum voltage at zero load as specified by the RESS manufacturer.

3.18 Integrator

For the purposes of this manual, the integrator is the vehicle manufacturer or vendor who installs the RESS for use in an EV or HEV.

3.19 Leak

Loss of hermeticity of the RESS cell container leading to slow escape of gas or liquid without actuation of a designed vent.

3.20 LFL

Lower flammability limit. See https://www.wendangku.net/doc/ab15794186.html,/msds/ref/flammablelimits.html.

3.21 Overcharge

Supplying current to the RESS exceeding the fully charged state as specified by the manufacturer.

3.22 Percent of Overcharge

The amount of overcharge in Ah divided by the RESS capacity multiplied by 100.

3.23 OSHA

Occupational Safety and Health Administration, part of U.S. Department of Labor. See https://www.wendangku.net/doc/ab15794186.html,/.

3.24 Over Current Protection Device

A fuse, circuit breaker, intelligent contactor, or other device placed in an electrical circuit to provide current overload protection.

3.25 Overdischarge

Forced discharge beyond the manufacturer’s recommended limits that may lead to voltage reversal. See reversal.

3.26 Pack

See RESS pack.

3.27 Passive Protection Device

Safety device that is intended for protection from or mitigation of abusive, out-of range conditions experienced by the RESS that does not require active controls or electrical energy supply (e.g., shutdown separator).

3.28 Release

A release means any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment.

3.29 Reversal

Forced discharge (overdischarge) of a RESS to the point that the cell's electrical terminals change polarity.

3.30 RESS

Rechargeable Energy Storage System. Any energy storage system that has the capability to be charged and discharged. (Example: batteries, capacitors, and electro-mechanical flywheels).

3.31 RESS Cell

An assembly of at least one positive electrode, one negative electrode, and other necessary electrochemical and structural components. A cell is a self-contained energy storage device whose function is to deliver electrical energy to an external circuit.

3.32 RESS Module

A grouping of interconnected cells in series and/or parallel arrangement into a single mechanical and electrical unit.

3.33 RESS Pack

Interconnected modules including all ancillary subsystems for mechanical support, thermal management, and electronic control.

3.34 Rupture

Loss of mechanical integrity of the RESS container, resulting in release of contents. The kinetic energy of released material is not sufficient to cause physical damage external to the RESS.

3.35 State of Charge (SOC)

The relative capacity of the RESS expressed as a percentage of the fully charged capacity.

3.36 Test Article

See ‘Device Under Test.’

3.37 Thermal Runaway

The uncontrolled increase in the temperature of a RESS driven by exothermic processes.

3.38 Thermal Stability Limit

Maximum temperature at which RESS is stable indefinitely.

3.39 UFL

Upper flammability limit. See https://www.wendangku.net/doc/ab15794186.html,/msds/ref/flammablelimits.html.

3.40 Venting

The release of excessive internal pressure from a RESS cell, module or pack in a manner intended by design to preclude rupture or explosion.

4. TECHNICAL REQUIREMENTS

4.1 General Test Guidelines

Before starting abuse tests, a test plan will be developed by the testing organization and the plan may be reviewed by the RESS manufacturer and test sponsor. Specifications for each abuse test should be set to determine relevant abuse responses to the expected range of normal and off-normal conditions. The tests should be designed to generate response data that can quantitatively determine the cell and system response of the device under test as well as serve as a guide for future designs.

Subjecting the RESS to conditions outside their intended operating range necessarily involves some risk of unintended failures. The responsible testing organization should consult the RESS manufacturer for information regarding the possible consequences of such failures, including the potential release of hazardous substances, so that appropriate precautions can be taken to ensure the safety of testing personnel.

The test facility needs to assure that it can accommodate the size of the RESS being tested as well as to assure the safety of personnel and facility structures. The test facility should be evaluated by the respective experts for structural integrity under conditions of high overpressure and extended fire, as well as evaluation of ventilation system and containment of potentially toxic materials. Consideration needs to be given to the total energy content and the potential high voltage of the RESS (where applicable) of the RESS, the size of the test room and the materials of construction. Secondary containment (such as oven or other test chamber) of the RESS is recommended if possible. Fire suppression systems may be incorporated into the facility but should not be used to mitigate the main abuse response of the RESS. 4.1.1 Number, Condition, and Size of Batteries to be Tested

Initial testing will use a new RESS and additional testing of aged or cycled RESS should be performed at the test sponsor’s or manufacturer’s discretion based on their determination of the most susceptible condition of the technology. Incorporating RESS manufacturer’s knowledge and existing information on how their devices perform under abusive conditions in the formulation of the test plan will improve the quality of the data and validity of the test results. The manufacturer will disclose in the test plan any hazardous substances that may be released during abuse tests.

These tests are intended to characterize the RESS response to undesirable “off-normal” conditions or environments that may arise as a result of operator negligence, vehicle accidents, device or system defects, poorly informed or trained users or mechanics, failure of specific RESS control and support hardware, or transportation/handling incidents or accidents. Tests in this document represent conditions for which the RESS was not designed or intended for use, but can reasonably be expected to be encountered infrequently during field use. Some of the tests are not applicable to all candidate RESS technologies. Many of these tests may result in intentional destruction of the device under test.

The required number of RESS units to be subjected to testing will depend on actual performance. It is acceptable to use a new RESS for each test. However, in many cases, it may be economically or technically desirable to subject a single device to multiple tests, either to reduce the number of test articles required or to study the interaction of multiple events (e.g., mechanical shocks followed by penetration, immersion, or high temperatures.)

Unless otherwise stated, passive protection devices that are integral to the RESS shall remain operational throughout the test. All active protective devices shall be disabled prior to the test. It is encouraged that additional operational tests be performed with active protection devices enabled to verify they function as designed.

Tests are grouped into four categories: hazardous substance monitoring, mechanical, thermal, and electrical abuse. Some tests have been arbitrarily classified as they contain more than one of these elements.

4.1.2 Types of Abuse Tests Addressed in this Document

TABLE 1 - RECOMMENDED AND OPTIONAL ABUSE TOLERANCE TESTS, INCLUDING THE NUMBER OF RESS CELLS, MODULES AND PACKS FOR EACH TEST

Section Recommended number of cells* Recommended number of modules

or packs(1)

4.2 Hazardous

Substance

Monitoring

Recommended

Tests

Optional

Tests

Recommended

Tests

Optional

Tests

4.2.1.1 Electrolyte vapor 2(2)

4.2.1.2 RESS cell forced

vent 6

4.2.1.3 RESS cell forced

vent with thermal

runaway 2

4.2.1.4 Pack level

hazardous

substance

monitoring 1

4.3 Mechanical Abuse Tests

4.3.1 Shock 2 2

4.3.2 Drop 1 4.3.3 Penetration 2 2

4.3.4 Roll-over 2 4.3.5 Immersion 2 4.3.6 Crush 2(3)1(3)

4.4 Thermal Abuse

Tests

Recommended

Tests

Optional

Tests

Recommended

Tests

Optional

Tests

4.4.1 High Temperature

Hazard Test 1

4.4.2 Thermal

Stability 2(4)

4.4.3 Cycling without

Thermal

Management 2

4.4.4 Thermal Shock

Cycling 2 2

4.4.5 Passive

Propagation

Resistance Test 1

4.5 Electrical Abuse Tests

4.5.1 Short Circuit 2 2 4.5.2 Overcharge 4 1

4.5.3 Overdischarge

(Forced

Discharge) 2 1

4.5.4 Separator

Shutdown

Integrity 2

1. A third test is required if results of duplicate tests are not in good agreement.

2. Two tests are required, but full cells are not involved.

3. Two tests per crush axis at the cell level. One test per crush axis at the pack level.

4. Presumes that the Thermal Stability Limit is known. Additional cells may be required if Thermal Stability Limit is not known prior to tests.

4.1.3 Test Conditions and Measurement Accuracies

All test articles shall be tested in conditions and states of charge which reflect the range of normal and off-normal conditions. This includes a fully charged state (100% SOC), at normal operating temperature with any cooling media in place and thermal control systems running unless specifically stated otherwise. The cell fixtures or holders for all abuse tests should be configured to simulate the mechanical and thermal environment they would experience in a module or pack.

The test configuration for modules or packs should include any provisions and hardware for vent gas collection, vent gas manifolding, and/or vent gas removal as intended by the RESS manufacturer for vehicle applications.Testing without system controls and mitigation devices is also recommended to determine the limits of abuse response for the cells and modules. All test articles will be observed for a time period of at least 1 h or until such time that said test article is judged safe to handle after each test unless specifically stated otherwise.

