文档库 最新最全的文档下载
当前位置:文档库 › LED驱动原理

LED驱动原理

LED驱动原理
LED驱动原理

LED驱动原理

LED电力特性

· LED驱动时,具有电压(VF)和电流(IF)

·电流和电压的联系: LED驱动时, 电压的细微改变会引起电流的带来巨大改变

·电流和亮度的联系: LED的亮度与电流量成份额→要使LED的亮度安稳运用,由必要调理电流

·温度和电压的联系: LED驱动中, 跟着温度上升LED的电压变低

直列电阻方法

正电流Emiter驱动方法

MOS管工作原理及其驱动电路

功率场效应晶体管MOSFET 技术分类:电源技术模拟设计 | 2007-06-07 来源:全网电子 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

大功率LED的驱动电路设计(PT4115应用)

大功率LED 的驱动电路设计(PT4115应用) 摘要:LED (light emitting diode )即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。 本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标: 1)LED 的颜色:目前LED 的颜色主要有红色,绿色,蓝色,青色,黄色,白色,暖白,琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定电流为350mA,3W LED 的750mA 。 3)LED 的正向电压:LED 的正极接电源正极,负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V 。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm)。如1W 大功率LED 的光通量一般为60~80LM 。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度.,单位为勒克斯(lx)。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压,电流等条件)的一种电路,也是LED 能工作必不可少的条件,好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式: (1) 镇流电阻驱动:就是简单的的在LED 变LED 的驱动电流.。 LED 的工作电流为: R U U I L -= 所以I 与镇流电阻R 成反比;当电源电压U 时,R 能限制I 的过量增长,使I 不超出LED

IGBT驱动电路原理及保护电路

驱动电路的作用是将单片机输出的脉冲进行功率放大,以驱动IGBT.保证IGBT 的可靠工作,驱动电路起着至关重要的作用,对IGBT驱动电路的基本要求如下: (1) 提供适当的正向和反向输出电压,使IGBT可靠的开通和关断。 (2) 提供足够大的瞬态功率或瞬时电流,使IGBT能迅速建立栅控电场而导通。 (3) 尽可能小的输入输出延迟时间,以提高工作效率。 (4) 足够高的输入输出电气隔离性能,使信号电路与栅极驱动电路绝缘。 (5) 具有灵敏的过流保护能力。 第一种驱动电路EXB841/840 EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us 以后IGBT正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。 当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6“悬空”.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。 如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低 ,完成慢关断,实现对IGBT的保护。由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。

led灯电路驱动原理

LED灯电路驱动电路研究 内容摘要:论文提出了几种有代表性的实用LED驱动电路方案,并对每一种驱动电路的工作原理,优缺点及适用范围进行了较详尽的论述。对LED用户合理选用驱动电路有一定的指导作用。 论文并附电压系数计算表、LED恒流驱动器型谱图、恒流驱动器性能对比表、恒流驱动器接线图等图表4张。 一、 LED是一种节能、环保、小尺寸、快速、多色彩、长寿命的新型光源。近年来国内许多厂家都在积极研发LED新型灯具。但是一个不容忽视的事实是与LED灯配套的驱动器却没有及时跟上来,驱动电路性能不佳,故障率高,成了LED推广应用的瓶颈,其中还有许多技术问题需要研究解决。 接触过LED的人都知道:由于LED正向伏安特性非常陡(正向动态电阻非常小),要给LED供电就比较困难。不能像普通白炽灯一样,直接用电压源供电,否则电压波动稍增,电流就会增大到将LED烧毁的程度。为了稳住LED的工作电流,保证LED能正常可靠地工作,各种各样的LED驱动电路就应运而生。最简单的是串联一只镇流电阻,而复杂的是用许多电子元件构成的“恒流驱动器”。 近两年来,我公司为解决研发LED灯的需要,广开思路对各种可能有使用价值的LED驱动电路,从简单到复杂,从小功率到大功率,从直流到交流,全面深入地进行了试验研究,从中提炼出了几种有代表性的驱动电路方案,经试用效果良好。下面逐一介绍,与同行作一次交流。

