文档库 最新最全的文档下载
当前位置:文档库 › 钢板筒仓稳定屈曲分析

钢板筒仓稳定屈曲分析

钢板筒仓稳定屈曲分析
钢板筒仓稳定屈曲分析

第32卷第2期2011年4月

华 北 水 利 水 电 学 院 学 报

Journa l o f N orth Chi na Institute ofW a ter Conservancy and H ydroelectr ic Pow er

V o l 32N o 2A pr 2011

收稿日期:2010-12-02

基金项目:河南省自然科学基金项目(0611053500);河南工业大学基金项目(2007BS020).作者简介:梁醒培(1950 ),男,河南兰考人,教授,博士生导师,主要从事计算力学方面的研究.

文章编号:1002-5634(2011)02-0047-03

钢板筒仓稳定屈曲分析

梁醒培,李 恒,付明堂

(河南工业大学,河南郑州450052)

摘 要:对空仓和实仓2种状态下不同壁厚的钢板筒仓进行了有限元屈曲分析,结果表明空仓的有限元临界屈曲应力与理论解接近.如果将有限元临界应力乘以 粮食钢板筒仓设计规范 中的筒仓失稳破坏稳定系数,再乘以初始缺陷影响系数0.5,则所得结果与规范一致,所以通过有限元计算可以获得筒仓的许用临界屈曲应力.

关键词:钢板筒仓;有限元;临界屈曲应力

钢板筒仓自重轻、施工快、经济效益好,在我国的应用越来越多.国内对深仓的稳定性研究已有一些,对利浦筒仓的静力分析、稳定分析也有了一定的成果.文献[1]介绍了利浦筒仓的屈曲形式是沿高度方向呈正弦特征的变形曲线,同时沿仓壁四周有不同的波纹数,但对没有是设置加劲肋的圆形薄壁钢板筒仓的研究相对较少.笔者对高20m ,壁厚分

别为2.5,3.0,4.0mm 的钢板筒仓在空仓和实仓情况下,分别进行了有限元分析.

1 圆柱壳弹性理论公式与规范计

算公式

1.1 圆柱壳弹性理论公式

假定圆柱壳为薄壳,径向挠度很小,材料均匀同性,且符合胡克定律、直法线假设,横截面的荷载均匀分布,在两端的边界条件为无径向位移和切向位移,则可以得出圆柱壳的理论解为

[2]

cr =

1

3(1- 2)

E t

R ,式中E 为材料的弹性模量;t 为壳的厚度;R 为圆柱壳的半径; 为泊松比.1.2 规范中的稳定计算公式

据 粮食钢板筒仓设计规范 (GB 50322

2001),在竖向轴力作用下的空仓(圆仓)的理论计算公式为

[3]

cr =K p

E t

R

,式中K p 为竖向压力下仓壁的稳定系数.

大量试验证明,实际筒仓失稳破坏的稳定系数为0.15~0.3.经过资料比较,规范采用的是前苏联B .T.利律等提出的稳定系数

k p =

1 100t

R

38

,

考虑初始缺陷影响系数0.5,则在空仓状态下的稳定系数为

k p =12 100t R

3

8

.

在竖向压力和储藏水平压力共同作用下实仓(圆仓)的理论计算公式为

cr =K p E t

R

,

式中K p 为有内压时仓壁的稳定系数.

2 有限元计算理论模型

仓体模型为圆柱形,高20m ,筒仓内径10m,壁厚分别取为2.5,3.0,4.0mm.仓体计算模型上部假

定为自由端,仓底假设为固端约束.仓壁不考虑加劲肋的设置,不考虑模型的初始几何缺陷.带边界条件的有限元模型如图1所示

.

图1 带边界条件的有限元模型

3 荷载组合及参数选择

仓顶以上部分施加给仓壁的荷载为仓顶荷载,取0.5kN /m 2

.作用于仓壁上的侧压力和向下的摩擦力分别按文献[3]公式4.2.2-1和公式4.2.2-3计算.仓内储存粮食假定为小麦,取小麦重度为8kN /m 3

,内摩擦角为25 .进行空仓屈曲分析和实

仓屈曲分析:空仓屈曲分析时,加载荷载为仓顶荷载和仓壁自身自重;实仓屈曲分析时,加载荷载为仓顶荷载、仓壁自身自重、粮食对仓壁的水平力和竖向摩擦力.

仓壁为壳单元,在ANSYS 软件she ll93单元为8节点曲壳单元,并且shell93单元的模拟精度比较高,当网格单元边长等于R /8时,计算结果和理论解几乎相等

[3]

,故仓壁采用shell93单元.

材料参数选择:钢的重度为7850kg /m 3

,弹性

模量为2.06 105

MPa ,泊松比为0.3.

4 计算结果分析

4.1 空仓加载计算

图2和图3分别是壁厚为2.5mm 空仓的轴向应力图和屈曲模态图.由图2可以看出轴向应力最大值出现在仓底,为2.16MPa ,比规范计算的名义应力2.029MPa 稍大.图3的屈曲模态图像一个 象脚 式变形,其屈曲荷载因子为34.321

.

仓身厚度为3.0,4.0mm 时的图形与厚度为

2.5mm 时的情况类似,只是数值不同.

有限元临界应力 cr 等于有限元屈曲因子乘以有限元最大轴向应力 z 根据规范计算出了筒仓的

临界应力系数K p 和临界应力 cr ,见表1.

分别对壁厚为2.5,3.0,4.0mm 的筒仓进行了有限元分析,计算得到屈曲载荷因子FACT 、最大的轴向应力 z 见表1.