Except where specifically stated otherwise (e.g., elevated temperature abuse tests or when manufacturer’s recommended operating temperature is different from ambient temperature), the ambient temperature for any test defined in this document shall be within the range of 25 °C ± 5 °C, and the RESS environment shall be stabilized at this temperature prior to the start of testing.

Measured data shall be acquired at rates and with accuracies adequate to assure that the usefulness of the test data is not compromised. In the absence of more specific requirements by the test sponsor, the measurement accuracies in Table 2 shall be considered acceptable. Because of the wide variety of test dynamics, it is not possible to specify absolute data rates. However, the required data for a particular test shall be acquired at a rate such that errors due to test dynamics will not exceed the required measurement accuracies. For example, if the required accuracy for a given test is 10 °C, the temperature shall be measured sufficiently often that measurement delays will not contribute more than 10 °C error to the resulting data during the important parts of the test.

TABLE 2 - MEASUREMENT ACCURACIES

Parameter Accuracy

Temperature (the larger of) ± 2 °C or ± 5% of reading

Voltage, Current, Resistance ±1% of reading

Mass and Force ±1% of reading

Displacement Rate ±10% of reading

Vibration, Deformation ±4% of reading

Hazardous Substance Concentration ±10% of reading

4.1.4 Hazardous Substance Monitoring

This test measures amounts of hazardous substances (airborne volatiles and particulates) released when the RESS container vents or is compromised during an abusive event. A release means any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment.

The testing for hazardous substances should be performed on Cells as well as cell electrolyte. Testing will be done using a graded approach in which it is initially determined if hazardous substances are present or could be generated as a result of abuse above ERPG-2 levels. ERPG-2 refers to the Emergency Response Planning Guidelines, Level 2, from the American Industrial Hygiene Association. ERPG-2 levels are defined as the maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 h without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual’s ability to take protective action. Manufacturers will identify any hazardous materials that may be released by their products during abusive testing using standard analytical techniques. The release of hazardous substances shall be measured and referenced to the ERPG-2 levels.

Hazardous substance monitoring methods shall be selected to accurately measure anticipated release products; manufacturer’s input or initial screening tests shall be required to determine this. Further calculations will be done by the manufacturer in order to determine if any gas component exceeds ERPG-2 levels or falls into the concentration range between upper and lower flammability limits when mixed with air. The time resolution of such sampling is not specified because of the wide variability in test dynamics and release amounts/rates expected.

For substances not considered hazardous by ERPG-2, the EPA reportable release limits are used as a reference for comparison purposes only.

4.1.5 Flammability

Determination

Flammability should be measured whenever the Hazard Severity Level is to be determined during any test which may result in the release of potentially flammable materials. Flammability determination and spark ignition sources are not required for tests that are performed for other purposes, such as failure mode (tear down) or gas species analysis according to 4.1.4 (HAZARDOUS SUBSTANCE).

The determination of flammability requires the presence of an ignition source in combination with fuel and oxidizer in concentrations that will support combustion. A fire or flame will not be observed if any of these elements are absent. Credible abuse environments would likely include a spark source. For this reason, it is recommended that, when determining the Hazard Severity Level during any test described in this document (see Table 3),a continuous spark source (at least 2 sparks/sec with sufficient energy to ignite natural gas) be used during tests that are likely to result in venting of the RESS. The flammability of any expelled materials will be determined using external ignition sources in at least two separate locations around the RESS to evaluate flammability of different fuel to air ratios. Location of spark sources will be documented.

4.1.6 Identification of Severity

RESS response to abusive tests will be determined. Severity level described in Table 3 will be reported for each test and this information can be used in the Battery Safety and Hazards Risk Mitigation approach.

TABLE 3 - HAZARD SEVERITY LEVELS AND DESCRIPTIONS (ADAPTED FROM EUCAR AND SAND2005-3123) Hazard

Severity

Level Description Classification Criteria and Effect

0 No effect No effect. No loss of functionality.

1 Passive

protection

activated No damage or hazard; reversible loss of function. Replacement or re-setting of protection device is sufficient to restore normal functionality.

2 Defect/Damage No hazard but damage to RESS; irreversible loss of function. Replacement or repair

needed.

3 Minor

Leakage/

Venting

Evidence of cell leakage or venting with RESS weight loss < 50% of electrolyte weight.

4 Major

Leakage/

Venting

Evidence of cell leakage or venting with RESS weight loss > 50% of electrolyte weight.

5 Rupture Loss of mechanical integrity of the RESS container, resulting in release of contents. The

kinetic energy of released material is not sufficient to cause physical damage external to

the RESS.

6 Fire or Flame Ignition and sustained combustion of flammable gas or liquid (approximately more than one

second).Sparks are not flames.

7 Explosion Very fast release of energy sufficient to cause pressure waves and/or projectiles that may

cause considerable structural and/or bodily damage, depending on the size of the RESS.

The kinetic energy of flying debris from the RESS may be sufficient to cause damage as

well.

4.1.7 Measured

Data

The following is a list of measurements and data that will be collected as required and specified in the abuse tests described in this document. The data shall be collected before, during, and after the test for the specified post-test observation period (1 h).

a) FLAMMABILITY. The flammability of any solids, liquids and gases released during the mechanical abuse tests will be

analyzed according to 4.1.5. When determining the Hazard Severity Level, a spark source should be present to ignite any potentially flammable vent gases or vapors from DUT.

b) ACCELERATION. Acceleration exerted to the DUT case to be measured with a minimum of 2 kHz bandwidth.

c) DEFORMATION. RESS deformation to be determined by measurements before and after the test.

d) TEMPERATURE. The temperature of the RESS to be recorded at several external and internal (where applicable)

locations as a function of time.

e) VOLTAGE and RESISTANCE. Voltage and resistance of the RESS case with respect to the positive and negative

terminals before and after the test.

(WARNING: Check for voltage difference between terminals and case before resistance measurement. Do not perform a low-impedance type resistance measurement (e.g. ohm-meter) if a voltage is present. Resistance can be measured using AC impedance techniques with blocking capacitors.)

f) PHOTOGRAPHS. Still photographs of the test setup and the RESS, before and after the test, including the post-test

observation period.

g) VIDEO. Video monitoring for the duration of the test, including the observation after the test.

h) MASS. Mass of the DUT will be measured before and after the test to determine if venting and loss of contents has

occurred.

4.1.8 Test Plans and Reporting

Recommended Test Plans and Reporting format is given in Appendix A.

4.2 Hazardous Substance Monitoring Tests (Cell Level and Above)

This test evaluates hazardous substances (airborne volatiles and particulates) released when the RESS container vents or is compromised during an abusive event. All tests will be performed in duplicate. Smaller cells may be substituted in the series of tests only in the event that the RESS manufacturer’s commercial EV/HEV cell size is too large for completion of these tests. However, the RESS manufacturer must provide evidence that the smaller cells give representative performance and have all chemical constituents and passive protection devices of the commercial cells.

4.2.1 Test

Description

Tests require quantitative hazardous substance identification and monitoring to be conducted in a closed volume of appropriate size to accommodate the test article and provide adequate space for the vented gases. The concentration of the released hazardous substances shall be scaled to the full RESS pack for quantitative comparison and scaled to a volume appropriate to human exposure in the vehicle.

Electrolyte and representative parts of the RESS cell will be exposed to abuse tests and analyzed for their airborne volatiles and particulates. Four types of tests are to be conducted:

1) Electrolyte vapor analysis.

2) Cell forced vent without thermal runaway.

3) Cell forced vent with thermal runaway.

4) Pack level hazardous substance monitoring will be performed in conjunction with one other pack level abuse tests

during which combustion of the cells and pack materials is expected.

When cells are used, they will be charged to 100% SOC and inserted into a closed chamber.

#1

4.2.1.1 Test

A sufficient amount of electrolyte to saturate the gas volume (i.e., liquid must always be present during the test) is placed in a closed chamber at the upper operation temperature of the cell or 50 °C, whichever is higher, and >90% humidity. After 60 min at temperature, the vapors are sampled.

#2

4.2.1.2 Test

Cells will be exposed to each of the following three abusive conditions without entering thermal runaway:

a) thermal stability at elevated temperature (4.4.2),

b) overcharge (4.5.3), and

c) overdischarge (4.5.4).

If venting occurs, vented airborne volatiles and particulates will be analyzed.

