文档库 最新最全的文档下载
当前位置:文档库 › 有限元分析系统的发展现状与展望

有限元分析系统的发展现状与展望

有限元分析系统的发展现状与展望
有限元分析系统的发展现状与展望

有限元分析系统的发展现状与展望

v

有限元分析系统的发展现状与展望

随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式往往是不可能的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。我国在"九五"计划期间大力推广CAD技术,机械行业大中型企业CAD的普及率从"八五"末的20%提高到目前的70%。随着企业CAD应用的普及,工程技术人员已逐步甩掉图板,而将主要精力投身如何优化设计,提高工程和产品质量,计算机辅助工程分析(CAE,Computer Aided Engineering)方法和软件将成为关键的技术要素。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面:增加设计功能,减少设计成本;

?缩短设计和分析的循环周期;

?增加产品和工程的可靠性;

?采用优化设计,降低材料的消耗或成本;

?在产品制造或工程施工前预先发现潜在的问题;

?模拟各种试验方案,减少试验时间和经费;

?进行机械事故分析,查找事故原因。

在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。下图是美国旧金山海湾大桥地震响应计算的有限元分析模型。

发展方向及重大进展国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的AS KA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。当今国际上FEA方法和软件发展呈现出以下一些趋势特征:

1 从单纯的结构力学计算发展到求解许多物理场问题有限元分析方法最早是从结构化矩阵分析发展

而来,逐步推广到板、壳和实体等连续体固体力学分析,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。所以近年来有限元方法已发展到流体力学、温度场、电传导、磁场、渗流和声场等问题的求解计算,最近又发展到求解几个交叉学科的问题。例如当气流流过一个很高的铁塔产生变形,而塔的变形又反过来影响到气流的流动……这就需要用固体力学和流体动力学的有限元分析结果交叉迭代求解,即所

谓"流固耦合"的问题。

2 由求解线性工程问题进展到分析非线性问题随着科学技术的发展,线性理论已经远远不能满足设计的要求。例如建筑行业中的高层建筑和大跨度悬索桥的出现,就要求考虑结构的大位移和大应变等几何非线性问题;航天和动力工程的高温部件存在热变形和热应力,也要考虑材料的非线性问题;诸如塑料、橡胶和复合材料等各种新材料的出现,仅靠线性计算理论就不足以解决遇到的问题,只有采用非线性有限元算法才能解决。众所周知,非线性的数值计算是很复杂的,它涉及到很多专门的数学问题和运算技巧,很难为一般工程技术人员所掌握。为此近年来国外一些公司花费了大量的人力和投资开发诸如MARC、ABQUS和ADINA等专长于求解非线性问题的有限元分析软件,并广泛应用于工程实践。这些软件的共同特点是具有高效的非线性求解器以及丰富和实用的非线性材料库。

3 增强可视化的前置建模和后置数据处理功能早期有限元分析软件的研究重点在于推导新的高效率求解方法和高精度的单元。随着数值分析方法的逐步完善,尤其是计算机运算速度的飞速发展,整个计算系统用于求解运算的时间越来越少,而数据准备和运算结果的表现问题却日益突出。在现在的工程工作站上,求解一个包含10万个方程的有限元模型只需要用几十分钟。但是如果用手工方式来建立这个模型,然后再处理大量的计算结果则需用几周的时间。可以毫不夸张地说,工程师在分析计算一个工程问题时有80%以上的精力都花在数据准备和结果分析上。因此目前几乎所有的商业化有限元程序系统都有功能很强的前置建模和后置数据处理模块。在强调"可视化"的今天,很多程序都建立了对用户非常友好的GUI(Graphics User Interface),使用户能以可视图形方式直观快速地进行网格自动划分,生成有限元分析所需数据,并按要求将大量的计算结果整理成变形图、等值分布云图,便于极值搜索和所需数据的列表输出。

4与CAD软件的无缝集成当今有限元分析系统的另一个特点是与通用CAD软件的集成使用即,在用CAD软件完成部件和零件的造型设计后,自动生成有限元网格并进行计算,如果分析的结果不符合设计要求则重新进行造型和计算,直到满意为止,从而极大地提高了设计水平和效率。今天,工程师可以在集成的CAD和FEA软件环境中快捷地解决一个在以前无法应付的复杂工程分析问题。所以当今所有的商业化有限元系统商都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。

5 在Wintel平台上的发展早期的有限元分析软件基本上都是在大中型计算机(主要是Mainframe)上开发和运行的,后来又发展到以工程工作站(EWS,Engineering WorkStation)为平台,它们的共同特点都是采用UNIX操作系统。PC机的出现使计算机的应用发生了根本性的变化,工程师渴望在办公桌上完成复杂工程分析的梦想成为现实。但是早期的PC机采用16位CPU和DOS操作系统,内存中的公共数据块受到限制,因此当时计算模型的规模不能超过1万阶方程。Microsoft Windows操作系统和32位的Intel Pentium处理器的推出为将PC机用于有限元分析提供了必需的软件和硬件支撑平台。因此当前国际上著名的有限元程序研究和发展机构都纷纷将他们的软件移值到Wintel平台上。下表列出了用ADINA V7.3版在PC机的Windows NT环境和S GI工作站上同时计算4个工程实例所需要的求解时间。从中可以看出最新高档PC机的求解能力已和中低档的EWS不相上下。

为了将在大中型计算机和EWS上开发的有限元程序移值到PE机上,常常需要采用Hummingbird公司的一个仿真软件Exceed。这样做的结果比较麻烦,而且不能充分利用PC机的软硬件资源。所以最近有些公司,例如IDEAS、ADINA和R&D开始在Windows平台上开发有限元程序,称作"Native Windows"版本,同时还有在PC机上的Linux操作系统环境中开发的有限元程序包。