表1 空仓无缺陷载荷:自重+仓顶压力

壁厚/mm 规范稳定系数K p 规范 c r

/M P a 净截面积

/m 2名义应力 名/M P a FE M 屈曲因子

FA CT z /M Pa FE M 临界应力 c r /M Pa 弹性理论临界应力/M Pa 2.5

0.05175.330.078522.02934.322.1674.1

62.31

3.00.05546.840.094221.94743.432.1091.27

4.774.0

0.0617

10.10

0.12561

1.845

40.86

2.03

119.9

99.70

由表1可知,空仓在壁厚2.5,3.0,4.0mm 时,通过有限元软件得出的屈曲应力和弹性理论应力值

是相近的,名义应力值和有限元 z 值也是相近的,这说明有限元计算方法是正确的.

48 华 北 水 利 水 电 学 院 学 报 2011年4月

壁厚为2.5mm时,按文献[3]计算的稳定系数K p为0.0517,与按弹性理论的稳定系数1

3(1- 2)

= 0.605相差近10倍.如果将有限元临界应力乘以实际筒仓失稳破坏的稳定系数0.15~0.30,再乘以初始缺陷系数0.5,得出的结果为5.56~11.10MPa,与规范临界应力5.33M Pa相近.

在壁厚为3.0,4.0mm时,有限元屈曲应力乘以上述相关系数之后,得出的结果仍和规范临界应力相近.

这里建议用限元法计算出的筒仓临界应力值乘以0.15,再乘以初始缺陷系数0.5,就可以得到该筒仓结构的临界应力值.在工程计算中,筒仓应力值应当小于该结构的临界应力值.这样,在复杂结构或者规范没有规定的时候,可以采用该方法来确定结构的临界应力值.

4.2 实仓加载计算

仓身厚度为3.0mm时实仓的等效应力图和屈曲模态图分别如图4和图5所示.

仓身厚度为2.5,4.0mm时的图形与厚度为3.0mm时的情况类似,只是数值不同.

3种仓壁厚度时实仓的屈曲载荷因子FACT、最大的等效应力 m ax见表2.最大等效应力乘以屈曲载荷因子FACT,得筒仓临界应力 cr,见表2.

表2 载荷+自重+仓顶压力+侧压力+竖向摩擦力

厚度/mm 规范稳定系数

K

p

规范临界应力

cr

/M P a

FE M屈曲因子

FACT

FE M

ma x

/M P a

FE M临界应力

c r

/M Pa

2.50.28929.830.443431190.9

3.00.25331.530.637362230.7

4.00.21034.681.123277311.1

结合计算结果,再综合考虑筒仓失稳破坏的稳定系数和初始缺陷影响系数,由有限元计算临界应力可得到筒仓的许用临界应力,即将有限元计算临界应力乘以筒仓失稳破坏的稳定系数K p1,再乘以初始缺陷影响系数0.5,就可得到规范临界应力,其中K p1根据筒仓失稳破坏稳定系数0.15~0.30确定K p1=0.3-0.05(t-2.5)-0.0005,

式中t为仓壁厚度,mm.

图3和图5都出现了 象脚 变形,这是因为筒仓底部固结于支座,其径向、环向变形受到约束.在空仓状态下,只受竖向力的作用,使接近于仓底部分的仓壁环向变形很大;在实仓状态下,不仅受竖向力的作用,还受粮食水平力的作用,使得仓壁环向变形比空仓状态时小,所以在实仓状态下的 象脚 效应比空仓状态下的小.从空仓和实仓屈曲模态图的形状上来看,与文献[4]具有相似之处.

5 结 语

a.在空仓状态下,用有限元临界应力乘以系数

0.075,就可以得到该结构的临界应力值;在实仓状态下,用有限元临界应力乘以K p1,可以得到该结构的临界应力值.

b.在实际工程中,应在筒仓底部采取一系列措施来避免 象脚 效应的发生.

参 考 文 献

[1]胡志明,袁新明.某大型利浦式钢板筒仓的屈曲分析[J].

(下转第66页)

49

第32卷第2期梁醒培,等: 钢板筒仓稳定屈曲分析

初探[J].吉林建筑工程学院学报,2006(9):75-78. [3]唐明,苏金海,费成效.对水利工程冬季混凝土施工的

探讨[J].治淮,2005(11):25-26.

[4]赵志缙,应惠清.建筑施工[M].上海:同济大学出版

社,2004.

[5]李东升,金正浩,苏加林,等.混凝土冬季施工[M].北

京:中国水利水电出版社,2001.

Technology of Early st age F rost P revention and Control i n Concrete C onstruction

FE I Cheng x iao1,B I Shou y i2,HUANG Ba i shun2

(1.H oha iU n i versity,N an ji ng210098,China;2.H efe iU n i ve rsity o f T echno l ogy,H e fei230009,Chi na)

Ab stract:D ue to t he structure o f concrete ea rl y-stage frosted in l ow temperat u re w as destroyed strong ly,the concrete strength cou l dn t reach the desi gn streng th require m ents.F rost fa il ure m echan is m s o f concre tes in the lo w te m pera t ure season we re ana l yzed and early anti freeze necess it y o f concretes w as e m phasi zed.T hen e ffecti v e anti-freeze m easures w ere put for w ard.

K ey w ords:l ow te m pera t ure season;concrete;fro sted m ode;an ti-free ze m easures;Hua i he R i ver regu lati on eng i neeri ng

(责任编辑:陈海涛) (上接第49页)

四川建筑科学研究,2008(2):40-41.

[2]王新敏.ANSY S工程结构数值分析[M].北京:人民交

通出版社,2007.

[3]郑州粮油食品工程建筑设计院.GB50322 2001粮食钢

板筒仓设计规范[S].北京:中国计划出版社,2001. [4]袁海龙.粮食钢板筒仓整体稳定设计综述[J].特种结

构,2008(8):21-24.