4.2.1.3 Test

#3

The method to force a cell into thermal runaway shall be left to the discretion of the tester. In the report, the method chosen to force the cell into thermal runaway will be described in detail and the choice justified, since the method used may significantly influence the nature of the vented airborne volatiles and particulates. One method is to apply heat from an external source and heating the chamber at 5 °C/min to 400 °C. Another method may involve overcharging the cells. Vented airborne volatiles and particulates will be analyzed.

#4

4.2.1.4 Test

Pack level hazardous substance monitoring will be performed in conjunction with one other pack level abuse tests during which combustion of the cells and pack materials is expected. Localized sampling of combustion products will be performed to determine the possible presence of hazardous gas species released from the combined combustion of the pack materials. Total containment of the pack is not required during this test.

Data

4.2.2 Measured

a) The data shall be collected before, during, and after the test for the specified post-test observation period (1 h). All

solids, liquids and gases released during the abuse tests will be identified by using accepted analytical techniques.

This includes the airborne samples collected during testing and the swiped samples from the chamber walls.

Examples of acceptable analytical techniques are EPA Methods TO-15 and TO-17. (See https://www.wendangku.net/doc/ab15794186.html,/ttnamti1/files/ambient/airtox/to-15r.pdf or https://www.wendangku.net/doc/ab15794186.html,/ttnamti1/files/ambient/airtox/to-17r.pdf.

b) Cell mass before and after test. (MASS).

c) Still photographs of the test setup and the DUT, before and after the test, including the post-test observation period.

(PHOTOGRAPHS)

d) Concentrations of gas scaled to the full pack and scaled to an appropriate volume will be compared to LFL and UFL

(where they are known) to estimate the potential flammability.

e) Pack Level Test only – the flammability of any solids, liquids and gases released during the mechanical abuse tests

will be analyzed according to 4.1.5. When determining the Hazard Severity Level, a spark source should be present to ignite any potentially flammable vent gases or vapors from DUT.

4.3 Mechanical Abuse Tests

The mounting and support of the RESS shall be as similar as possible to the manufacturer’s recommended installation requirements for mechanical shock and vibration tests. If the support structure has any resonance below 50 Hz, the input will be determined by the average of the acceleration at each of the major support points.

4.3.1 Shock Tests (Cell Level or Above)

Description

4.3.1.1 Test

Subject the DUT to shock events at one or more defined shock levels. The shock test described in Section 38.3 of the UN “Manual of Tests and Criteria” for Transport of Dangerous Goods is to be applied to cells regardless of cell chemistry. The shock levels and durations described in Table 4 are to be applied to the Pack. Each shock level is specified in terms of a velocity change and a corresponding maximum duration. (Shock duration is defined as the time between 10% and 90% of peak value.) The DUT should be observed for a minimum of 1 h after the test.

TABLE 4 - SHOCK LEVELS AND DURATIONS

Acceleration Duration Pulse Form Total Number of Shocks

Pack 25 g 15 ms half sine 18 = 3 repeats on 3 axes in both

positive and negative directions

Data

4.3.1.2 Measured

The following data shall be collected as part of this test:

a) Acceleration exerted to the DUT case to be measured with a minimum of 2 kHz bandwidth. (ACCELERATION)

b) DUT deformation to be determined by measurements before and after the test. (DEFORMATION)

c) The temperature of the DUT to be recorded at several external and internal (where applicable) locations as a function

of time. (TEMPERATURE)

d) Voltage and resistance of the DUT case with respect to the positive and negative terminals before and after the test.

(VOLTAGE and RESISTANCE)

e) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

f) Mass of the DUT will be measured before and after the test to determine if venting and loss of contents has occurred.

(MASS for cells only)

g) For pack-level testing in systems which include a high-voltage isolation and/or high-voltage interlock system, changes

in the reported high voltage isolation state or high voltage interlock state from initial values will be noted at the end of the test exposure.

4.3.2 Drop Test (Pack Level Only)

4.3.2.1 Test

Description

Drop the DUT (free drop) from 2 meters onto a hard flat surface in the most vulnerable orientation. A horizontal impact into a hard flat surface with an equivalent velocity and deceleration on impact is acceptable. The DUT should be observed for a minimum of 1 h after the test.

4.3.2.2 Measured

Data

The following data shall be collected as part of this test:

a) Acceleration exerted to the DUT case to be measured with a minimum of 2 kHz bandwidth. (ACCELERATION)

b) DUT deformation to be determined by measurements before and after the test. (DEFORMATION)

c) The temperature of the DUT to be recorded at several external and internal (where applicable) locations as a function

of time. (TEMPERATURE)

d) Voltage and resistance of the DUT case with respect to the positive and negative terminals before and after the test.

(VOLTAGE and RESISTANCE)

e) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

f) For pack-level testing in systems which include a high-voltage isolation and/or high-voltage interlock system, changes

in the reported high voltage isolation state or high voltage interlock state from initial values will be noted at the end of the test exposure.

4.3.3 Penetration Test (Cell Level or Above)

4.3.3.1 Test

Description

Penetrate the DUT with a mild steel (conductive) rod. The diameter of the rod, its end type, as well as the depth and rate of its penetration can be found in Table 5. The orientation of the penetration shall be perpendicular to the cell electrodes. The DUT should be observed for a minimum of 1 h after the test with the rod remaining in place. If parallel cells are used in the Module, the cell level test should be configured with the same number of cells in parallel to the cell that is to be penetrated. When determining the Hazard Severity Level, a spark source should be present to ignite any potentially flammable vent gases or vapors from DUT.

TABLE 5 - PENETRATION CHARACTERISTICS

Size of Test

Object Diameter of Rod Rod End Type Rate of Penetration Minimum Depth of Penetration

Cell 3 mm Tapered to a sharp point 8 cm/s or greater Through cell Module/Pack 20 mm Tapered to a sharp point 8 cm/s or greater Through 3 cells or 100 mm

whichever is greater

4.3.3.2 Measured

Data

The following data shall be collected as part of this test:

a) Acceleration exerted to the DUT case to be measured with a minimum of 2 kHz bandwidth. (ACCELERATION)

b) DUT deformation to be determined by measurements before and after the test. (DEFORMATION)

c) The temperature of the DUT to be recorded at several external and internal (where applicable) locations as a function

of time. (TEMPERATURE)

d) Voltage and resistance of the DUT case with respect to the positive and negative terminals before and after the test.

(VOLTAGE and RESISTANCE)

e) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

f) Rate of Penetration will be measured during the test.

4.3.4 Roll-over Test (Module and Pack Level)

Description

4.3.4.1 Test

Rotate the DUT one complete revolution in 1 min in a continuous slow roll fashion, and observe whether any material leaks from the DUT. Then rotate the DUT in 90 degree increments for one full revolution. Observe the DUT for 1 h at each position and for a minimum of 1 h after the test.

Data

4.3.4.2 Measured

The following data shall be collected as part of this test:

a) The temperature of the DUT to be recorded as a function of time. (TEMPERATURE)

b) Voltage and resistance of the DUT to be recorded as a function of time. (VOLTAGE and RESISTANCE)

c) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

4.3.5 Immersion Test (Module or Pack Level)

Description

4.3.

5.1 Test

With the DUT in its normal operating orientation and at full state of charge, immerse the DUT in ambient temperature salt water (5% by weight NaCl in H2O) for a minimum of 2 h or until any visible reactions have stopped. The water depth must be enough to completely submerge the DUT. The DUT may be placed into a tank filled with water or may be placed in an empty tank and water pumped into the tank to fully submerge the DUT.

Data

4.3.

5.2 Measured

The following data shall be collected as part of this test:

a) The temperature of the DUT to be recorded as a function of time. (TEMPERATURE)

b) Voltage and resistance of the DUT to be recorded as a function of time. (VOLTAGE and RESISTANCE)

c) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

d) Gas analysis to measure potential gases produced by electrolysis of salt water (e.g., hydrogen or chlorine gas)

4.3.6 Crush Test (Cell Level or Above)

4.3.6.1 Test Description

The DUT shall be crushed between a fixed surface and a crush fixture that results in sufficient localized deformation to cause shorting. For modules and packs, the crush fixture shall consist of a textured platen with semi-cylindrical crush surfaces of a diameter comparable to the smallest dimension of the DUT. The number and spacing of the semi-cylindrical crush surfaces should be sufficient to span the main area of the DUT where shorting can occur. Figure 1 illustrates an example of the approximate shape of a platen with 3 semi-cylindrical crush surfaces of 75 mm radius separated by 30 mm. For individual cells, crush will be performed using a crush fixture of sufficient length to cause deformation over a major portion of the crush surface. For prismatic and pouch cells, the crush fixture surface should contact the cell parallel to the crush surface. For cylindrical cells, a single cylindrical crush bar should be used of diameter comparable to the diameter of the cell with the long axis of the crush bar perpendicular to the long axis of the cell and parallel to the cell surface. See Figure 2 for a photograph of an example of a cylindrical cell crush fixture for cells.