二、镇流电阻方案 此方案的原理电路图见图1。 这是一种极其简单,自LED 面世以 来至今还一直在用的经典电路。 LED 工作电流I 按下式计算: L U U I R -= (1) I 与镇流电阻R 成反比;当电源电压U 上升时,R 能限制I 的过量增长,使I 不超出LED 的允许范围。 此电路的优点是简单,成本低;缺点是电流稳定度不高;电阻发热消耗功率,导致用电效率低,仅适用于小功率LED 范围。 一般资料提供的镇流电阻R 的计算公式是:L U U R I -= (2) 按此公式计算出的R 值仅满足了一个条件:工作电流I 。而对驱动电路另两个重要的性能指标:电流稳定度和用电效率,则全然没有顾及。因此用它设计出的电路,性能没有保证。 笔者摸索出一种新的设计计算方法,取名叫“电压系数法”。它是从电流稳定度和用电效率的要求出发,再计算出镇流电阻R 和电源电压U 的值。这样设计出来的电路,就能满足三个条件:电流稳定度I I ?;用电效率η和工作电流I 。 电压系数法的内容如下:(公式中用到的符号见图1) 首先建立电压系数定义:L U K U = (3) (电源电压与LED 工作

MOSFET与MOSFET驱动电路原理及应用

MOSFET与MOSFET驱动电路原理及应用 下面是我对MOS FET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。右图是这两种MOS管的符号。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。下图是MOS管的构造图,通常的原理图中都画成右图所示的样子。 (栅极保护用二极管有时不画)

MOS管的三个管脚之间有寄生电容存在,如图所示。这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,在MOS管的驱动电路设计时再详细介绍。 2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,使用与源极接VCC时的情况(高端驱动)。但是,虽然PMOS 可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 下图是瑞萨2SK3418的Vgs电压和Vds电压的关系图。可以看出小电流时,Vgs达到4V,DS间压降已经很小,可以认为导通。 3、MOS开关管损失

小型LCD背光的LED驱动电路设计

小型LCD背光的LED驱动电路设计 过去几年来,小型彩色LCD 显示屏已经被集成到范围越来越宽广的 产品之中。彩色显示屏曾被视为手机的豪华配置,但如今,即便在入门级手机 中,彩屏已成为一项标配。幸好,手机产业的经济规模性(全球手机年出货量接 近10 亿部)降低了LCD 彩色显示屏的成本,并使它们集成在无论是便携医疗设备、通用娱乐遥控器、数字相框/彩色LCD 显示屏需要白色背光,以便用户在 任何光照环境下都能正常地观看。这个背光子系统包括1 个高亮度白光发光二 极管(LED)阵列、1 个扩散器(diffuser)以扩散光线和1 个背光驱动器将可用电能 稳压为恒定电流以驱动LED.一块1 到1.5 英寸的显示屏可能包含2 到4 个LED,而一块3.5 英寸显示屏则可能轻易地就包含6 到10 个LED.对于LED 而言,其光 输出与电流成正比,而且由于LED 具有非常陡峭的电流-电压(I-V)曲线,流过LED 的电流紧密匹配是非常重要,这样才能确保均衡背光,因为LED 通常分 布在LCD 显示屏的一边。此外,也需要软件控制让用户调节亮度,以及针对 周围光照环境作出补偿。根据流经LED 电流的不同,LED 的色点(color point) 可能会漂移。因此,将LED 电流设定为固定值并对LED 进行脉宽调制以降低 平均光输出就很普遍。要在手持产品设计中集成小型彩色LCD 显示屏并进而 实现成本、性能和电池寿命的恰当平衡,存在着一系列需要考虑的因素。 电池供电产品需要优化的LED 驱动电路架构,这些架构要处理并存的 多项挑战,如空间受限、需要高能效,以及电池电压变化-既可能比LED 的正 向电压高,也可能低。常用的拓扑结构有两种,分别是LED 采用并联配置的 电荷泵架构/恒流源架构和LED 采用串联配置的电感升压型架构。这两种方案 都有需要考虑的折衷因素,如升压架构能够确保所有LED 所流经的电流大小 相同但需要采用电感进行能量转换,而电荷泵架构使用小型电容进行能量转换,