[5]赵霖,苏乐逍.大直径利浦钢板仓稳定性分析[J].粮食

与饲料工业,1997(9):41-42.

[6]敖晓钦,陈向荣.考虑几何初始缺陷的大型钢板筒仓构

造措施的研究[J].水利与建筑工程学报,2010(2):112 -115.

St able Buckli n g Analysis of Steel Silos

LI A NG X i n g pe,i LIH eng,FU M ing tang

(H enan Un i v ers it y o f T echno logy,Zheng zhou450052,Ch i na)

Ab stract:T he fi n ite ele m ent buckli ng ana lysis o f stee l silo w it h d iffe rent thickness and t w o conditi ons of l oading and un l o ad i ng are co m pleted.T he results ind i cate that critical buckli ng stresses calculated by fi n ite ele m entm ethod a re acco rd w it h theo retical value when the steel sil o is e m pty.If the critica l buck li ng stresses are mu lti pli ed by stab ility factor and the factor(=0.5)o f i nitial defects i n t he cr iterion,the calcu lati ng value i s accord w ith t he crite ri on.So a ll ow ed cr i tical buck li ng stresses can be gotten by fi nite e l em ent calcula tion.

K ey w ords:steel sil os;fi nite e le m en t;cr iti ca l buckli ng stresses

(责任编辑:陈海涛) 66 华 北 水 利 水 电 学 院 学 报 2011年4月

用midas做稳定分析步骤

用MIDAS来做稳定分析的处理方法(笔记整理) 对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A.整个结构的稳定性 B.构成结构的单个杆件的稳定性 C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。B构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没

有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈

卷板钢板仓技术要求

卷板式钢板仓技术要求 一、1砂石骨料产品仓(10-20mm骨料)技术参数 砂石骨料性质 物料名称:白云岩; 原料密度: m3; 硬度: f=2~6 ; 松散系数: ; 储存物料粒度: 10-20 mm; 储存量: 10000t; 工艺过程简述 成品骨料经过22#皮带机输送至钢仓顶部35m平台,将物料卸至钢仓,钢仓底部为混凝土基础平台,平台下部安装4台散装机,通过散装机将物料装汽车发运外销。 技术参数及规格 钢仓直径Φ22m,钢仓高度H=23m,基础为环形基础,环形基础顶均设有预埋件供钢仓安装。 上部钢板仓设计与施工,包括上部钢板仓仓顶、库顶收尘器平台、物料输送平台、廊道、旋转楼梯、仓顶密封等与库体的全部工作内容(具体见图纸) 2 砂石骨料产品仓(0-5mm骨料)技术参数 砂石骨料性质 物料名称:白云岩; 原料密度: m3; 硬度: f=2~6 ; 松散系数: ; 储存物料粒度: 0-5 mm; 储存量: 10000t;

工艺过程简述 成品骨料经过21#皮带机输送至钢仓顶部平台,将物料卸至钢仓,钢仓底部为混凝土基础平台,平台下部安装4台散装机,通过散装机将物料装汽车发运外销。 技术参数及规格 钢仓直径Φ22m,钢仓高度H23m,基础为环形基础,环形基础顶均设有预埋件供钢仓安装。上部钢板仓设计与施工,包括上部钢板仓仓顶、库顶收尘器平台、物料输送平台、廊道、旋转楼梯、仓顶密封等与库体的全部工作内容(具体见图纸) 3 砂石骨料产品仓(20-30mm骨料)技术参数 砂石骨料性质 物料名称:白云岩; 原料密度: m3; 硬度: f=2~6 ; 松散系数: ; 储存物料粒度: 20-30 mm; 储存量: 10000t; 工艺过程简述 成品骨料经过14#皮带机输送至0-5mm产品钢仓顶部平台,将物料转运至位于35m平台的15#皮带机,物料通过15#皮带机卸料至20-30mm产品仓;钢仓底部为混凝土基础平台,平台下部安装4台散装机,通过散装机将物料装汽车发运外销。 技术参数及规格 钢仓直径Φ22m,钢仓高度H=23m,基础为环形基础,环形基础顶均设有预埋件供钢仓安装。

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

二阶瞬态响应特性与稳定性分析资料报告

广西大学实验报告纸 组长: 组员: 指导老师: 成绩: 学院:电气工程学院 专业:自动化 班级:163 实验容:实验五 二阶瞬态响应特性与稳定性分析 2018年5月11日 【实验时间】 2018年 5月 11日 【实验地点】 综合808 【实验目的】 1、以实际对象为基础,了解和掌握典型二阶系统的传递函数和模拟电路图。 2、观察和分析典型二阶系统在欠阻尼、临界阻尼、过阻尼的响应曲线。 3、学会用MATLAB 分析系统稳定性。 【实验设备与软件】 1、Multisim 10电路设计与仿真软件 2、labACT 试验台与虚拟示波器 3、MATLAB 数值分析软件 【实验原理】 1、被模拟对象模型描述 永磁他励电枢控制式直流电机如图1(a )所示。根据Kirchhoff 定律和机电转换原理,可得如下方程 u k Ri dt di L e =++ω (1) l t T i k b dt d J -=+ωω (2) ωθ =dt d (3) 式中,各参数如图1(a )所示:L 、R 为电机和负载折合到电机轴上的转动惯量,Tl 是折合到电机轴上的总的负载转矩,b 是电机与负载折合到电机轴上的粘性摩擦系数;kt 是转矩系数(Nm/A ),k e 是反电动势 系数(Vs/rad )。令R L /e =τ(电磁时间常数),b J /m =τ(机械时间常数) ,于是可由这三个方程 画出如图1(b )的线性模型框图。 将Tl 看成对控制系统的扰动,仅考虑先行模型框图中()()s s U Θ→的传递函数为 ()()()()()s Rb k k s s Rb k s U s s G t e m e t 1 /11/?+++=Θ= ττ (4) 考虑到电枢电感L 较小,在工程应用中常忽略不计,于是上式转化为

大跨度公路隧道长期稳定性分析.