国内发展情况和前景1979年美国的SAP5线性结构静、动力分析程序向国内引进移植成功,掀起了应用通用有限元程序来分析计算工程问题的高潮。这个高潮一直持续到1981年ADINA非线性结构分析程序引进,一时间许多一直无法解决的工程难题都迎刃而解了。大家也都开始认识到有限元分析程序的确是工程师应用计算机进行分析计算的重要工具。但是当时限于国内大中型计算机很少,大约只有杭州汽轮机厂的Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高,为移植和发展PC版本的有限元程序提供了必要的运行平台。可以说国内FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥有较多用户(100家以上)的有限元分析系统有大连理工大学工程力学系的FIFEX95、北京大学力学与科学工程系的SAP84、中国农机科学研究院的MAS5.0和杭州自动化技术研究院的MFEP4. 0等。但正如上面所述,国外很多著名的有限元分析公司已经从前些年对PC平台不屑一顾转变为热衷发展,对国内FEA程序开发者来说发展PC版本不再具有优势,而应该从下面几方面加以努力:

1 研究开发求解非固体力学和交叉学科的FEA程序经过几十年的研究和发展,用于求解固体力学的有限元方法和软件已经比较成熟,现在研究的前沿问题是流体动力学、可压缩和不可压缩流体的流动等非固体力学和交叉学科的问题。由于国内没有类似功能的商品化软件,所以国外的软件就卖得非常贵。为了破这种垄断局面,我们必须发展有自主版权、用于分析流体等非固体力学和交叉学科的软件。因为流体力学问题远比固体复杂得多,而且很少有现成的软件可以借鉴,所以需要投入大量的人力和经费。这就必须有国家和大型企业集团来支持。

2 开发具有中国特色的自动建模技术和GUI开发建模技术和GUI的投入比前述课题要少得多,但却可以大大提高FEA软件的性能和用户接受程度,从而起到事半功倍的效果。国内不少人在这方面做了很多工作,但是由于当时PC机上的图形支撑环境有限,所以开发的效果都不甚理想。Windows中提供了OpenGL图形标准,为在PC机上应用可视化图形技术开发GUI提供了强有力的工具。OpenGL是当今国际上公认的高性能图形和交互式视景处理标准,应用它开发出来的三维图形软件深受专业技术人员的钟爱,目前世界上占主导地位的计算机公司都采用了这一标准。正如前面所述,近年来国外有的FEA程序已抛开仿真软件,直接在Windows平台上开发有限元程序。杭州自动化技术研究院1997-1999年采用OpenGL图形标准和相应的Visual C++等编程工具,在PC机上成功地开发了一套可视化有限元程序包。它能直观地通过对"菜单"、"窗口"、"对话框"和"图标"等可视图形画面和符号的操作,自动建立有限元分析模型,并以交互方法式实现计算结果的可视化处理,因而可大大提高有限

昂分析的效率和精确性,也便于用户学习和掌握。

3 与具有我国自主版权的CAD软件集成前面已经讲过,当今有限元方法的一个重要特点是和CAD软件的无缝集成。作为我国自行开发的FEA程序,首先要考虑和我国自主版权的CAD软件集成。因为有限元分析主要用于形状比较复杂的零部件,所以要和具有三维造型功能和CAD软件集成,使设计和分析紧密结合、融为一体。

伺服系统的发展及展望

伺服系统的发展及展望 摘要:本文主要介绍了伺服系统的三个发展阶段,包括步进电动机开环伺服系统阶段、直流伺服电动机闭环伺服系统阶段、无刷直流伺服电动机、交流伺服电动机伺服系统阶段,并分析了伺服系统的发展趋势:交流化、智能化、网络化、小型化。 关键词:伺服;智能化;小型化 伺服系统也叫位置随动系统,它的根本任务是实现执行机械对位置指令(给定量)的准确跟踪,当给定量随机变化时,系统能使被控制量准确无误地跟随并复现给定量,是一个位置反馈控制系统[1],主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。随着电力电子、控制理论、计算机术等技术的快速发展以及电机制造工艺水平的不断提高,伺服系统近年来获得了迅速发展。 1伺服系统的发展阶段 伺服系统的发展与伺服电动机的不同发展阶段相联系,

由直流电机构成的伺服系统是直流伺服系统,由交流电机构成伺服系统是交流伺服系统。伺服电动机至今经历了三个主要发展阶段: 1.1 第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统 伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。 步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。 1.2 第二个发展阶段(20世纪60-70年代):直流伺服电动机闭环伺服系统 由于直流电动机具有优良的调速性能,很多高性能驱动装置采用了直流电动机,伺服系统的位置控制也由开环系统发展成为闭环系统。在数控机床的应用领域,永磁式直流电动机占统治地位,其控制电路简单,无励磁损耗,低速性能好。 1.3 第三个发展阶段(80年代至今):无刷直流伺服电动机、交流伺服电动机伺服系统