MOS管工作原理及其驱动电路

MOS管工作原理及其驱动电路 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导 体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的 栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。 结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单, 需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流 容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值 可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对 于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的 载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同, 但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂 直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件 的耐压和耐电流能力。

简单的LED驱动电源电路图分析

简单的LED驱动电源电路图分析 简单的LED驱动电源电路图分析 概述:首先跟大家说一下,这张图是本人从网上截取,并不代表具体某个产品,接下来跟大家分享目前典型的恒流驱动电源原理,由于时间关系我随便找了个图跟大家分享我对它的理解,也希望可以帮到大家。那么我今天只做定性分析,只讨论信号的过程,对具体电压电流的参数量在这里不作讨论(当然了必要时也会提一下)。 原理分析:为了方便分析,我把它分成几个部分来讲,尽量分的细一点来讲,如下 1:输入过压保护---主要是雷击或者市冲击带来的浪涌)2:整流滤波电路---将交流(或者是直流)变成直流的过程3:箝位电路---------主要是吸收变压器工作时产生的尖峰和反向电动势 4:IC工作过程--------主要是IC的供电原理,变压器的工作方式,电压变换过程。 5:输出整流---------将交流再次变成平滑理想的直流电压过

程 6:恒流原理---------电路中稳定输出电流控制过程分析 1、输入过压保护电路:首先电压从“+48V、GNG”两端进来通过一个R1的电阻(这个电阻的作用就是限流,当后面的线路出现短路时,R1流过的电流就会增大,随之两端压降跟着增大,当超过1W时就会自动断开,阻值增加至无穷大,从而达到保护输入电路+48V不受到负载的影响)限流后进入整流桥,另一方面R1与旁边的MOV1构成了一个简单过压保护电路,MOV1是一个压敏元件,是利用具有非线性的半导体材料制作的而成,其伏安特性与稳压二极管差不多,正常情况显高阻抗状态,流过的电流很少,当电压高到一定的时候(这里主要是指尖峰浪涌,如打雷的时候高脉冲串通过市电串入进来),压敏MOV1会显现短路状态,直接截取整个输入总电流,使后面的电路停止工作,这时候,由于所有电流将流过R1和MOV1,因R1只有1W的功率,所以瞬间可以开路,从而保护了整个电路不被损坏。 2、整流滤波电路:当+48V电压进入整流桥D1时,输出一个上正下负的直流电压(这里我要说明一下,如果+48V是交流的那么直接整流,如果+48V电源本身也是直流的,那整流桥的作用就是对输入起到的是极性保护作用,无论输入是上正下负还是上负下正都不会损坏驱动电源)通过C1\C2\L1进

H桥电路驱动原理(经典)

H桥电路驱动原理 2009年04月08日 星期三 上午 08:43 H桥电路驱动原理 一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向 转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电 路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常 要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制 整个电路的开关。而2个非门通过

LED射灯驱动电路原理图

LED射灯驱动电路原理图如下所示: 监控照明是全球节能的主流,而大功率LED 照明更是今后世界的照明发光系统的主流趋势。大功率LED具有亮度高、节能环保、安全性和稳定性高等特点,比传统光源节电60% ~ 70%.传统的声光控延时控制器能很好地实现对灯的控制,在光线黑暗时或晚上来临时,能有效地实现“人来灯亮,人去灯熄”,但由于其开关用的是继电器之类的机械控制器,所以在人流量多的地方由于频繁的开关,较容易损坏。 LED射灯驱动电路 V IN 上电时,电感( L )和电流采样电阻( RS )的初始电流为零,LED 输出电流也为零(见图2 )。这时候,内部功率开关导通,SW 的电位为低。电流通过电感(L )、电流采样电阻( RS )、LED 和内部功率开关从V IN 流到地,电流上升的斜率由V IN、电感(L )和LED 压降决定,在RS 上产生一个压差VCSN,当为 115 mV 时,内部功率开关关断,电流以另一个斜率流过电感( L )、电流采样电阻(R S )、LED和肖特基二极管( D ); 当( V IN-VCSN )为85mV时,功率开关重新打开,这样使得在LED 上的平均电流为IOUT = ( 0. 085+ 0. 015) /2 RS = 0. 1 /R S.如果不使用调光功能,可使DIM 引脚悬空,这时可输出设定的最大电流。