FIGURE 1 - EXAMPLE OF A CRUSH TEST PLATEN FOR MODULES AND PACKS

FIGURE 2 - PHOTOGRAPH OF AN EXAMPLE OF A CYLINDRICAL CRUSH TEST FIXTURE FOR CELLS Radius 75 mm

Spacing 30 mm

The DUT shall have all integrated control and interconnect circuitry (if provided--may not be applicable at the cell level) in place and operating. A DUT is to be crushed in at least two of the three axes (using a different RESS for each crush), with the semi-cylindrical crush surfaces of the platen at the most vulnerable location to include the main cell area. The long axis of the crush surfaces should be oriented perpendicular to the cell major dimension so that the cells are deformed and not merely spread apart. For each DUT, crush to 85% of the initial dimension and hold for 5 min. After the hold period, continue the crush to 50% of the initial dimension. The crush force should be limited to a maximum of 1000 times the weight of the DUT. The crush speed should be sufficiently slow to allow determination of the source of any shorting and the rate of internal heat propagation leading to possible thermal runaway (between 0.5 and 1 cm/min for packs and between 0.5 and 1 mm/min for cells). If the test is performed outside, the wind speed should be <3 mph. When determining the Hazard Severity Level, a spark source should be present to ignite any potentially flammable vent gases or vapors from DUT.

4.3.6.2 Measured

Data

a) Acceleration Force exerted to the DUT case to be measured with a minimum of 2 kHz bandwidth. (ACCELERATION)

b) DUT rate of deformation to be determined by measurements during the test. (DEFORMATION)

c) The temperature of the DUT to be recorded at several external and internal (where applicable) locations as a function

of time. (TEMPERATURE) In addition, air temperature immediately above the DUT shall be monitored as an aid to detect the presence of flames.

d) Voltage and resistance of the DUT case with respect to the positive and negative terminals before and after the test.

(VOLTAGE and RESISTANCE)

e) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

f) Mass of the DUT will be measured before and after the test to determine if venting and loss of contents has occurred.

(MASS for cells only)

g) The flammability of any solids, liquids and gases released during the mechanical abuse tests of cells will be analyzed

according to 4.1.5. When determining the Hazard Severity Level, a spark source should be present to ignite any potentially flammable vent gases or vapors from DUT.

h) For pack-level testing in systems which include a high-voltage isolation and/or high-voltage interlock system, changes

in the reported high voltage isolation state or high voltage interlock state from initial values will be noted at the end of the test exposure.

4.4 Thermal Abuse Tests

4.4.1 High Temperature Hazard Test (Pack Module Level and Above)

Description

4.4.1.1 Test

The objective of this test is to intentionally destroy a DUT at temperatures that might be experienced in a fuel fire and evaluate the risk of explosion hazard.

The objective of this test is to reproduce the temperature experienced in a fuel fire (890 °C nominal) in a manner that allows collection of data and gas samples that cannot be achieved in an actual fuel fire test. The thermal chamber temperature shall be achieved within 90 s and held for a period of 10 min or until another condition occurs which would prevent the completion of the tests. This test can be performed by placing the DUT inside a “radiant heating” fixture described below. The DUT will be at 100% SOC. The DUT will not be insulated or protected unless this is the standard configuration for the test article. If the DUT ignites, it may be extinguished with a method appropriate for the technology after the completion of the test.

The suggested “radiant heating” test fixture is a thin cylindrical metallic fixture whose inside is coated such that it will radiate approximately like a black body. The exterior surface is heated with radiant energy from arrays of quartz lamps (or other heat sources). The test temperature is controlled by thermocouples mounted on the interior surface of the fixture, with the device under test placed in the center of the fixture such that it does not contact the fixture walls. A sketch of such a test fixture is shown in Figure 3.

If such a fixture is not available, this test can be conducted using some other means (e.g., a tube furnace and conveyer mechanism) that would expose the DUT to non-contact heat from a radiating surface at 890 °C ± 5%. The thermal environment of the DUT should increase from ambient to 890 °C within 90 sec.

Note that pack level hazardous substance monitoring (4.2.4 Test #4) is recommended during this test.

Radiant Energy

Applied to

Exterior Surface

RESS Placed

Inside Cylinder

FIGURE 3 - RADIANT HEATING FIXTURE TEST FIXTURE

Data

4.4.1.2 Measured

The following data shall be collected as part of this test:

a) The temperature of the DUT to be recorded as a function of time. (TEMPERATURE)

b) Voltage and resistance of the DUT to be recorded as a function of time. (VOLTAGE and RESISTANCE)

c) Video monitoring for the duration of the test, including the observation after the test as well as photographs of the test

setup and the DUT, before and after the test, including the post-test observation period. (PHOTOGRAPHS and VIDEO)

d) Note ignition of flammable gases.

电动架车机安全操作规程(2021版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电动架车机安全操作规程(2021 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

电动架车机安全操作规程(2021版) 1.经考试合格并持有操作证者,方准进行操作。操作者必须严格遵守安全、交接班等制度。 2.工作前应严格按照润滑规定进行注油,并保持油量适当,油路畅通,油杯、油芯、油堵等清洁。 3.检查电气装置、安全装置、传动装置是否正常。固定式架车机的基础螺栓紧固无缺损。 4.启动电动机10min左右,检查音响信号、传动机构是否正常。横梁升、降水平位置正确无误。上、下限位开关作用灵活有效。 5.电动架车机使用时应同步运转。 6.架车时先检查上下前后有无人工作及障碍物,而后认真执行呼唤应答,不准超过上、下限界。 7.架车机运转中注意监视前后托架平衡,横梁的上升高度是否

一致。上升到需要高度时立即停车,拉开电源开关。 8.起车和落车时如发现架车机横梁发生歪斜,应立即停车进行处理。 9.如两对电动架车机同时使用则必须由一人指挥,做好呼唤应答。 10.工作后,必须检查、清扫设备,做好日常保养工作,拉开电源开关,达到整齐、清洁、润滑、安全。 云博创意设计 MzYunBo Creative Design Co., Ltd.

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展, 汽车保有量逐年增加汽车尾气对空气的污染也日益加重, 这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题, 使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长, 动力性好的优点, 又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1 国外发展现状

20世纪90年代以来,世界许多著名汽车生产 厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV 的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997 年8 月推出其第一款混合动力 汽车Toyota Coaster Hybrid EV minibus, 同年12 月,推出Toyota Prius(普锐斯)这是世界第一款 大量生产的混合动力汽车。自第一代Prius 开始销 售以来,截止到中Prius 标准型每升汽油可行驶35.5 公里。到2010 年7 月31 日,累计销量已超过268 万辆。目前市场上正热销的两款车型分别为 丰田Prius 和本田Insight 。在2010年4 月份举 办的北京车展上,共有8 款日系混合动力汽车展出, 其中丰田第三代普锐斯性能最优越,本田Insight 被 认为同级中最省油,本田CR-Z 具有运动风格受到人 们的关注。日本国内对混合动力汽车产业有长期的发展规划,政府大力扶持产业技术发展,出台一系列税收优惠政策及奖励措施,促进混合动力汽车销售,拉动内需;规划长远发展战略。 美国三大汽车公司原来只是小批量生产、销售过电动汽车,而混合动力和燃料电池电动汽车还未能实现产业化,日本的混合动力电动汽车在美国市场上占据了主导地位。美国能源部与三大汽车公司于1993 年签订了混合动力电动汽车开发合同,并于1998年在北美国际汽车展上出了样车。2005年9 月通用汽车、戴姆勒·克莱斯勒与宝马集团签署了关于构建全球合作联盟,以共同开发混合动力推进系统的合作。2009 年美国混合动力汽车销量达到 29.032 万辆虽然占美国汽车市场份额只有2.8%,但从2005 年起呈逐年上升趋势预计,美国的混合动力汽车2013 年将达到 87.2 万辆,市场占有率将达到5%。 1.2 国内发展现状目前,我国在新能源汽车的自主创新过