浅谈仿真现状和发展

浅谈系统仿真的现状和发展 一、系统仿真技术发展的现状 工程系统仿真作为虚拟设计技术的一部分,与控制仿真、视景仿真、结构和流体计算仿真、多物理场以及虚拟布置和装配维修等技术一起,在贯穿产品的设计、制造和运行维护改进乃至退役的全寿命周期技术活动中,发挥着重要的作用,同时也在满足越来越高和越来越复杂的要求。因此,工程系统仿真技术也就迅速地发展到了协同仿真阶段。其主要特征表现为: 1、控制器和被控对象的联合仿真:MATLAB+AMESIM,可以覆盖整个自动控制系统的全部要求。 2、被控对象的多学科、跨专业的联合仿真:AMESIM+机构动力学+CFD +THERMAL+电磁分析 3、实时仿真技术 实时仿真技术是由仿真软件与仿真机等半实物仿真系统联合实现的,通过物理系统的实时模型来测试成型或者硬件控制器。 4、集成进设计平台 现代研发制造单位,尤其是设计研发和制造一体化的大型单位,引进 PDM/PLM系统已经成为信息化建设的潮流。在复杂的数据管理流程中,系统仿真作为CAE工作的一部分,被要求嵌入流程,与上下游工具配合。 5、超越仿真技术本身 工程师不必是精通数值算法和仿真技术的专家,而只需要关注自己的专业对象,其他大量的模型建立、算法选择和数据前后处理等工作都交给软件自动完成。

这一技术特点极大地提高了仿真的效率,降低了系统仿真技术的应用门槛,避免了因为不了解算法造成的仿真失败。 6、构建虚拟产品 在通过建立虚拟产品进行开发和优化过程中,关注以各种特征值为代表的系统性能,实现多方案的快速比较。 二、系统仿真技术的发展趋势 1、屏弃单专业的仿真 单一专业仿真将退出系统设计的领域,专注于单一专业技术的深入发展。作为总体优化的系统级设计分析工具,必要条件之一是跨专业多学科协同仿真。 2、跟随计算技术的发展 随着计算技术在软硬件方面的发展,大型工程软件系统开始有减少模型的简化、减少模型解藕的趋势,力争从模型和算法上保证仿真的准确性。更强更优化的算法,配合专业的库,将提供大型工程对象的系统整体仿真的可能性。 在高性能计算方面,将支持包括并行处理、网格计算技术和高速计算系统等技术。 3、平台化 要求仿真工具能够提供建模、运算、数据处理(包括二次开发后的集成和封装)、数据传递等全部仿真工作流程要求的功能,并且通过数据流集成在更大的PDM/PLM平台上。同时,在时间尺度上支持全开发流程的仿真要求,在空间尺度上支持不同开发团队甚至是交叉型组织架构间的协同工作以及数据的管理。 4、整合和细分市场

灌浆材料的发展现状与展望模板

灌浆材料的发展现状与展望 摘要:灌浆工法作为防渗补强加固的一种重要手段,其灌浆材料起着至关重要的作用。本文对灌浆材料的种类及其使用性能作了详细的描述,同时对今后浆材的发展方向提出了展望。 关键词:灌浆灌浆材料 注浆法出现于19世纪初,注浆工法在水利水电工程中多称灌浆法。采用灌浆技术以解决土建工程的有关技术难题,至今已有一个世纪的历史。浆液注入到地层中去的方式是该工法的关键。随着注浆技术的广泛应用,注浆材料得到了较大的发展。注浆材料从最早的石灰和黏土、水泥,发展到今天的水泥--水玻璃浆液、各种化学浆液。而注浆材料的开发与应用,又反过来推动了注浆工法在更广泛的领域内的应用。通常说的注浆材料是指浆液中的主剂。注浆材料必须是能固化的材料。习惯上把注浆原材料分为粒状材料和化学材料两个系统。而浆液是同主剂、固化剂,以及溶剂、助剂经混合后所配成的液体,分为溶液型和悬浊液型两大类。 1 灌浆材料的种类及其特点 1.1 溶液型浆材 溶液型浆材又叫化学浆材,可分为水玻璃类、木质素类灌浆材料、丙烯酰胺类灌浆材料、丙烯酸盐类灌浆材料、聚氨酯类灌浆材料、环氧树脂灌浆材料、甲基丙烯酸酯类灌浆材料、脲醛树脂类、其它类化学灌浆材料。1.1.1 水玻璃类灌浆材料 水玻璃(硅酸钠)是化学灌浆中最早使用的一种材料,水玻璃类浆液是由水玻璃溶液和相应的胶凝剂组成。其无机胶凝剂有氯化钙、铝酸钠、氟硅酸、磷酸、草酸、硫酸铝、混合钠剂等,有机胶凝剂有醋酸、酸性有机盐、有机酸酯、醛类(乙二醛类)、聚乙烯醇等。二氧化碳亦可与水玻璃溶液在被灌体内生成硅酸凝胶。 灌浆用水玻璃模数在2.4~3.4之间为宜,水玻璃溶液的浓度在35~45°Be'为宜。 水玻璃类浆材主要特点及性能: (1) 胶凝时间从瞬间~24小时不等; (2) 固砂体强度可达6MPa; (3) 粘度从1.2~200×10-3Pa·s; (4) 可灌性好,渗透系数可达10-5~10-6cm/s,可灌入 0.1mm以上的土层。 (5) 毒副作用小,造价低。 1.1.2 木质素类浆液 木质素类浆液由纸浆废液、胶凝剂和促凝剂等组成。木质素类浆液包括铬木素和硫木素浆液两种。铬木素浆液的固化剂是重铬酸钠。但重铬酸钠毒性大,难以大规模使用。硫木素浆液是在铬木素浆液的基础上发展起来的,是采用过硫酸铵完全代替重铬酸钠,使之成为低毒、无毒木质素浆液,是一种很有发展前途的注浆材料。