基于AT89C2051的智能控制器电路如图4所示,其主要由传感器单元、A D 转换单元、控制器单元组成。AT89C2051芯片用于对来自声控和光控传感器检测到的信号经过整形以后的信号数据做处理,进而控制LED 驱动器。该电路中AT89C2051的p3. 0 和p3. 1端口用作输入信号检测,剩下的13 个端口可选择输出控制。软件流程图如图5所示。 图4 智能控制器电路图 设计的LED射灯智能驱动系统,能有效地LED、检测周围环境的变化,及时关闭、开启灯源以及调光。该系统与传统的声光控延时开关照明系统相比,不仅能大量节省电能,而且其特有的调光模块使用电效率大大提高。该系统在工程上有较好的应用前景。

最简单的恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的这种正温度热敏电阻WMZD,专为LED应用而研制的,其常用规格见表1,下面介绍一下该热敏电阻的应用特性。 20mA LED恒流源WMZD-5A20的应用 我们可以用1只WMZD-5A20与5只LED(20mA)串联组成一个标准单元,它的LED恒流源电流20mA,工作电压U=3V+5×3.4V=20.0V。3V是WMZD-A20电阻压降,3.4V是LED的正向导通电压(或2.8V~4.2V),它的恒流特性见图1中的电流曲线II。

电磁阀驱动电路

设计文件 (项目任务书) 一、设计题目 电磁阀驱动电路系统设计全程解决方案 二、关键词和网络热点词 1.关键词 电磁阀驱动光电耦合…… 2.网络热点词 电动开关……….. 三、设计任务 设计一个简单的电池阀驱动电路,通过按钮开关控制市场上的12V常闭电池阀打开和闭合。 基本要求: 1)电路供电为24V; 2)电磁阀工作电压为12V; 3)带有光电耦合控制电路; 4)用发光二极管来区别、显示电磁阀的开关开关状态 四、设计方案 1.电路设计的总体思路 电磁阀驱动电路是各种气阀、油阀、水阀工作的首要条件,其作用是通过适当的电路设计,使电池阀能够按时打开或半打开,有需要控制阀以几分之几的规律打 开之类的要求,应设计较精密的的驱动电路。我做的只是一个简单的驱动常闭电池 阀全打开的简单驱动电路。通过光电耦合器控制三极管的导通,进而控制电磁阀的 打开与闭合。电磁阀导通的同时,与之并联的LED灯也随之亮。来指示电磁阀正 在工作。我们选用大功率管TIP122来控制电路的导通、截止,而且这里必须用大 功率管,因为电磁阀导通时电流特别大。考虑到电磁阀断开时会有大股电流回流,这时则需要设置回流回路,防止烧坏元器件,我们这里采用大功率二极管1N4007 与电磁阀形成回流回路来消弱逆流电流的冲击。具体的电路图如下图1所示:

2、系统组成:

在设计整个电路前,我们应该先有个整体构思,建立一个整体框架,然后根据设计要求再逐步细化、设计每一个模块的具体电路,及工作原理。最后将各部分有机的连接到一起,形成一个完整的电路系统。完成项目任务。系统框图如下图2所示: 图2 系统框图 电磁阀驱动电路整个系统主要分两个部分: 第一个部分:光电耦合器控制电路。我们都知道光电耦合器随着输入端电流的增加,其内部发光二极管的亮度也会增强,紧随着光电耦合器的输出电流就会跟着增大。光电耦合器一般由三部分组成:光的发射、光的接受、及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接受而产生光电流,再进一步放大后输出。这就完成了电-光-电的转换,从而起到输入、输出、隔离的作用。而我们本电路只需要小电流,故我们加了两个10K限流电阻,产生足以驱动或打开后面的三极管的电流即可。具体电路见图3,其中J1接口外接24V正电源给系统供电。 图3 开关电路原理图

电机驱动电路详细经典

先给大家介绍个技术交流QQ群有什么不能搞好的可以大家交流 28858693 技术交流QQ群 H桥驱动电路原理 2008-09-05 16:11 一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。)