大跨度公路隧道长期稳定性分析 6.1 引言 前面的分析都是基于岩体的弹塑性本构关系进行的,未考虑时间效应和长期蠕变的影响。前人研究发现,地下工程开挖后一段很长时间内,支护或衬砌上的压力一直在变化,可见岩石的蠕变对于隧道特别是深埋隧道围岩的变形和长期稳定性,具有重要影响[78]。为保证现场隧道的长期稳定运行,必须考虑到长期蠕变效应。 蠕变是当应力不变时,应力随时间增加而增长的现象,是流变效应的最重要表现特征。岩石的蠕变曲线有三种主要类型[88],见图6-1。 图6-1 岩石蠕变曲线 图中三条蠕变曲线是在不同应力下得到的,C B A σσσ>>,蠕变试验表明,当岩石在较小荷载σC 持续作用下,变形量虽然随时间增长有所增加,但变形速率逐渐减小,最后变形趋于一个稳定的极限值,这种蠕变称为稳定蠕变;当荷载σA 很大时,变形速率逐渐增加,变形量一直加速增长,直到破坏,蠕变为不稳定蠕变;当荷载较大时,如图中的abcd 曲线所示,此时根据应变速率不同,蠕变过程可分为3个阶段:第一阶段,如曲线中ab 所示,应变速率随时间增加而减小,故又称为减速蠕变阶段或初始蠕变阶段;第二阶段,如曲线中bc 所示,应变速率保持不变,故又称为等速蠕变阶段;第三阶段,如曲线中cd 所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展。小于此临界应力时,蠕变按稳定蠕变发展,通常称此临界应力为岩石的长期强度。对岩石隧道来讲,由于开挖和支护导致应力重分布,围岩产生不同的应力分布状态,在进行长期蠕变效应分析时,应计算相应监测点的应力和变形状态,判断其蠕变效应。 众所周知,固体本构关系有三种:弹性、塑性和粘性。文献中,通常将围岩应力小于屈服极限时应力应变与时间的关系称为粘弹性问题,将围岩应力大于屈服极限时应力应变与时间的关系称为粘塑性问题。研究表明,在隧道开挖完毕后的长期运营过程中,大多数岩石都表现出瞬时变形(弹性变形)和随着时间而增长的变形(粘性变形),即岩石是粘弹性的[80];为使巷道维持稳定状态,人们也总是力图使围岩应力小于屈服极限。 下面采用FLAC 软件进行数值分析,版本为FLAC2D 5.00.355。 6.3 弹塑性数值分析 ε

薄壁压力容器稳定性分析

压力容器稳定性分析 谢全利 (华陆工程科技有限责任公司 设备室,西安 710054) 摘 要 对于受外压的容器,除了圆筒、球壳、锥壳和有限定的开孔外,其他的很多形状以及不均匀的载荷等都无法按照现有的标准规范进行稳定性校核。本文通过分析结果的对比,确定了基于有限元屈曲分析为基础的压力容器稳定性分析方法和评判准则。 关键词 薄壁; 压力容器; 稳定性; 屈曲; 分析设计; Pressure Vessels Stability Analysis Xie Quanli (Hualu Engineering & Technology Co., Ltd, Equipment Division, Xi ’an 710054) Abstract :For the vessel in outside pressure, in addition to cylindrical shell, spherical shell, cone shells and limited nozzle opening, many of the other, as well as non-uniform shape of the load can not be in accordance with all existing standards for checking the stability. By comparing the results of the analysis identified based on finite element analysis of buckling, this paper get the method of the stability of the pressure vessel analysis and evaluation rule. Keywords :Lamella ;Pressure vessels ;Stability ;Flexure ;Design by analysis ; 所谓压力容器的失稳是指压力容器承受外载荷或其他不稳定载荷超过其一临界值时突然失去其几何形状的现象。不同形式的容器以及不同形式的载荷所引起的失稳后的几何形状是不同的。失稳又称屈曲。它并不是结构的强度不足而造成的失效。研究压力容器稳定性的目的在于确定容器的临界载荷以及其相应的失稳模态,以改进加强措施,提高结构的抗失稳能力。 1. 压力容器稳定性的常规计算 对于简单的结构,如压杆、外压圆筒、外压球壳,欧拉、米西斯等人推导有经典的理论公式可以求得理论的临界载荷。 圆筒临界外压的米西斯公式为:[1] )](n ) πR nl (μ n [)R δE(.])πR nl ()[(n R E δp o o e o o e cr 11122730112223222-++--?++-= 式中:cr p -------临界外压力,Mpa ; e δ---------圆筒有效厚度,mm ;

钢板筒仓设计规范

中华人民共和国国家标准 粮食钢板筒仓设计规范 Code for design of grain steel silos GB 50322-2001 主编部门:国家粮食局 批准部门:中华人民共和国建设部 施行日期:2001年7月1日 关于发布国家标准《粮食钢板筒仓设计规范》的通知 根据我部“关于印发《2000至2001年度工程建设国家标准制订、修订计划》的通知”(建标[2001]87号)的要求,由国家粮食局会同有关部门共同修订的《粮食钢板筒仓设计规范》,经有关部门会审,批准为国家标准,编号为GB 50322-2001,自2001年7月1日起施行。其中,3.1.6、4.1.4、4.2.1、4.3.2、4.4.2、5.1.2、5.2.2、5.5.3、6.4.2、7.3.1、8.1.2、8.6.1 为强制性条文,必须执行。原行业标准《粮食钢板筒仓设计规范》同时废止。 本规范由国家粮食局负责管理,郑州粮食食品工程建筑设计院负责具体解释工作,建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二○○一年六月十三日 前言 本规范根据国家建设部建标[2001]87号文编制。 本规范分8章和5个附录,包括:总则、术语、一般规定、荷载及荷载效应组合、结构设计、构造、工艺设计、电气及配套设施等内容。