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

电液伺服技术的发展与未来展望

电液伺服技术的发展与未来展望 电液伺服系统的特点 电液伺服系统有许多优点,其中最突出的就是响应速度快、输出功率大、控制精确性高,因而在航空、航天、军事、冶金、交通、工程机械等领域得到了广泛的应用。人类使用水利机械及液压传动虽然已有很长的历史,但液压控制技术的快速发展却还是近几十年的事,随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着现代科学技术特别是材料科学的发展,人们更加重视动态试验。而电液伺服技术是实现动态高周疲劳、程控疲劳和低周疲劳以及静态的恒变形速率、恒负荷速率和各种模拟仿真试验系统的最佳技术手段。 国内电液伺服试验机的起步 国外试验机同行在电液伺服技术的应用和研制起步较早,自二十世纪50年代中期以来就先后生产了各种使用电液伺服系统的试验机,如美国MTS、英国Instron、瑞士Amsler(现在分为瑞士RUMUL和瑞士W+B试验机公司)、德国Sehench和日本岛津等公司都先后研制成功各种电液伺服试验机。当时我国在这个应用领域还是空白,使用的电液伺服试验机都是从这些国家进口的。 我国试验机厂家是在上世纪70年代初才开始研制电液伺服试验机,长春试验机研究所、长春试验机厂、红山试验机厂和济南试验机厂等开始进行研制。在国家财力的支持下,先后都成功地开发出电液伺服动静试验机,并开始在国内应用。正是通过当时这段时间的成功实践,培养锻炼出一批技术人员,创建了我国今后电液伺服技术发展的平台,奠定了国内在该技术领域的基础。 国内电液伺服试验机的发展阶段 国内电液伺服试验机的发展按照产品发展时期的特点大致划分成两个阶段:即自主发展阶段和与国外合作发展阶段。 自主发展阶段:二十世纪70年代末期到二十世纪90年代初期,国内的电液伺服试验机都是以自主开发为主。主要是集中在国内几个有实力的试验机厂家,如长春试验机研究所、长春试验机厂、红山试验机厂和济南试验机厂等。这个时期的主要代表性的产品有:1983年长春试验机研究所研制的2000kN电液伺服岩石压力试验机,该设备采用高压容器作为围压,模拟试样的真实受力情况。是三轴动静试验机的代表性产品,并首次把计算机引入电液伺服试验机的控制。1984年长春试验机研究所研制的3000kN电液伺服双缸卧式拉力试验机。该项目中首次应用静压支撑技术,成功地在两个卧式伺服油缸上实现静压支撑。另外,还首次应用了伺服同步技术,实现双缸系统的同步跟踪和精确定位。双缸的同步

系统仿真技术发展现状

系统仿真技术发展现状和趋势 工程系统的仿真,起源于自动控制技术领域。从最初的简单电子、机械系统,逐步发展到今天涵盖机、电、液、热、气、电、磁等各个专业领域,并且在控制器和执行机构两个方向上飞速发展。 控制器的仿真软件,在研究控制策略、控制算法、控制系统的品质方面提供了强大的支持。随着执行机构技术的发展,机、电、液、热、气、磁等驱动技术的进步,以高可靠性、高精度、高反应速度和稳定性为代表的先进特征,将工程系统的执行品质提升到了前所未有的水平。相对控制器本身的发展,凭借新的加工制造技术的支持,执行机构技术的发展更加富于创新和挑战,而对于设计、制造和维护高性能执行机构,以及构建一个包括控制器和执行机构的完整的自动化系统也提出了更高的要求。 AMESIM软件正是能够提供平台级仿真技术的工具。从根据用户需求,提供液压、机械、气动等设计分析到复杂系统的全系统分析,到引领协同仿真技术的发展方向,AMESIM的发展轨迹和方向代表了工程系统仿真技术的发展历程和趋势。 一、系统仿真技术发展的现状 工程系统仿真作为虚拟设计技术的一部分,与控制仿真、视景仿真、结构和流体计算仿真、多物理场以及虚拟布置和装配维修等技术一起,在贯穿产品的设计、制造和运行维护改进乃至退役的全寿命周期技术活动中,发挥着重要的作用,同时也在满足越来越高和越来越复杂的要求。因此,工程系统仿真技术也就迅速地发展到了协同仿真阶段。其主要特征表现为: 1、控制器和被控对象的联合仿真:MATLAB+AMESIM,可以覆盖整个自动控制系统的全部要求。 2、被控对象的多学科、跨专业的联合仿真:AMESIM+机构动力学+CFD+THERMAL +电磁分析 3、实时仿真技术 实时仿真技术是由仿真软件与仿真机等半实物仿真系统联合实现的,通过物理系统的实时模型来测试成型或者硬件控制器。 4、集成进设计平台 现代研发制造单位,尤其是设计研发和制造一体化的大型单位,引进PDM/PLM 系统已经成为信息化建设的潮流。在复杂的数据管理流程中,系统仿真作为CAE 工作的一部分,被要求嵌入流程,与上下游工具配合。 5、超越仿真技术本身 工程师不必是精通数值算法和仿真技术的专家,而只需要关注自己的专业对象,其他大量的模型建立、算法选择和数据前后处理等工作都交给软件自动完成。这一技术特点极大地提高了仿真的效率,降低了系统仿真技术的应用门槛,避免了因为不了解算法造成的仿真失败。 6、构建虚拟产品 在通过建立虚拟产品进行开发和优化过程中,关注以各种特征值为代表的系统性能,实现多方案的快速比较。 二、系统仿真技术的发展趋势 2.1、屏弃单专业的仿真

中国磁性材料产业现状及其发展展望(1)