电动自行车充电安全管理规定范本

工作行为规范系列 电动自行车充电安全规定(标准、完整、实用、可修改)

编号:FS-QG-51412电动自行车充电安全规定 Electric bicycle charging safety regulations 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 为规范电动自行车(含电动三轮车)的管理,给广大员工电动自行车的充电提供方便,确保电动车的充电安全,特制定本规定。 一、综合办公室负责电动自行车充电处的管理,门卫负责日常监管。 二、本充电处只限本公司上下班路途在十公里以外和在公司住宿的内部员工使用。特殊情况须报告当班领导,由当班领导同意方可使用。充电人员对充电器双相插头至连接车体线路、车体本身,和充电过程负全责。 三、本充电处只限电动自行车充电。未经允许不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,充电时长不得超过4小时。不充电或充电完毕的自行车不得停于此处,应退回到

指定的停车场地,以方便下一辆自行车充电。 五、充电处的供电时间为正常工作日的早08:00分至当日下午17:00分,共9小时,因充电时间过长,充电器、电瓶、线路陈旧老化、电动车倾倒等原因而引起的火灾及其他伤害,造成公司及他人人身伤害及经济损失的由车辆所属员工负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端双向插头连接于充电处的插座上。如果反方向操作,接口处可能打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害事故。 七、员工每天对充电电动车进行安全状态确认,对充电器、插座、插头、线路进行检查,坚持做到多闻、多看、防止线路过热引发事故。门卫负责充电处合闸、拉闸、充电员工登记和日常安全检查,发现异常情况当即处理,处理不好的及时向领导汇报。 八、严禁雨雪、大雾、潮湿天气充电,充电器应放置在远离火源处,禁止将衣物、护膝等可燃物放置在电车上。 九、充电处配备的专用消防器材未经允许不得随意挪动。

纯电动客车操作安全规范

纯电动客车操作安全规范 一、驾驶操作规范 1.启动操作规范: 1.1准备启动 按顺序依次打开各开关,首先打开机械式手拨开关并停留2秒,其次打开电源总开关,最后将点火钥匙旋转至ON档后等待片刻,至仪表完全启动。 1.2检查以下仪表参数是否正常 1.2.1.气压表指示应大于6; 1.2.2.检查档位是否处于N档,N档指示灯是否点亮,仪表是否显示N档字样; 1.2.3.检查仪表是否有故障报警; 1.3车辆启动 首先将点火钥匙从ON档旋转至START档,停留2秒后松开,仪表盘显示READY字样;其次踩下制动踏板后将档位调整至D档;然后松开手刹开关,将其置于“行车”位置,确定车辆前方无行驶障碍后松开制动踏板后车辆便可缓慢行驶。(起步时应缓慢踩下油门,切严禁起步猛踩油门) 1.4换挡操作 踩下制动踏板至车辆停止后进行换挡,严禁车辆行驶中换挡。 1.5停车/收车 停车时踩下制动踏板,将车辆停稳后置档位于N档。拉起断气刹

手柄,将其置于“停车”位置后逆时针关掉点火钥匙,并拔出。然后依次关闭电源总开关、手拨开关。最后关好车门车窗。 二、道路行驶规范 由于新车型采用无极变速,行驶中无需换挡,车辆根据驾驶员给油大小变换车速。所以,控制好油门是车辆平稳行驶的关键。另外,该车型使用的是按键式档位控制器,D表示前进档,R表示倒挡,N 表示空档。档位控制器最上方有档位数字显示,驾驶员可根据具体情况选择档位,操作中必须掌握各档位显示意义。 三、经济驾驶规范 不同驾驶员的操作习惯,可能造成大约20%的能耗差别。所以,客车驾驶员要养成良好的驾驶习惯。主要包括在各种使用条件下油门、制动踏板的配合操纵等。以下便是经济驾驶规范: 1.柔和起步:车辆起步时应平稳柔和的操作加速踏板,实现车辆柔和起步。 2.柔和加速:车辆在加速过程中应平稳柔和的操作加速踏板,实现车辆柔和加速。 3.避免高速行驶:电能的消耗是随着车速的上升而上升,因此在车辆行驶中要将车速尽量控制在40km/h。 4.保持匀速行驶:保持匀速行驶是车辆最节能的行驶状态。 5.预见性减速、减少制动:尽量减少制动次数和制动幅度,避免因减速再进行加速而造成过多的电能消耗。 6.保持轮胎正常充气压力:定期检查胎压是降低电能消耗的重要

储能与电动汽车

储能与电动汽车 电动汽车作为储能设备的应用 电动汽车应用于储能,具有其自身的优势。首先,电动汽车在使用中有90%的时间处于停泊状态,车载电池可以被看作一个分布式储能单元。其次,电动汽车的电池能量密度高,即使淘汰下来的二次电池也可以作为储能设备提供提供几小时稳定电量。因此,电动汽车作为储能设备应用广阔。目前,人们比较看重的电动汽车在储能领域的应用主要包括:电池的梯次利用以及V2G技术。 (一)电池的梯次利用 电池的梯次利用的应用 电池的梯次利用是指电动汽车电池使用周期结束后仍然具有很大价值,可以根据其性能进行不同梯次利用。随着电动汽车的发展,电动汽车用电池的数量会越来越多,电动汽车电池的梯次利用将会成为很重要的一类储能设备。 一般情况下,锂离子电池的使用寿命在5年左右。当电池用旧只能充满原有电容量80%的时候,就不再适合于继续在电动汽车上使用。通过梯次利用,废旧的动力电池可以用来: ●安装在住宅和工业建筑使用的太阳能光伏储能上,节省电费 ●作为备用电源及不间断电源(UPS) ●削峰填谷 ●可再生能源发电接入 电池的梯次利用的发展前景 梯次电池的利用不仅可以让动力电池性能得到充分的发挥,有利于节能减排,还可以缓解大量动力蓄电池进入回收阶段给回收工作带来的压力。 尽管电动汽车目前在全球尚未大规模市场化,但电动汽车动力蓄电池的回收利用体系已引起各国政府和企业的关注。例如,日本因丰田普锐斯混合动力汽车,已经初步建立了“蓄电池生产-销售一回收-再生处理”的镍氢动力蓄电池回收利用体系。德国环境部己支持相关研究机构和企业开展动力蓄电池回收利用研究项目,目的是研究蓄电池材料的回收利用方法、动力蓄电池回收网络体系建设和蓄电池拆解流程。美国能源部近期资助950万美元给Toxco 公司,以支持其建立美国第一家捏离子蓄电池回收再利用工厂。日本矿业金属公司和日本著名蓄电池制造商汤浅(GS Yuasa)公司也在计划从废旧的电动汽车用蓄电池中回收锂资源。 (二)V2G技术 V2G技术应用 V2G(Vehicle-to-grid的简称)技术是最近几年发展起来的新型技术,是“智能电网”的重

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题,使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长,动力性好的优点,又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1国外发展现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款大量生产的混合动力汽车。自第一代Prius 开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到2010年7月31日,累计销量已超过268万辆。目前市场上正热销的两款车型分别为丰田Prius和本田Insight。在2010年4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最

关于加强电动自行车停放及充电安全管理的通知

关于加强电动车停放及充电安全管理的通知 现在电动车的数量越来越多,不管是电动汽车还是电动自行车等,都有许多人驾驶。其中电动自行车充电的安全隐患最大,总是可以看到电动车充电引起火灾的新闻。电动车如何合理摆放、保证充电安全,需做到以下几点: 一、保证安全的充电环境 1.电动车不能在室内充电,一但发生火灾,会造成逃生通道堵塞,造成更大的灾害。如有发生安全事故,租客自行负全责,与房东无关。 2.在充电的时候,电动车容易引发火灾等安全隐患,需要选择良好的环境进行充电,充电的时候会散发出热量,如果温度过高,极易引发火灾,所以需要充电环境通风且环境温度不能过高。 3.电动车在充电时绝大多数是在室外,因此要做好防雨,避免充电器、插线板等进水造成危险。 4.电动车不能在夜间充电。 5.电动车要尽量选择专区统一存放。 二、保证充电器质量 电动车引起火灾等安全隐患中,充电器的质量问题引起的不在少数,所以一定要保证充电器的质量。充电器的质量不好,主要是元器件散热不好、元器件品质低劣、缺少保护部件、材质易燃等问题,切不可图便宜,购买品质差的充电器。 三、充电时间