LED驱动电路原理

1-LED手电筒驱动电路原理 市场上出现一种廉价的LED手电筒,这种手电前端为5~8个高亮度发光管,使用1~2节电池。由于使用超高亮度发光管的原因,发光效率很高,工作电流比较小,实测使用一节五号电池5头电筒,电流只有1 00 mA左右。非常省电。如果使用大容量充电电池,可以连续使用十几个小时,笔者就买了一个。从前端拆开后,根据实物绘制了电路图,如图1所示。 图1 LED手电驱动电路原理图 工作原理: 接通电源后,VT1因R1接负极,而c1两端电压不能突变。VT1(b)极电位低于e极,VT1导通,VT2(b)极有电流流入,VT2也导通,电流从电源正极经L、VT2(c)极到e极,流回电源负极,电源对L充电,L储存能量,L上的自感电动势为左正右负。经c1的反馈作用,VT1基极电位比发射极电位更低,VT1进入深度饱和状态,同时VT2也进入深度饱和状态,即Ib>Ic/β(β为放大倍数)。随着电源对c1的充电,C1两端电压逐渐升高,即VTI(b)极电位逐渐上升,Ib1逐渐减小,当Ib1<=Ic1/β时,VT1退出饱和区,VT2也退出饱和区,对L的充电电流减小。此时.L上的自感电动势变为左负右正,经c1反馈作用。VT1基极电位进一步上升,VT1迅速截止,VT2也截止,L上储存的能量释放,发光管上的电源电压加到L上产生了自感电动势,达到升压的目的。此电压足以使LED发光。 2-自制高亮度白光LED灯 高亮度白光LED灯(以下简称白光灯)具有光色好(与日光接近),节能(电光转换效率远高于白炽灯,也高于荧光灯,是一种冷光源),寿命长(寿命是荧光灯的几倍(白炽灯的几十倍),环保无污染的特点成为白炽灯和荧光灯的有力挑战者。但其不足之处是目前价格较高。目前,白光灯已发展到第二代;第一代白光灯的价格已大幅下降,Φ5白光灯的价格已降到0.25/只,拆机Φ5白光灯的价格为0.2/只,此价格已经可以接受。笔者不久前以每只0.16元的价格邮购了几十只拆机件Φ5白光灯,用它制作了几只照明灯,效 新店开张 件 2.75 市电220V 1.2W白光LED照明灯 用一只易拉罐的球形罐底,用剪刀修圆,在上面钻出20个小孔,小孔的分布呈圆形,尽量制作得美观些,孔的大小以刚好能嵌入白光灯为度。每只白光灯的工作电压为3.0V~3.6V,4只白光灯串联组成一组,

电磁阀驱动电路(完整资料).doc

【最新整理,下载后即可编辑】 设计文件 (项目任务书) 一、设计题目 电磁阀驱动电路系统设计全程解决方案 二、关键词和网络热点词 1.关键词 电磁阀驱动光电耦合…… 2.网络热点词 电动开关……….. 三、设计任务 设计一个简单的电池阀驱动电路,通过按钮开关控制市场上的12V常闭电池阀打开和闭合。 基本要求: 1)电路供电为24V; 2)电磁阀工作电压为12V; 3)带有光电耦合控制电路; 4)用发光二极管来区别、显示电磁阀的开关开关状态 四、设计方案 1.电路设计的总体思路 电磁阀驱动电路是各种气阀、油阀、水阀工作的首要条件,其作用是通过适当的电路设计,使电池阀能够按时打开或半打开,有需要控制阀以几分之几的规律打开之类

的要求,应设计较精密的的驱动电路。我做的只是一个简单的驱动常闭电池阀全打开的简单驱动电路。通过光电耦合器控制三极管的导通,进而控制电磁阀的打开与闭合。电磁阀导通的同时,与之并联的LED灯也随之亮。来指示电磁阀正在工作。我们选用大功率管TIP122来控制电路的导通、截止,而且这里必须用大功率管,因为电磁阀导通时电流特别大。考虑到电磁阀断开时会有大股电流回流,这时则需要设置回流回路,防止烧坏元器件,我们这里采用大功率二极管1N4007与电磁阀形成回流回路来消弱逆流电流的冲击。具体的电路图如下图1所示:

图1

2、系统组成: 在设计整个电路前,我们应该先有个整体构思,建立一个整体框架,然后根据设计要求再逐步细化、设计每一个模块的具体电路,及工作原理。最后将各部分有机的连接到一起,形成一个完整的电路系统。完成项目任务。系统框图如下图2所示: 图2 系统框图 电磁阀驱动电路整个系统主要分两个部分: 第一个部分:光电耦合器控制电路。我们都知道光电耦合器随着输入端电流的增加,其内部发光二极管的亮度也会增强,紧随着光电耦合器的输出电流就会跟着增大。光电耦合器一般由三部分组成:光的发射、光的接受、及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接受而产生光电流,再进一步放大后输出。这就完成了电-光-电的转换,从而起到输入、输出、隔离的作用。而我们本电

常用电机驱动电路及原理

由于本人主要是搞软件的,所以硬件方面不是很了解,但是为了更好地相互学习,仅此整理出一份总结出来,有什么错误的地方还请大家积极的指出!供大家一起参考研究! 我们做的智能小车,要想出色的完成一场比赛,需要出色的控制策略!就整个智能车这个系统而言,我们的被控对象无外乎舵机和电机两个!通过对舵机的控制能够让我们的小车实时的纠正小车在赛道上的位置,完成转向!当然那些和我一样做平衡组的同学不必考虑舵机的问题!而电机是小车完成比赛的动力保障,同时平衡组的同学也需要通过对两路电机的差速控制,来控制小车的方向!所以选一个好的电机驱动电路非常必要! 常用的电机驱动有两种方式:一、采用集成电机驱动芯片;二、采用MOSFET和专用栅极驱动芯片自己搭。集成主要是飞思卡尔自己生产的33886芯片,还有就是L298芯片,其中298是个很好的芯片,其内部可以看成两个H桥,可以同时驱动两路电机,而且它也是我们驱动步进电机的一个良选!由于他们的驱动电流较小(33886最大5A持续工作,298最大2A持续工作),对于我们智能车来说不足以满足,但是电子设计大赛的时候可能会用到!所以想要详细了解他们的同学可以去查找他们的数据手册!在此只是提供他们的电路图,不作详细介绍! 33886运用电路图

下面着重介绍我们智能车可能使用的驱动电路。普遍使用的是英飞凌公司的半桥驱动芯片BTS7960搭成全桥驱动。其驱动电流约43A,而其升级产品BTS7970驱动电流能够达到70几安培!而且也有其可替代产品BTN79 70,它的驱动电流最大也能达七十几安!其内部结构基本相同如下: 每片芯片的内部有两个MOS管,当IN输入高电平时上边的MOS管导通,常称为高边MOS管,当IN输入低电平时,下边的MOS管导通,常称为低边MOS 管;当INH为高电平时使能整个芯片,芯片工作;当INH为低电平时,芯片不工作。其典型运用电路图如下图所示: EN1和EN2一般使用时我们直接接高电平,使整个电路始终处于工作状态!

MOS管工作原理及其驱动电路

功率场效应晶体管 MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的 MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET 器件的耐压和耐电流能力。

大功率LED的驱动电路设计_图文(精)

《综合课程设计》课程报告 姓名:韩阳 学号:专业:光信息科学与技术 任课教师:王习东 成绩: 三峡大学理学院物理系 2009年1月05日 大功率LED 的驱动电路设计 摘要:LED (light emitting diode)即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标:

1)LED 的颜色:目前LED 的颜色主要有红色, 绿色, 蓝色, 青色, 黄色, 白色, 暖白, 琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定功率为350mA,3W LED的750mA 。 3)LED 的正向电压:LED 的正极接电源正极, 负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发光强(度,单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm。如1W 大功率LED 的光通量一般为60~80LM。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度. ,单位为勒克斯(lx。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压, 电流等条件的一种电路, 也是LED 能工作必不可少的条件, 好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式:

H桥驱动电路原理

H桥驱动电路 图1中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图1 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图2所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电

流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。 图2 H桥电路驱动电机顺时针转动 图3所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图3 H桥驱动电机逆时针转动 二、使能控制和方向逻辑

驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。) 图4 具有使能控制和方向逻辑的H桥电路 采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,

相关文档
相关文档 最新文档