中国磁性材料产业现状及其发展展望(1) 摘要:磁性材料是各种电子产品主要的配套产品,无论是消费家电产品和工业类如计算机、通讯设备、汽车,以及国防工业均离不开磁性材料。当前,中国各种磁性材料的产量基本上世界第一,成为磁性材料生产大国和磁性材料产业中心。中国磁性材料的中长期市场前景十分光明,中国的磁性材料产品在全球的地位必将进一步提高。必须加强科技创新力度、加强技术改造加强企业管理水平,调整产业结构和提高产品档次,使中国磁性材料从大国走向强国。本文着重从宏观角度分析了中国磁体产业整体情况,介绍了稀土永磁材料特别是中国钕铁硼烧结和粘结产业现状,以及中国新型的稀土永磁材料的研究开发情况,同时对我国磁体产业发展前景进行了预测和分析。 1 中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁;50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体,包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平

均以每年10%的速度增长。中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。 1997~20XX的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 20XX年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

伺服系统原理及发展趋势 王刚

伺服系统原理及发展趋势 姓名:王刚学号:50128523405 摘要:伺服系统是机电产品中的重要环节,其控制性能反映了机电设备的控制质量。高性能的伺服系统可以提供灵活、方便、准确、快速的驱动。本文在理解《伺服驱动与控制技术》这门课程的理论基础上,介绍了伺服系统的发展过程和伺服系统的分类、原理,并具体阐述了伺服系统的发展趋势。 关键词:伺服系统;控制;电机;发展 Abstract:Servo-system is the important link in the mechanical-electrical products ,its control property reflects the control quality of mechanical-electrical device.High-performance servo system can provide a flexible, convenient, accurate and fast driver. Based on understanding the servo drive and control technology based on the theory of this course, the developing of the Servo-system are introduced and the classification, the principle of the servo system, and expounds the development trend of servo system in detail. Keyword:Servo-system;Control;Motor;developing 引言 伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器。

中医药治疗原发性骨质疏松症现状与展望

作者:刘海全,秦佳佳,赵王林,付海燕,杨海韵 【关键词】原发性骨质疏松;中医药;化学药物 原发性骨质疏松症是以骨量减少、骨组织显微结构改变和骨折危险频度增加为特征的一种全身性骨骼系统疾病。由于相应的骨量减少、骨质量的降低及老年人对创伤的易感性等导致骨折危险性增加。我国60岁以上的老年人原发性骨质疏松症发病率为59.89%,而每年因骨质疏松症并发骨折者约为9.6%,并有逐年增加的趋势。 1 中医对原发性骨质疏松症病名的认识中医对原发性骨质疏松症定性、定位较准确的当属“骨痿”。“骨痿”的提法最早见于《内经》,《素问·痿论》中亦有关于“骨痿”的论述。至汉代,张仲景在《金匮要略·骨痿》中进一步指出了“骨痿”与“骨痹”间的差异,认为“骨痹”是“骨痿”的进一步发展,其后张从正则从临床症状角度谈到了两者的不同,他在《儒门事亲·指风痹痿厥近世差无说》中指出两者应分而论治。现代大多数学者认为原发性骨质疏松症应当属于“骨痿”。 2 中医对原发性骨质疏松症病因病机的认识本病为本虚标实之症,即以肾虚为主,同时伴有脾虚、肝虚、血淤之候的多虚多淤的疾病。《素问·六节脏象论》中说:“肾者,封藏之本,精之处也,其华在发,其充在骨”。《不居集》中:“诸般腰痛皆属肾虚,……腰肢痿弱,身体疲倦,脚膝酸软,脉或大或细,痛亦隐隐而不甚,是其候也”均说明肾虚精亏,不能主骨生髓,骨失濡养而致腰脊酸痛,因其为虚痛,故痛势隐隐,绵延不绝;精舍神,精衰则神弱而致神疲乏力;精虚则不能化气,鼓动血脉无力,气血不行,痹阻经络而致腰背疼痛。现代研究亦证实[1],肾虚骨质疏松症的病理机制为肾精不足,骨髓、脑髓失养,表现在下丘脑——垂体——靶腺轴的调控失常,包括下丘脑组织的细胞因子及其信号传导通路的异常。脾胃为后天之本,主四肢肌肉。中气受损,则受纳、运化、输布的功能失常,气血津液生化之源不足,无以充养五脏、运行血气,以致筋骨失养、关节不利、肌肉消瘦、肢体痿弱不用,久痿必致骨无所用,进而导致骨质疏松。由于老年人机体功能衰退,体虚气弱,易受外邪侵袭,导致气机不利,气虚无力推动血行脉中,使经络不通、气血不畅,故老年人脾肾俱虚的同时,往往伴随血淤的存在。原发性骨质疏松症除虚为主的病因病机,血淤与淤血也是其重要病因,而淤血更为重要病理[2]。肝虚与骨质疏松症也存在一定的关联。肝藏血,肾藏精。血的生化,有赖于肾中精气的气化;肾中精气的充盛,亦有赖于血液的滋养。精与血的病变亦常相互影响。如肾精亏损,可导致肝血不足;反之,肝血不足,也能引起肾精亏损,肾亏则髓空,骨骼虚损,而形成骨质疏松症。 3 辨证分型研究中医传统的八纲辨证、脏腑辨证等辨证系统是中医长期临床实践的经验总结。中医证型的划分是依据中医理论对疾病的病因、病理、病位及其发展、转归、预后等特点进行分辨和概括的结果。江湧等[3]根据本病临床特征,把原发骨质疏松症按痿、痹、淤痉辨病分类。以无痛为痿,疼痛为痹,外伤为淤,抽搐为痉,再根据病因病机、四诊合参辨证施治。刘庆思[4]根据中医理论及多年积累的临床资料,对原发骨质疏松症的辨证分型归纳总结为4型,即肾阳虚衰型,肝肾阴虚型,脾肾阳虚型和气滞血淤型。苏培基将原发性骨质疏松症分为肾阳虚、肾阴虚、脾肾阳虚、肝肾阴虚、气血亏虚、淤血阻络6型进行辨证论治[5]。徐祖健等[6]通过临床调查发现,在其临床调查对象中,中医证型分布规律为肝肾阴虚型占47.25%,肾阴虚型占16.48%,肾阳虚型占10.99%,脾肾阳虚型占9.89 %,脾胃虚弱型占5.49%,其他类型占9.89%。除上述几种辨证分型以外,国内学者根据对骨痿病因病机的认识,对本病尚有其他几种不同的辨证分型。虽然这些辨证分型不尽相同,但其总体均以肾虚为主,并与脾虚、肝虚、血淤相关。 4 辨证论治研究中医药采用整体调整的疗法,多以补肾、健脾、活血为主要治则,辨证加减治疗本病,临床均取得较好的疗效。李茵等[7]通过文献检索分析得出,在治疗骨质疏松症的104首中药复方中,共使用106种药物1 204频次。其中,使用频次在10