在充电的时候,一定要按照规定的时间进行充电,如果充电时间太长,电池就容易发生危险,引起火灾等危害。一定要记住充电时间,充电完成后立即切断电源。 四、加强巡视 电动车在充电的时候,要保证有专人巡视,不是说整个充电过程需要一直值守,但是附近要有人,或定时巡视。 五、正确的充电方法 在充电的时候,充电的方法也要正确,切记电动车在启动的时候充电,也要按要求连接充电器等,不然容易引发危险,主要就是火灾。 六、充电线路 保证充电线路的安全,要使用达标的线路,如果线路太细或者虚接,容易造成线路发热或者烧断,甚至起火。还需要确保电线的质量,而且线路要选择安全的路由,不要以危险的方式将线路拉到电动车充电,线路和插线板以及充电器不要放在地上,容易压坏或者进水。 七、线路要有保护装置 在给电动车充电的线路上需要有断路保护装置,发生短路等危险的时候,可以自动切断电源。 八、定期对电动车进行检修 需要定期检查电动车,尤其是电瓶和线路要重点去检查,确保安全,不发生火灾的危险。

电动汽车的研究背景及现状

电动汽车的研究背景及现状 1.研究的背景 汽车的发展引起了地球资源的过大消耗。地球上的能源是有限的,能源紧缺是全人类面临的越来越严重的问题,是一个全球问题,关系到全球的经济与军事安全。我国的能源问题已经成为国民经济发展的战略问题,从国家安全角度出发,石油资源已经和国家安全、经济发展紧密的联系起来,能源的稳定供应是一个国家所关注的重点,也是我国能源安全战略的核心内容。如果继续按照传统的能源动力系统发展下去,将难以持续我国这个泱泱汽车大国的兴起。 汽车在给人们带来便利的同时也污染了环境。汽车尾气的排放引起了城市的温室效应,同时也引起了臭氧层的破坏,形成酸雨等大气环境问题,进而对动植物也产生了很大的危害。面对汽车造成的空气污染,人们可以直接闻到汽车尾气排放的带有刺鼻臭味的燃烧不完全的雾化混合气。随着生活水平的提高,人类对生存环境的要求越来越高,降低汽车的尾气排放的呼声也与日俱增。 面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势。 1.1电动汽车的定义和分类 电动汽车是指用车载电源为动力,电动机驱动车轮行驶,符合道路交通、安全法规各项要求的汽车。电动汽车应具有汽车的性能和属性,但动力线路与原内燃机动力线路不同,又具有电力车辆的基本特征。电动汽车通常被分为蓄电池电动车(Battery Electric Vehicle,BEV)、混合动力电动汽车(Hybrid Electric Vehicle,HEV)和燃料电池电动汽车(Fuel Cell Electric Vehicle,FCEV)三大类。 1.2电动汽车的早期发展 尽管电动汽车技术目前看来还处于新兴发展时期,但它的产生却早于燃油车,并已经历了多个兴衰周期。以下是主要的时期: 1834年 Thomas Davenport 电动三轮车不可充电的干电池驱动 1881年法国古斯塔夫?特鲁夫电动三轮汽车以铅酸电池为动力 1882年英国人阿顿与培里三轮电动汽车以铅酸电池为动力 1890年美国电动汽车以蓄电池为动力 直到20世纪60年代后,由于能源、环境问题使人们对电动汽车又开始重新重视,世界各国政府与汽车制造商对电动汽车的研究开发均有不同程度的投入。但主要还是在近来十几年中,电动汽车的研究开发进入了高峰期,并在各项技术发展商开始取得了一定的成果和进步。 2.电动汽车在各国的发展现状 近几十年来,世界各国著名的汽车制造商都在加紧研制各类电动汽车,并取得了一定程度的进展和突破。 2.1日本 日本一直以来出于对能源危机和环境保护的关注及占领未来世界汽车市场的考虑,十分重视电动汽车的研制和开发。以下是日本研制电动汽车的进程: 1976年日本成立电动汽车协会 20世纪80年代本田公司开始研究开发电动汽车 1996年本田推出“PLUS”纯电动汽车 1997年本田的“PLUS”被推向了美国 1997年12月丰田公司推出第一款批量生产的混合动力轿车普锐斯

电动车充电安全管理规定

电动车充电安全管理规 定 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电动车充电安全管理制度 为规范电动车充电的管理,给部分员工在电动车缺电等应急情况下提供充电,确保员工安全回家,同时也为保障充电过程的安全,特制定电动车充电安全管理制度如下:一、所有需要充电的电动车必须由本人提出充电申请,从当班主管处领取《电动车应急充电审批表》,如实填好后在门卫室做好登记并交由门卫统一存档管理。电动车充电一律停放在北一门固定充电处交由门卫监管以确保充电安全。 二、仅允许部分员工在电动车缺电等应急情况之下充电,同一部车月累计充电不超过3 次,当班同时不超过两部在充电,以免占用过多充电位,单位总充电次数月累计不超过30次。充电人员对充电器双相插头至连接车体线路、车体本身,和充电过程负全责。 三、不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,不充电或充电完毕的电动车尽量不放置在充电位置, 以方便下一辆电动自行车继续充电。 五、在充电处充电时,由于充电时间过长,充电器、电瓶、线路陈旧老化,电动车倾倒等 个人原因引起的火灾及其他伤害,从而造成的任何人身伤害及经济损失均由车主负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端 双向插头连接于充电处的插座上。如果反方向操作,接口处可能打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害事故。 七、充电员工在充电前需对充电电动车进行安全状态确认,对充电器、插座、插头、线 路进行检查,坚持做到多闻、多看、防止线路过热引发事故。发现异常情况当即处理,无法处理的及时向领导汇报。 八、严禁雨雪、潮湿天气充电,充电器应放置在远离火源处,禁止将衣物、护膝等可燃 物放置在电车上。 九、充电处配备的专用消防器材未经允许不得随意挪动。 十、本规定从公布之日起实施。 武汉爱普工业服务有限公司 审批人:

电动汽车结构与原理

1.纯电动汽车: 指由蓄电池或其他储能装置作为电源的汽车。 指将一部分动能转化为电能并储存在储能设备装置内的制动过程。 指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶 的最大距离。 4. 逆变器:指将直流电转化为交流电的变换器。 5. 整流器:指将交流电变化为直流电的变换器。 DC 变换器:指将直流电源电压转换成任意直流电压的变换器。 7. 单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。 8. 蓄电池放电深度: 指称为“DOD ,表示蓄电池的放电状态的参数,等于实际放电 量与额 定容量的百分比。 9. 蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用 “SOC ,指蓄电池放电后剩余容量与全荷电容量的百分比。 15.蓄电池充电终止电压: 指蓄电池标定停止充电时的电压。 16.蓄电池放电终止电压: 指蓄电池标定停止放电时的电压。 17.蓄电池能量效率: 指放电能量与充电能量之比值。 18.蓄电池自放电: 指蓄电池内部自发的或者不期望的化学反应造成的电量自动减少的现 象。 19. 车载充电器:指固定安装在车上的充电器。 20. 恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。 21. 感应式充电:指利用电磁感应给蓄电池进行充电的方式。 22. 放电时率:电流放至规定终止电压所经历的时间。 23. 连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。 24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数 2.再生制动: 3.续驶里程: 11.蓄电池完全充电: 指蓄电池内所有的活性物质都转换成完全荷电的状态。 12.蓄电池的总能量: 指蓄电池在其寿命周期内电能输出的总和。 13.蓄电池能量密度: 指从蓄电池的单位质量或体积所获取的电能。 14.蓄电池功率密度: 指从蓄电池的单位质量或单位体积所获取的输出功率。 C 表示。 10.荷电状态:称为