本规范中强制性条款在正文中用黑体字表示,包括:3.1.6、4.1.4、4.2.1、4.3.2、4.4.2、5.1.2、5.2.2、5.5.3、6.4.2、7.3.1、8.1.2、8.6.1。 本规范系首次编制,有些条款还待进一步补充、完善。请各单位在执行过程中,结合工程实践与科学研究,认真总结经验,注意积累资料,并将有关意见和资料寄交编制组。 本规范由郑州粮油食品工程建筑设计院负责具体解释,通信地址:郑州市嵩山南路140号,邮编:450052。 本规范主编单位、参编单位和主要起草人: 主编单位:郑州粮油食品工程建筑设计院 参编单位:原国家粮食储备局北京科学研究设计院 原国家粮食储备局郑州科学研究设计院 中谷粮油集团 北京煤炭设计研究院 长沙冶金设计研究院 北京粮油集团 主要起草人:袁海龙杨世忠朱同顺李建萍郭呈周崔元瑞归衡石王刚郝卫洪宋春燕兰勇吴强李江华杜月萍王守德张振镕 1 总则 1.0.1 为在粮食钢板筒仓设计中贯彻执行国家技术经济政策,做到安全适用、技术先进、经济合理,制定本规范。 1.0.2 本规范适用于储存粮食散料,平面形状为圆形且中心装、卸粮的钢板筒仓设计。 注:粮食散料包括:小麦、玉米、稻谷、豆类以及物理特性参数与之相近的谷物散料。 1.0.3 本规范适用于焊接、螺旋卷边钢板及螺栓装配波纹钢板的圆形筒仓。 1.0.4 粮食钢板筒仓的设计工作寿命不应少于25年。 1.0.5 粮食钢板筒仓结构的安全等级为二级,抗震设防类别为丙类,耐火等级可按二级。 1.0.6 本规范结构设计依据现行国家标准《建筑结构设计统一标准》制定。粮食钢板筒仓设计,除应符合本规范外,尚应符合国家现行的有关标准、规范的规定。

药物稳定性试验统计分析方法

药物稳定性试验统计分析方法 在确定有效期的统计分析过程中,一般选择可以定量的指标进行处理,通常根据药物含量变化计算,按照长期试验测定数值,以标示量%对时间进行直线回归,获得回归方程,求出各时间点标示量的计算值(y'),然后计算标示量(y')95%单侧可信限的置信区间为y'±z ,其中: 2 2 02)()(1X Xi X X N S t z N -∑-+ ??=- (12-21) 式中,t N -2—概率0.05,自由度N-2的t 单侧分布值(见表12-4),N 为数组;X 0—给定自变量;X —自变量X 的平均值; 2 -= N Q S (12-22) 式中,xy yy bL L Q -=;L yy —y 的离差平方和,N y y L yy /)(2 2∑-∑=;L xy —xy 的离差乘 积之和N y x xy L xy /))((∑∑-∑=;b —直线斜率。 将有关点连接可得出分布于回归线两侧的曲线。取质量标准中规定的含量低限(根据各品种实际规定限度确定)与置信区间下界线相交点对应的时间,即为药物的有效期。根据情况也可拟合为二次或三次方程或对数函数方程。 此种方式确定的药物有效期,在药物标签及说明书中均指明什么温度下保存,不得使用“室温”之类的名词。 例:某药物在温度25±2℃,相对温度60±10%的条件下进行长期实验,得各时间的标示量如表12-4。 表12-4 供试品各时间的标示量 时间/月 0 3 6 9 12 18 标示量/% 99.3 97.6 97.3 98.4 96.0 94.0 以时间为自变量(x ),标示量%(y )为因变量进行回归,得回归方程 y= 99.18-0.26x ,r=0.8970,查T 单侧分布表,当自由度为4,P=0.05得 t N -2=2.132 9279.04 444 .32==-= N Q S 210)(2=-∑X X i