镁基复合材料的研究发展现状与展望

——颗粒增强镁基复合材料 课程名称:金属基复合材料 学生姓名: 学号: 班级: 日期:2010/12/26

——颗粒增强镁基复合材料 摘要:镁基复合材料具有很高的比强度、比刚度以及优良的阻尼减震性能,是汽车制造、航空航天等领域的理想材料之一。本文综述了颗粒增强镁基复合材料的研究概况,镁基复合材料常用的基体合金和常用的增强相。着重介绍了其制备方法、力学以及阻尼性能,并对它的发展趋势进行了展望。 关键词:镁基复合材料;制备方法;基体镁合金;颗粒增强体;性能 1.前言 与传统的金属材料相比,金属基复合材料具有高的比强度、比刚度、耐高温、耐磨损耐疲劳、热膨胀系数小、化学稳定性和尺寸稳定性好等优异性能。金属基复合材料的增强体主要有长纤维、短纤维、颗粒和晶须等,其中颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向,正在向工业规模化生产和应用发展。颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;由于镁的密度更低(1.74 g/cm3),仅为铝的2/3,具有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空、航天、汽车、机械及电子等高技术领域的重视.自20世纪8O年代至现在,镁基复合材料已成为金属基复合材料的研究热点之一。颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易近终成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。 2.制备方法 2.1粉末冶金法 粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。 2.2熔体浸渗法 包括压力浸渗、无压浸渗和负压浸渗。压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。增强颗粒与基体的润湿性是无压浸渗技术的关键。负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件中。由负压浸渗制备的SiC/Mg颗粒在基体中分布均匀。

交流伺服系统发展现状及其趋势

交流伺服系统发展现状及其趋势运动控制系统作为电气自动化的一个重要的应用领域,已经被广泛应用于国民经济各个部门。运动控制系统主要研究电动机拖动及机械设备的位移控制问题。交流伺服系统是运动控制系统所研究的重要的一部分,而纵观电力拖动的发展过程,交、直流两种拖动方式并存与各个生产领域,随着工业技术的发展,两者相互竞争,相互促进。 1990年以前,由于技术成本等原因,国内伺服电机以直流永磁有刷电机和步进电机为主,而且主要集中在机床和国防军工行业。1990年以后,进口永磁交流伺服电机系统逐步进入中国,此期间得益于稀土永磁材料的发展、电力电子及微电子技术日新月异的进步,交流伺服电机的驱动技术也得以很快发展。如今约占整个电力拖动容量80%的不变速拖动系统都采用交流电动机,而只占20%的高精度、宽广调速范围的拖动系统采用直流电动机。自20世纪80年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术的快速发展,交流伺服控制技术的发展得以极大的迈进,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展,交流伺服系统的性能日渐提高,价格趋于合理,使得交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。 一、交流伺服系统的概述 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。我们通常说的伺服驱动器已经包括了控制器的基本功能和功率放大部分。虽然采用功率步进电机直接驱动的开环伺服系统曾经在90年代的所谓经济型数控领域获得广泛使用,但是迅速被交流伺服所取代。进入21世纪,交流伺服系统越来越成熟,市场呈现