电动汽车的新型储能装置

电动汽车的新型储能装置 作者:刘延林 来源:《沿海企业与科技》2008年第03期 [摘要]文章重点介绍超级电容器的结构特点、性能优势、研究进展及应用领域。以期在倡导建设节约型社会中,使更多的新能源汽车生产厂家,对这一新型储能装置有更深的了解和认识。 [关键词]超级电容器;电动汽车;辅助能源 [作者简介]刘延林,国家机动车产品质量监督检验中心(上海),研究方向:新能源汽车检测工程技术,上海,201805 [中图分类号] U469.72 [文献标识码] A [文章编号] 1007-7723(2008)03-0034-0005 一、引言 超级电容器也称电化学电容器,具有良好的脉冲性能和大容量储能性能,质量轻、循环性能好,是一种新型绿色环保的储能装置,近年来受到科研人员的广泛重视及应用市场的关注。 在现代高科技产业发展领域中,由于大量大型装备配套动力电源系统既要求具备高比能量,又要求电源系统具备高比功率,而就化学电源本身的特性而言,两者很难兼顾。特别是在需要高功率脉冲输出的场合,常规的化学电源很难满足要求,如军用特种车辆在全天候条件下的快速启动、卫星通讯、爬坡等等。上述场合现在通常使用铅酸、镉镍等电池产品作为电源时,其比功率往往在100~300W/kg,不仅笨重、维护复杂而且充电速度低、使用寿命短。而超级电容器组合的比功率可以达到1500~5000W/kg。同时,不含充电电池组的超级电容器组合的比功率更可以达到1500~10000W/kg,其特性更适于未来艰苦环境工作以及相关电子技术进步对电源系统提出的技术要求。 二、超级电容器的结构 虽然,目前全球已有许多家超级电容器生产商可以提供许多种类的超级电容器产品,但大部分产品都是基于一种相似的双电层结构,超级电容器在结构上与电解电容器非常相似,它们的主要区别在于电极材料,如图1所示。 三、超级电容器应用于汽车领域 随着环保型电动汽车研究的兴起和发展,目前在民用领域中,超级电容器与各类动力电池配合使用组成复合电池,应用于电动汽车的电源启动系统,在车辆的起步、加速、爬坡、制动

混合动力汽车发展现状及趋势

混合动力汽车成长现状及趋势 令狐采学 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的位置。本文主要对混合动力汽车成长的必定性,及其我国在成长中存在的一系列问题进行了阐发。指出了混合动力汽车的优缺点,并为其在未来的成长中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的成长,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极年夜的挑战。因此汽车行业不克不及不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重年夜的进展。可是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池自己的污染等问题,使得电动汽车的成长进度和财产化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电念头和帮助动力单位组合作为驱动力,帮助动力单位实际上是一台小型燃料发机或动力发机电组。这样既利用了发念头继续工作时间长,动力性好的优点,又可以阐扬电念头无污染、低噪声的好处。在现阶段,混合动力有很好的成长前景。 1.国内外成长现状 1.1国外成长现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的

重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款年夜量生产的混合动力汽车。自第一代Prius 开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到7月31日,累计销量已超出268万辆。目前市场上正热销的两款车型辨别为丰田Prius和本田Insight。在4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最优越,本田Insight被认为同级中最省油,本田CRZ具有运动气概受到人们的关注。日本国内对混合动力汽车财产有长期的成长规划,政府年夜力搀扶财产技术成长,出台一系列税收优惠政策及奖励办法,增进混合动力汽车销售,拉动内需;规划长远成长战略。 美国三年夜汽车公司原来只是小批量生产、销售过电动汽车,而混合动力和燃料电池电动汽车还未能实现财产化,日本的混合动力电动汽车在美国市场上占据了主导位置。美国能源部与三年夜汽车公司于1993年签订了混合动力电动汽车开发合同,并于1998年在北美国际汽车展上出了样车。9月通用汽车、戴姆勒·克莱斯勒与宝马集团签署了关于构建全球合作联盟,以共同开发混合动力推进系统的合作。美国混合动力汽车销量达到29.032万辆虽然占美国汽车市场份额只有 2.8%,但从起呈逐年上升趋势预计,美国的混合动力汽车将达到87.2万辆,市场占有率将达到5%。 1.2国内成长现状 目前,我国在新能源汽车的自主立异过程中,坚持了政府支持,以核心技术、关键部件和系统集成为重点的原则,确立了以混合电动汽车、纯电动汽车、燃料电池汽车为“三纵”,以整车控制系统、机电驱动系统、动力蓄电池/燃料电池为“三横”的研发规划,通过产学研紧密合作,我国混合动力汽车的自主立异取得了一定进展。 形成了具有完全自主知识产权的动力系统技术平台,建立了混合动力汽车技术开发体系。混合动力汽车的核心是电池(包含电池管理系统)技术。除此之外,还包含发念头技术、机电控制技术、整车控制技术等,发念头和机电之间动力的转换和衔接也是重点。

电动车充电安全管理规定

电动车充电安全管理制度 为规范电动车充电的管理,给部分员工在电动车缺电等应急情况下提供充电,确保员工安全回家,同时也为保障充电过程的安全,特制定电动车充电安全管理制度如下: 一、所有需要充电的电动车必须由本人提出充电申请,从当班主管处领取《电动车应急充电审批表》,如实填好后在门卫室做好登记并交由门卫统一存档管理。电动车充电一律停放在北一门固定充电处交由门卫监管以确保充电安全。 二、仅允许部分员工在电动车缺电等应急情况之下充电,同一部车月累计充电不超过3次,当班同时 不超过两部在充电,以免占用过多充电位,单位总充电次数月累计不超过30次。充电人员对充电器双相插头至连接车体线路、车体本身,和充电过程负全责。 三、不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,不充电或充电完毕的电动车尽量不放置在充电位置,以方便下一辆 电动自行车继续充电。 五、在充电处充电时,由于充电时间过长,充电器、电瓶、线路陈旧老化,电动车倾倒等个人原因引起的 火灾及其他伤害,从而造成的任何人身伤害及经济损失均由车主负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端双向插头连接 于充电处的插座上。如果反方向操作,接口处可能打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害事故。 七、充电员工在充电前需对充电电动车进行安全状态确认,对充电器、插座、插头、线路进行检查, 坚持做到多闻、多看、防止线路过热引发事故。发现异常情况当即处理,无法处理的及时向领导汇报。 八、严禁雨雪、潮湿天气充电,充电器应放置在远离火源处,禁止将衣物、护膝等可燃物放置在电车上。 九、充电处配备的专用消防器材未经允许不得随意挪动。 十、本规定从公布之日起实施。 武汉爱普工业服务有限公司 审批人: SGMW安全工程师: 审批日期:

电动叉车安全操作规程

编号:SM-ZD-77595 电动叉车安全操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

电动叉车安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、操作者按《设备管理规定》中岗前安全教育、三好、四会、五项纪律的培训及考核,方可上岗作业。 二、每天工作前,应首先检查下列安全功能: ※喇叭功能正常。 ※操纵功能完好。 ※刹车功能正常。 ※液压功能正常。 三、制动:1、当操纵臂向上移动至最高位置时或向下移动到最低位置时,叉车实现断电停止运行。 2、当方向开关在正常运行时转至反向位置,则可执行电制动功能。控制运行速度可以控制行走电机制动力的大小。 四、转向:转向由操纵臂控制,转向角度可以在左右方向各90o范围内任意位置。 五、停车:松开方向选择开关,将货叉降到最低位,使

液压系统内无系统压力;松开操纵臂,操纵臂将自动回到停车制动位置,将钥匙开关旋至OFF。 六、使用安全与保养: 1.严格按照说明使用,切勿充电不足,过充电或过放电。 2.电池单体电压低于1.7V时,应停止使用并及时充电。充电完毕电解液密度调整到1.28g/立方厘米。 3.充电过程中控制电解液温度不得超过45℃,充电时打开所有蓄电池加水帽,严禁接近明火。 4.补充液须使用蓄电池专用水,加水过程中不能混入杂物,否则造成自放电或产生毒气体等。切勿补水过程并保持电池表面的清洁与干燥,否则会降低蓄电池的容量,缩短蓄电池的使用寿命。 5.每周使用人员进行一次液面和连接线可靠的检查保养,液面过低会造成蓄电池发热、烧损等事故。 6.使用过的蓄电池如暂时不用,应充足电,促贮存在通风干燥处,每月补充电一次。 7.当电压低于21V时,即表明蓄电池电量不足,尽快将蓄电池进行充电方可继续使用。

电动车充电安全管理制度-试运行

电动车充电安全管理制度(试运行) 为规范公司电动车的管理,给广大员工电动车充电提供方便,确保电动车充电安全,公司本着以人为本,关爱职工的宗旨,特制定本制度。 一、范围:公司指定集中充电处,只限本公司员工电动车充电。本制度内电动车特指:电动自行车、电动摩托车。 二、行政部负责电动车充电的各项管理。行政及安保人员负责日常安全巡查,发现异常情况当即处理并上报。 三、充电处充电注意事项: (一)禁止明火; (二)禁止私自更改线路、插座; (三)禁止一座多充现象; (四)禁止使用花线; (五)禁止使用无散热装置或散热装置损坏的充电器; (六)禁止雨雪、潮湿天气在车棚外充电; (七)禁止将衣物、护膝等可燃物放置在电源上。 四、电动车充电注意事项:

(一)电动车要按秩序停放,每次充电不得超过8小时;每日下班时间到点后禁止充电; (二)电动车充电前,电动车需充电员工要对电动车进行安全状态确认,检查充电器、插座、插头、线路等,坚持做到多闻、多看,防止线路过热引发事故; (三)充电时先将充电器三芯插头与车体插孔连接好,然后将充电器另一端双向插头连接于充电处的插座上。如果反向操作,接口处可能打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害事故; (四)充电完毕后要及时切断电源,以防长时间充电引发安全事故。车主员工应对本车辆性能状况熟知,确保充现象电不过充。 五、电动车车主承担的责任 (一)因充电时间过长或充电车辆及附属充电设备老化而引起的火灾及其他伤害事故; (二)电动车倾倒等原因而引起的火灾及其他伤害事故; (三)因电动车自身问题或者充电方法不当造成公司及他人人身伤害或经济损失的。 六、电动车充电流程及标准 (一)行政部负责统计公司员工现有电动车实际数量,并登记造册制定管理台账;

纯电动客车驾驶员操作安全规范(通用版)

纯电动客车驾驶员操作安全规 范(通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0142

纯电动客车驾驶员操作安全规范(通用版) 一、出车前后例保检查规范: 除传统车例保以外还需增加充电口门锁、方向助力油、仪表中电池总电压、单体电压、运行中注意电池单体温度、转速,特别关注SOC数值(不低于25%充电),后舱(控制器连接头、打气泵皮带),随时注意观察车架下线束是否脱落,发现异常切不可盲目处置。新车型是气泵减震需充气完毕后方可起步。 二、启动操作规范: 打开电源总开关,扭动点火钥匙到ACC停顿3秒,再到ON档停顿5秒,这时联通各控制器电磁开关,接着到START松开钥匙,这时高低压上电,空压机开始工作,当气压高于6.5kg,踏下刹车,按下档位控制器D档,松开手制动器(方向助力在松开手制动器后开

始工作),踩下油门,车辆向前加速行驶。 三、道路行驶规范: 由于新车型采用无极变速,行驶中无需换挡,车辆根据驾驶员给油大小变换车速。所以,控制好油门是车辆平稳行驶的关键。另外,该车型使用的是按键式档位控制器,D表示前进档,R表示倒挡,N表示空档。档位控制器最上方有档位数字显示,驾驶员可根据具体情况选择档位,操作中必须掌握各档位显示意义。使能开关必须开启,可以在下坡或制动时回收电能,增加续航里程,并有很好的减速作用。 四、注意事项: 1.车辆静止启动时,由于气压不足,可能出现踩油门,车辆不响应。此时,应将档位控制器置于N(空)档,等气压高于6.5kg后,再将档位控制器置于D(前进)档,进行起步。 2.该车型采用了智能停车辅助系统,当踏下制动踏板3秒以后,车辆自动抱死。起步是必须加油才行,这时应轻柔给油,如果太猛会使车辆猛然进步,造成安全事故。

电动汽车结构与原理

名词解释 1.纯电动汽车:指由蓄电池或其他储能装置作为电源的汽车。 2.再生制动:指将一部分动能转化为电能并储存在储能设备装置内的制动过程。 3.续驶里程:指电动汽车在动力蓄电池完全充电状态下,以一定的行驶工况,能连续行驶的最大距离。 4.逆变器:指将直流电转化为交流电的变换器。 5.整流器:指将交流电变化为直流电的变换器。 6.DC/DC变换器:指将直流电源电压转换成任意直流电压的变换器。 7.单体蓄电池:指构成蓄电池的最小单元,一般由正、负极及电解质组成。 8.蓄电池放电深度:指称为“DOD”,表示蓄电池的放电状态的参数,等于实际放电量与额定容量的百分比。 9.蓄电池容量:指完全充电的电池在规定条件下所释放的总的电量,用C表示。 10.荷电状态:称为“SOC”,指蓄电池放电后剩余容量与全荷电容量的百分比。 11.蓄电池完全充电:指蓄电池内所有的活性物质都转换成完全荷电的状态。 12.蓄电池的总能量:指蓄电池在其寿命周期内电能输出的总和。 13.蓄电池能量密度:指从蓄电池的单位质量或体积所获取的电能。 14.蓄电池功率密度:指从蓄电池的单位质量或单位体积所获取的输出功率。 15.蓄电池充电终止电压:指蓄电池标定停止充电时的电压。 16.蓄电池放电终止电压:指蓄电池标定停止放电时的电压。 17.蓄电池能量效率:指放电能量与充电能量之比值。 18.蓄电池自放电:指蓄电池内部自发的或者不期望的化学反应造成的电量自动减少的现象。 19.车载充电器:指固定安装在车上的充电器。 20.恒流充电:指以一个受控的恒定电流给蓄电池进行充电的方式。 21.感应式充电:指利用电磁感应给蓄电池进行充电的方式。 22.放电时率:电流放至规定终止电压所经历的时间。 23.连续放电时间:指蓄电池不间断放电至中止电压时,从开始放电到中止电压的时间。 24.记忆效应:指蓄电池经过长期充放电后显示出明显的容量损失和放电电压下降,经过数次完全充放电循环后可恢复的现象. 25.蓄电池的循环寿命:在一定的充放电制度下,电池容量下降到某一规定值时,电池所能

我国电动汽车发展现状分析

我国电动汽车进展现状分析 一、新能源汽车和电动汽车的分类 按照我国2009年7月1日正式实施的《新能源汽车生产企业及产品准入治理规则》,新能源汽车是指采纳特不规的车用燃料作为动力来源(或使用常规的车用燃料,但采纳新型车载动力装置),综合车辆的动力操纵和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括:纯电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等。 电动汽车是全部或部分由电能驱动电机作为动力系统的汽车,按照目前技术的进展方向或者车辆驱动原理,可划分为纯电动汽车、混合动力汽车和燃料电池电动汽车三种类型。 新能源汽车和电动汽车的分类关系见下图:

1、纯电动汽车 纯电动汽车是完全由可充电电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池)提供动力源的汽车。纯电动汽车由底盘、车身、蓄电池组、电动机、操纵器和辅助设施六部分组成。由于电动机具有良好的牵引特性,因此纯电动汽车的传动系统不需要离合器和变速器。车速操纵由操纵器通过调速系统改变电动机的转速即可实现。现在纯电动汽车技术进展差不多相当成熟,国外发达国家和我国都有部分车型投入量产和商业化运营。 纯电动汽车的优点:(1)减少对石油资源的依靠,实现能源利用的多元化。由于电力能够从多种一次能源获得,如煤、核能、水力、风力、光、热等,解除人们对石油资源日见枯竭的担心。 (2)减少环境污染。本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的都市,对人类损害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物

电动车充电安全管理制度

内部管理制度系列 电动车充电安全管理制度(标准、完整、实用、可修改)

编号: FS-QG-65474电动车充电安全管理制度 Electric vehicle charg ing safety man ageme nt system 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 1.0目的 为了规范厂区内电动车的管理,给广大员工电动车的充 电提供方便,确保电动车的充电安全,特制订本制度。 2.0范围 厂区范围内本司所有的电动车充电管理 3.0职责 厂务部门:负责充电插座的巡检及日常维护。 门岗保安:负责日常监督。 行政部门:负责电动车充电处的日常管理。 4.0内容 4.1充电桩配置:厂区内电动车停靠车位700处,每一处 都设有充电装置。 4.2 充电时段:Am8:00 至当日11:00Pm13:00 至当日 16:00

Pm20:00 至当日23:00Am01:00 至当日04:00 4.3充电方法 4.3.1充电具体操作方法:车辆停靠妥当,将充电器三项插头与车体插孔连接,再将充电器另一端双向插头连接于充电处的插座上,即已开始充电; 4.3.2每天4个充电时段,每个时段时长3小时,过时充电装置断电。 4.4充电安全注意事项 4.4.1严格按照上述正确方式充电,否则有可能造成接口处打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害等事故; 4.4.2严禁雨雪、大雾、潮湿天气充电,充电器应放置在远离火源处,禁止将衣物、护膝等可燃物放置在电车上; 4.4.3员工需自行确认车辆的安全状态,对充电器、插 座、插头、线路进行检查,坚持做到多闻、多看、防止线路过热引发事故; 4.4.4 本充电处只限电动自行车充电,未经允许不得私

相关文档