粮食钢板筒仓工艺设计心得

粮食钢板筒仓工艺设计心得 近年来国家为保障粮食安全、提高我国粮食国际竞争力以及增加农民收入,国家正在加快发展粮食现代物流。发展粮食现代物流的主要内容是推进粮食由包粮运输向散储、散运、散装、散卸“四散化”运输的变革,以实现粮食流通现代化,提高粮食流通效率,降低粮食流通成本。国家从2007年开始利用中央预算内资金对粮食物流的重点项目给予支持。钢板筒仓有其投资少、施工周期短、占地面积小等众多的优点,已经成为粮食储存的首选仓型,在我国经过20多年的发展,技术日趋成熟。正逐步形成取代混凝土筒仓的趋势,而且在美国、加拿大等发达国家钢板仓已经成为主流仓型。钢板筒仓的市场情景广阔。本人在从事粮食钢板筒仓工艺设计多年的工作中,积累了以下心得,供大家参考。 一、筒仓规格与筒仓功能相配套 粮食钢板筒仓几乎应用到所有的粮食行业,主要有粮油加工厂和粮食港口码头两方面。如何选定合适的钢板筒仓规格?首先依据筒仓的储存量及物料品种。大致有以下几种情况: ①一般日处理2000吨或以上大型油脂加工厂,通常要建5到8万吨的筒仓储存量,另外大豆的品种单一,可以考虑建单仓容量为1万吨~1.5万吨左右的大型装配式钢板筒仓,相对比较经济。另外,目前国内大型的淀粉等玉米深加工企业日处理量很大,也建议选择这种大型装配式钢板筒仓。 ②中型油脂加工厂和中等规模的玉米深加工企业,可以选择单仓容量在5000~7500吨左右为宜。 ③面粉加工企业,选择筒仓就不相同,小麦的品种很多,需要的筒仓数量多,所以单仓容量以1000~2000吨左右为宜,根据日处理小麦量决定仓容量。 ④麦芽、啤酒加工行业,单仓容量为1000~1500吨左右。 ⑤饲料加工行业,单仓容量为1000~3000吨左右为宜。 ⑥大米加工行业,目前大部分建设的筒仓容量都不大,单仓容量在1000吨以下。 ⑦小型汽车发放仓,用于散粮的汽车发放或者打包等功能,一般选择仓直径小,单仓容量不超过500吨全锥斗形式。装粮汽车可以在仓下直接装粮。 ⑧粮食港口码头行业,港口作为粮食的中转地,一般建设容量大,中转周期短。中国目前沿海港口钢板筒仓的储存容量约为200万吨左右,一般单仓容量在5000~15000吨之间,以平底清仓机出粮为主。总之,选择合适的筒仓直径和高度以及何种出料方式,取决于多方面的因素。最终必须与功能相配套,否则不能发挥最大的经济效益。 二、总平面布置综合考虑 钢板筒仓在总平面中的位置摆放,主要取决于进出粮路线。粮食码头考虑进出港方便,有火车运输必须与火车道相衔接,汽车行使路线等,还有与临港粮食加工厂粮食物流走向,是选择汽车运输还是长皮带输送等因素。 在粮食加工厂配套的筒仓部分,筒仓位置取决于进粮路线,采用汽车卸粮时,汽车的行使路线,保证车流不出现堵塞,道路宽阔,尽量设计环型汽车路线。出粮方面必须与主车间连接好,同时要考虑工艺灵活,采用尽量少的设备,满足尽量多的功能。 在总平布置中,还有很重要的一个原则是符合消防设计规范要求。钢板筒仓按耐火等级为二级设计,而且在国家规范中当每个仓群组与相连的仓群组之间必须留有足够的消防通道。另外,在工作塔中各层也应设计消防栓。 三、设备选型齐全、工艺流程合理 在钢板筒仓工艺流程中,主要涉及到的设备有:输送设备、初清设备、计量设备、除尘设备、烘干设备和清仓机等。在选择设备应注意以下事项:

原料药稳定性试验报告

L- 腈化物稳定性试验报告 一、概述 L-腈化物是L- 肉碱生产过程中的第一步中间体(第二步中间体: L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L- 肉碱生产工艺为 间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存 入中间体仓库,以备下一步生产投料所需。根据本公司L- 肉碱产品的 整个生产周期,L- 腈化物入库后可能存放的最长时间为4 周(约28 天)。以此周期为时间依据制定了L- 腈化物稳定性试验方案,用于验 证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符 合L- 腈化物的质量标准,此次稳定性试验的整个周期为28 天,具体 的稳定性试验方案以ICH 药物稳定性指导原则为基础制定,以确保L- 腈化化物稳定性试验的可操作性。 二、验证日期 2010 年1 月13 日- 2010 年2 月10 日 三、验证方案 1)样品储存和包装: 考虑到L- 腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品 批次与最终规模生产所用的L- 腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与 最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13 起,每隔7 天取样一次,共取五次,具体日期为:2010.1.13 、2010.1.20 、2010.1.27 、 2010.2.3 、2010.2.10 ,以确保试验次数足以满足L- 腈化物的稳 定性试验的需要。。 4)检测项目:根据L- 腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这 些指标在L- 腈化物的储存过程中可能会发生变化,且有可能影响 其质量和有效性。 5)试样来源和抽样:L- 腈化物由公司102 车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L- 腈化物均取自于该中间体仓 库,其抽样方法和抽样量均按照L- 腈化物抽样方案进行抽样。抽 样完毕后直接进行检测分析,并对检测结果进行登记,保存,作为稳 定性数据评估的依据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L- 腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L- 腈化物是否适用 现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的

稳定性分析

Ⅰ形大高宽比屈曲约束钢板剪力墙的试验和理论研究 [摘要]基于普通钢板剪力墙具有易发生平面外屈曲,不能充分发挥钢板剪力墙的承载力;在往复荷载作用下,滞回曲线捏缩效应严重,不利于耗能减震;钢板耐火性能差等主要缺点,提出一种新型大高宽比屈曲约束钢板剪力墙。本文通过缩尺模型试验对4组该屈曲约束钢板剪力墙模型进行单调加载和循环加载试验,并与一组纯钢板剪力墙试验进行对比。试验表明,预制混凝土钢板剪力墙可以有效地对钢板平面外失稳进行约束,从而极大的提高了钢板剪力墙的承载力和耗能性能。同时还推导了这种屈曲约束钢板剪力墙初始刚度和屈服承载力的理论公式,通过与实验结果和有限元分析结果的对比,验证该理论公式的正确性。 [关键词]屈曲约束;钢板剪力墙;缩尺模型试验 Experimental and theoretical study on slim Ⅰ-shape buckling-restrained steel plate shear walls [Abstract]As a promising lateral load resisting elements in new or retrofit construction of building s, buckling-restrainedcomposite steel plate shear wall clamped with concrete plates (BRSP) has gained a g rea t deal of attention ofresearchers and engineers.However , almost all of BRSPs being studied and constructed are in small aspect ratio , ofwhich width is equal or larger than the height .Actually , in some situations, BRSP in large aspect ratio may beserviceable if there do not have enough space to put a wide BRSP .Therefore , several experimental investigationshave been conducted on narrow BRSPs with large aspect ratio , including monotonic loading tests and cyclic loadingtests on four sets of BRSP with different aspect ratio from 2∶1 to 4∶1, as w ell as a comparative test on a normal steelplate shear wall.Form of the walls was modified to improve their energy dissipation.Experimental results areexamined to reveal the wall' s failure mechanics, ductility performance , hysteretic behavior and ultimate load-carryingcapacity .Analytical models have been verified by the experiments and design guidelines have been provided for theapplication of BRSP . [Keywords]buckling-restrained; steel plate shear wall;