电力系统仿真分析技术的发展趋势.doc

电力系统仿真分析技术的发展趋势 0 引言 随着化石能源逐渐枯竭,发展利用清洁能源和可再生能源成为世界各国的必然选择,也是新能源变革的主要内容。中国新能源变革的目标可以归纳为:以可再生能源逐步替代化石能源,提高化石能源的清洁高效利用水平,实现可再生能源(水能、风能、太阳能、地热能、生物质能)和核能利用在一次能源消耗占较大份额。在新能源变革形势下,电网的使命也将发生变化,智能电网是适应新能源变革和承担电网新使命的新一代电网。 中国自 21 世纪初就提出了建设特高压电网的设想,并逐步加以实施,近两年根据国际电力系统发展的最新动向,又进一步提出了建设智能电网的宏伟蓝图。中国的智能电网是以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节的现代电网。与此同时,随着电网规模的不断扩大,新能源、新设备的不断加入,当今电力系统已经日益变得复杂,这使得运行人员更加难于对其进行监视、分析和控制。近些年,国内外不断发生大规模的停电事故,这些事故都造成了很大的经济损失和社会影响,不断地为人们敲响警钟,也给电网的安全稳定运行提出了更高的要求。 在上述的大停电事故中,电力系统从第一次元件故障,到整个系统崩溃,一般会有一个较长的过程,如果这期间运行人员能够进行正确的处理,大停电是可以避免的。换言之,电网缺乏有效的在线监测和预警系统,不能及时掌握实时电网稳定情况并采取有效的控制措施是导致大停电事故发生的重要原因。 电力系统仿真分析是电力系统规划设计和调度运行的基础,涵盖的范围非常广泛,包括从稳态分析、动态分析到暂态分析的各个方面。根据实时电力系统动态过程响应时间与系统仿真时间的关系,可分为非实时仿真和实时仿真;根据仿真的数据来源,又可分为离线仿真、在线仿真。其中在线仿真是实现在线预警和决策支持的必要手段。 电力系统仿真分析涵盖电力系统、数学、计算机、通信等多学科技术领域,面对智能电网建设提出的要求,需要不断地引入先进的计算机和通信技术以及数学方法等,推动仿真分析技术在仿真的准确性、快速性、灵活性等方面的发展。具体体现在以下几个方面:1)可实现更大规模电网的仿真计算,同时仿真数据的粗细程度可根据需要自动调整。 2)仿真计算应具有更快的速度及更高的准确性。 3)仿真计算应具备更多的效用,并与环境、经济等相关领域相结合。 4)仿真建模应具备更大的灵活性,以适应智能电网中层出不穷的新元件、新设备建模的需要。 5)需加强对电力系统智能建模方法的应用以及仿真结果的智能化分析。 6)电网自愈对实时决策控制的要求。要求能实时跟踪评价电力系统行为,一旦发生故障,立即进行快速仿真并提供决策控制支持,防止大面积停电,并快速从紧急状态恢复到正常状态。 7)仿真试验应具备更大的灵活性。未来的仿真试验将可实现对多个异地试验设备的同步测试。 8)仿真计算应适应新的计算模式,如云计算、协同计算等。 9)可实现智能人机交互仿真,显著提高用户操作的便捷性和仿真系统的使用效率。 10)数据融合技术在仿真分析中应用,提高对仿真分析中对多源海量数据的整合能力。 本文将依据计算机、网络、通信等技术当前和未来可能的发展,探讨和预测新的先进计算技术(如云计算等)及其在电力系统仿真分析中的应用。 1 发展现状 1.1 电力系统仿真分析技术概述 如图 1 所示,电力系统仿真分析技术可分为电力系统建模、电力系统数字仿真分析方法、电力系统在线仿真分析和电力系统实时仿真等4项技术,其中电力系统建模技术包括建模方法和模型研究技术,电力系统数字仿真分析方法主要指针对各类仿真应用的基础方法,后2种技术则分别针对在线应用和实时应用。其中先进计算技术包括计算机及网络、与电力系统仿真分析相关的计算数学和计算模式这3项技术。下文分别描述上述各项技术的发展现状。

新材料产业发展现状及趋势

新材料产业发展现状及趋势 “十五”期间,在我国新材料产业发展过程中,国家给予了大力支持,初步形成了比较完整的新材料产业体系。“十五”期间发布的《国家计委关于组织实施新材料高技术产业化专项公告》,通过100多个产业化专项的实施.有力地推动了我国具有自主知识产权的新材料产业的发展,在电子信息材料、先进金属材料、电池材料、磁性材料、新型高分子材料、商性能陶瓷材料和复合材料等方面形成了一批高技术新材料核心产业。“十一五”期间又进一步加大了支持力度。按我国目前经济发展趋势预计,新材料需求增长速度将高于经济增长速度,按10%的增长速度计算,到2010年我国新材料市场可达6500亿元。新材料产业也已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志。 我国新材料产业的发展现状 当前,我国的新材料产业在国际产业布局中正处于由低级向高级发展的阶段,随着对外开放和与全球业界的广泛交流合作,我国新材料产业正呈现快速健康发展的良好状态,在一些重点、关键新材料的制备技术、工艺技术、新产品开发及节能、环保和资源综合利用等方面取得了明显成效,促进了一批新材料产业的形成与发展。 1.新一代钢铁结构材料 迄今为止,钢铁结构材料依然是国民经济各支柱产业和国防工业的重要支撑材料和应用范围最宽、使用量最大的材料,其生产和应用过程对全球资源、能源和人类生存环境有着不可忽视的影响,以去年为例: 2007年生产钢材46719.3万吨,比去年增长16.2%。同时,高技术含量、高附加值品种钢材产量大幅度增长。全年生产冷轧薄宽钢带1740.27万吨,同比增长31.8%;冷轧薄板1563.83万吨,同比增长25.2%;镀层板(带)1754.58万吨,同比增长37.9%;涂层板(带)317.21万吨,同比增长36.1%;电工钢板(带)415.57万吨。同比增长23.5%。以上5个品种钢材合计生产5791.487吨,比上年增长31.28%,高于钢材生产总量增幅8.59个百分点。全年生产不锈钢720.6万吨,比上年增加190.6万吨,增长35.96%,居世界第一位。其中,世界一流工艺装备的生产量达到70%,国内市场占有率达到75%,实现了重大的突破。全行业已基本形成以企业为主体、市场为导向、产学研相结合的技术创新和新产品研发体系,形成了科研基础设施建设加强、科技投入增加的良好格局。全行业在高效采选技术、钢铁冶炼技术、轧钢新技术、高端产品开发、大型冶金成套装备技术集成、节能节水和废弃物综合利用新技术等方面,都取得了新的成果和进步。 2007年宝钢试制成功X120管线钢,实现电镀锌机组全面无铬化生产,年产150万吨生铁的COREX3000熔融还原工艺装置投产;鞍钢继续完善冷连轧自主集成成套工艺技术,开发成功一批具有自主知识产权的核心技术,并在相关企业投入使用;武钢新一代取向硅钢、高效电机硅钢的研发和装备技术集成,高强度桥梁钢生产技术提高;太钢建成世界一流的现代化不锈钢生产基地;攀钢转炉铁水提钒和半钢炼钢连续工业性试生产成品钒渣等均取得了工艺技术的新突破。 2007年在研发和扩大生产市场需求的短缺产品方面,船用高强度宽厚板、高强度海洋结构用钢板、高档汽车用板和汽车零部件用钢、工程机械和高层建筑用高强度厚钢板、X80以上高等级管线钢板、百米在线热处理钢轨和时速350公里高速铁路钢轨、高速动车组用钢、高端压