屈曲稳定性分析

1概述 圆端形空心墩因其横向刚度大、纵横向尺寸搭配合理、适应流水特性好、材料用量少以及施工适应性强等优点被广泛应用于铁路、公路桥梁中。随着交通大流量的发展,尤其是我国铁路运量的大幅度增加和高铁事业的迅猛发展,多线铁路的建设将成为我国铁路事业的一大发展方向,多线超宽圆端形薄壁空心桥墩的应用也将日益增多。过去,我国建造的桥墩粗大、笨重、不注重造型,不仅浪费材料而且影响美观。随着社会经济和科学研究的不断发展,近年来我国建造的桥墩也向着高强、高耸、轻型、薄壁、注重造型的方向发展,不仅可以合理有效地利用下部结构的功能,而且提高了桥梁结构的整体美感。因此,超宽圆端形薄壁空心桥墩的稳定性问题就越来越凸显出来,其直接关乎着整座桥梁结构的安全和经济性问题。 超宽圆端形薄壁空心桥墩的稳定性问题主要包括墩身的整体稳定和墩壁的局部稳定。在我国目前的相关规范中并没有明确规定其计算与设计方法,现阶段依然采用经验的办法来解决。尤其是超宽圆端形薄壁空心桥墩墩壁的局部稳定性,可以参考的规范与文献资料甚少。通常而言,空心墩的局部稳定问题,主要是采取控制墩壁厚度和设置隔板来增强空心墩墩壁的局部稳定性。但在过去的模型试验和理论计算中,至今尚未能确定隔板对桥墩稳定和强度有明显的作用。因在采用滑动模板技术施工时,隔板的影响很大,空心墩不设隔板能否满足各项力学指标,具有很高的研究价值。在目前我国的铁路桥梁中,单线或者双线圆端形空心墩应用较多,双线以上的超宽桥墩并不多见。超宽圆端形薄壁空心桥墩壁厚的选取基于什么原则,目前研究很少。西南研究所、铁二院、西南交大在上世纪70年代曾对矩形、圆柱形、圆锥形空心墩的整体稳定和局部稳定问题进行了研究,但仅仅局限于宽度较小的单线或双线混凝土空心墩,且截面形式中并没有涉及到圆端形。多线超宽圆端形空心薄壁桥墩在这一方面的研究几乎是个空白,国内外的研究和报道很少。 综上所述,对超宽圆端形薄壁空心桥墩进行稳定性问题的研究具有重要的意义和很高的科学价值。

性能稳定性分析

性能稳定性分析 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447 (2)t=0.447时,

圆形计量钢筒仓的结构设计

圆形计量钢筒仓的结构设计 曹素清,代丽,刘银萍,李丽 (鞍钢集团工程技术有限公司,鞍山114021) 摘要:介绍了工程中常用的圆形计量钢筒仓结构内的内力分析和构造设计,在满足国家标准规范要求的前提下使结构设计做到安全适用、技术先进、经济合理。 关键词:计量钢筒仓;仓顶;仓壁支座;漏斗 1 前言 在冶金工程中,钢筒仓常用来存贮常温常压下松散的粒状或小块状物料(如水泥,砂子,矿石,煤及化工原料等),作为生产企业的运转和贮存物料的设施。 在钢筒仓内设置有自动检测设施,对仓内物料温度、粉尘等进行自动化检测;设置装置消除仓内物料堵塞、贴帮、积滞等;设置自动计量装置,使物料的装、卸、运自动化,加快单位时间内装卸的吞吐量,提高贮运的周转能力。 工程常用计量钢筒仓通常是直径在3~9m的小型筒仓,一般布置在厂房内,故不需考虑风荷载影响。 圆形筒仓与矩形筒仓相比,具有体型合理,仓体受力明确、计算和构造简单,施工方便、仓内死料少、有效贮存率高等优点,能充分利用材料优势,是最经济的结构形式。 2 设计资料及结构布置 2.1 设计前必需了解的工艺资料 (1)工艺布置简图及筒仓容量。 (2)物料特性资料,如重力密度、粒径、硬度、安息角、与仓壁的摩擦系数、温度及湿度等。这些资料一般由工艺专业提供或查找相关手册获得。 (3)装卸方式,进料和出料口的控制标高、位置与外形尺寸。 (4)堆料高度,漏斗壁的最小倾角,防止堵塞、积料的措施及要求。 (5)固定工艺设备的位置及孔洞位置,以及与计量有关的细节构造要求。 (6)筒仓上的荷载,如上料平台,给料机、配料设备及其他吊重等。 (7)仓壁的耐磨、保温、隔热、防潮及光滑度等要求。 (8)入孔、防爆孔、接入管道、钢箅子、爬梯及吊挂平台等的布置及要求。 2.2 设计前必需掌握的相关资料 (1)支撑筒仓的结构形式与布置,包括厂房柱、横梁、楼板梁的尺寸、构造方案。 (2)厂房结构的施工方案及筒仓本身拟采用的结构形式、材料,起重机械与施工方法。2.3 钢筒仓结构布置 可分为仓顶,仓壁,漏斗,支座。 仓顶可设计成带上下环梁的正截锥钢板仓顶或钢结构平台,仓壁及漏斗通常为无加肋热轧焊接钢板,传感器支座处设计成环形支承。 3 筒仓的结构设计 (1)物料荷载对筒仓的作用。筒仓所受荷载包括以下几种:作用于仓壁的水平压力;作用于筒仓仓壁的竖向摩擦力;作用于仓底的竖向压力和作用于仓顶的竖向压力(见图1,2)。