工程材料的历史、现状与发展

工程材料的历史、现状与发展 §1 工程材料的历史、现状和发展 材料:人类用以制作有用物件的物质 新材料:主要是指最近发展起来或正在发展之中的具有特殊功能和效用的材料。 人类先后经历了:石器时代——铁器时代——钢铁时代(高分子时代半导体时代先进陶瓷时代复合材料时代),这说明以学一种类材料为主导的时代已经一不复返了。材料的发展已进入丰富多采的时代,而以保护资源、环境和生态为目的的材料设计思想已形成新的潮流,即“生态环境材料”。 材料分类:金属材料无机非金属材料(陶瓷)有机高分子材料复合材料 一、金属材料 1、特点:由于其主要通过金属键结合而成,因此金属有比高分子材料高得多的模量,有比陶瓷高得多的韧性、可加工性、磁性和导电性。 2、近年来金属材料的纵深发展: 1)高纯材料 2)高强度及超高强度金属材料 3)超易切削钢和超高易切削钢 4)硬质合金和金属陶瓷 5)高温合金与难熔合金 6)纤维增强金属基复合材料 7)共晶合金定向凝固材料 8)快速冷凝金属非晶及微晶材料 9)有序金属间化合物 10)超细纳米颗粒金属材料 11)形状记忆合金 12)贮氢合金 3、金属材料的发展趋势 二、无机非金属材料(陶瓷ceramic)的特点 陶瓷是泛指一切经高温处理而获得的无机非金属材料,除先进(特种)陶瓷外,还包括玻璃、搪瓷、水泥和耐火材料等。从狭义上讲,用无机非金属化合物粉体,经高温烧结而成,以多晶聚积体为主的固态物均称为陶瓷,即先进的陶瓷。 先进陶瓷的化学键是由共价键与离子键组成,具有优良的耐高温、耐磨、耐腐蚀的特点。 三、复合材料的特点 复合材料,是指由不同材料组合而成,在新制成的材料中,原来各材料的特性得到了充分的应用,而且复合后可望获得单一材料得不到的新功能材料。 近代复合材料包括: 1、软质复合材料,具有高强度、高质量的特点。如橡胶与纺织材料结合在一起,人造丝、尼龙、金属纤维 2、硬质复合材料,“玻璃钢”代表(又增强纤维与合成树脂制成的复合材料。 §2 制造(工艺)技术发展的历史、现状和趋势

国内外军用仿真技术发展现状概述

国内外军用仿真技术发展现状概述 一、概述仿真技术是以相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一种综合性技术。它综合集成了计算机、网络技术、图形图像技术、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识。 随着仿真技术在科技进步和社会发展中的作用愈来愈显重要,特别是军事科学,随着高、精尖武器系统的研制和发展,对军用仿真技术的应用和研究提出了更高的要求。世界各军事强国竟相在新一代武器系统的研制过程中不断完善仿真方法,改进仿真手段,以提高研制工作的综合效益。军用仿真技术在武器系统战技指标论证、方案选择、研制、试验、鉴定、改进提高以及部队维护保养和训练中的应用,已得到研制方和使用部队的承认和重视。它对提高新一代武器系统综合性能,减少系统实物试验次数、缩短研制周期,节省研制经费,提高维护水平,延长寿命周期,强化部队训练等方面都可大有作为。 二、国内外军用仿真技术发展现状1.国外军用仿真技术发展现状态 美国国防部高度重视仿真技术的发展,近十多年来,美国一直将建模与仿真列为重要的国防关键技术。1992年公布了国防建模与仿真倡议,并成立了国防建模与仿真办公室,负责倡议的实施:1992年7月美国防部公布了国防科学技术战略,综合仿真环境被列为保持美国军事优势的七大推动技术之一;1995年10月,美国防部公布了建模与仿真主计划,提出了美国防部建模与仿真的六个主目标;1997年度的美国国防技术领域计划,将建模与仿真列为有助于能极大提高军事能力的四大支柱(战备、现代化、部队结构、持续能力)的一项重要技术,并计划从1996年至2001年投资5.4亿美元、年均投资0.9亿美元。同时美国国防科学局(Defense Science Board)认为建立集成的综合仿真环境和仿真系统,必须解决五个层次的使能技术,(enabling technologies )(即应能解决实现的技术) 第一层次基础技术。 包括:光纤通讯、集成电路、软件工具、人的行为模型、环境模型等。 第二层次元、部件级技术

功能材料及其发展趋势

材料】功能材料发展趋势??功能材料发展趋势??功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。? 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。??鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。? 1、新型功能材料国外发展现状??当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。 超导材料以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。? 高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的上临界场[Hc2 (4K)>50T],能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。正因为这些由本征特性Tc、Hc2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高Tc超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。

相关文档
相关文档 最新文档