焊接钢板仓技术要求

焊接钢板仓技术要求 1.1 材料要求 1.1.1 主要钢板材料为Q235B型或Q345B型,支撑结构采用Q234A及以上材质,且保证良好的焊接性能。 1.2 钢板库的防雷保护应按二级要求。 1.3 钢板库的沉降观测点不少于四个。 1.4 钢板库群的布置原则:两相邻库边缘距离不小于4米。 1.5 位于库顶上的设备应有可靠的固定方式,连接多个库或其它设备的栈桥支座应采用简支结构,并保证一定的沉降收缩余量。 1.6 仓顶入料口尺寸不小于直径600mm,各观察孔计料孔依据设备要求设置。 1.7 人孔尺寸不应小于600mm,且布置位置以不影响设备、管道安装及阀门操作为原则。 1.8 库顶、栈桥、及旋梯栏杆高度不应小于1.2米,且应涂警示标志漆,检修平台周围栏杆下端应挡板,以免检修工具、构件滑落。 1.9 库侧旋梯的布置原则:单库均设,库群设置以方便人员检修可设二至三道;其他库之间以连接平台连接。 1.10 避雷引线的设置:本钢板库是以钢构件作为接闪器,引下线以镀锌扁铁,其具体要求为:镀锌扁铁截面积不应小于48mm2,厚度不应小于4mm。 1.11 每库引下线数目不小于2处,间距不大于18米,且应对称布置。 1.12 接地装置可利用基础钢筋,纵横钢筋相互焊接,且冲击接地电阻不应大于10Ω。 1.13 钢板仓及栈桥上电气线路、电气设备应采用防尘和安全防护的措施。 1.14 动力线路与控制线路应分开设置,当动力、控制线路电压相同时可共管敷设。 1.15 空气管道内壁应清渣,所有管路安装应无错位、法兰垫片无挤出现象,连接池应严密。 1.16 流化棒布置力求均匀,规格尺寸满足出料要求。 1.17出料是空气压力不应低于:入流化棒:0.4Mpa,混合室:0.04---0.09Mpa。 1.18 对于碳素钢及低合金钢仓体或栈桥等金属构件外表面及其他需要涂装的表面应予以除锈。 1.19 表面除锈应采用喷砂或手工和动力机械等手段,表面除锈适应防止对钢材表面造成伤害。除锈前应铲除厚的锈层,清除可见的油腻和污垢,除锈后应清除表面的浮绣和碎屑。 1.20 除锈等级应达到GB/T8923中的规定的st2级或sa2级以上标准为合格。1.21 质量检验部门对钢板库、栈桥等钢构件的焊接、安装及表面除锈质量验收合格后方可进行涂装。 1.22 钢板仓表面涂锈要求底漆至少涂醇酸底漆两道,漆膜厚度不小于10um;其他构件要求底漆至少醇酸底漆一道,漆膜厚度不小于15um。 1.23 所有防腐涂料均应有产品质量合格证书及质量检验部门的检验合格要求。 1.24 钢构将表面除锈后应立即涂防腐涂料,间隔时间不应大于12h。 1.25 涂腐环境不应低于涂料要求的环境以下且应清洁、干燥、通风。 1.26 钢构件涂漆

筒仓计算书

第一部分、库壁计算表 第二部分、库底板、内柱及基础的计算 一、设计资料: 库内径12m,库高38.5m,库壁厚250mm,库底板底面标高8.5m,基础埋深深度为3m,基础板厚度为1.2m。 =500 KN/m2; 地基承载力标准值f k 场地为Ⅱ类建筑场地,属于8度抗震区; =2.5×1.4× ×62=396 KN; 库顶活荷载设计值:F 1 库底的竖向压力: Pv= 323.73 KN/m2,1.3Pv=420.85 KN/m2;

库底的总竖向摩擦力压力: Pf= 515.90 kN/m ,1.3Pf=670.67 kN/m ; 每库储料总重设计值:G 1=(399×π×25+588×π×10)=49785 KN 每库自重设计值:G 2=0.25×34×π×10×25×1.2+25×0.9×π×52×1.2=8007+2112=10127 KN 库顶活荷载设计值:F 1=4×1.4×π×52=440 KN 二、 地基承载力验算: 基础自重设计值和基础上的土重标准值:G=25×(23.42-4×0.5×3.52)×1.0×1.2+20×(23.42-4×.5×3.52)×5.1=15692+53352=69044 KN 地基承载力设计值:f=f k +)5.0(0-d d γη=300+3×20×(5.50-0.5)=600 KN/m 2 1. 正常使用的情况下: (1) 当四库都满料时,基底平均压应力: 传到基础顶面的总竖向力设计值:F=(49785+10127+440+264)×2=121232 KN P=A G F +=225.35.044.2369044121232??-+=363.77 KN/m 20 满足 2. 地震作用下: (1) 当四库都满料时: 等效总重力荷载:G eq =(56062×90%+14900÷1.2)×4=251490 KN 总水平作用标准值:F Ek =eq G 1α=0.16×251490=40238 KN 水平地震力作用于基础底面的力矩设计值:M=40238×25.8×1.3=1349596 KN.m 基础底面的抵抗弯矩:W=a 3/6=283/6=3658.7 基础底面边缘的最大压力设计值:P max =A G F ++W M =2 2856448 352708++

相关文档