文档库 最新最全的文档下载
当前位置:文档库 › 法士特液力缓速器安装说明书

法士特液力缓速器安装说明书

法士特液力缓速器安装说明书
法士特液力缓速器安装说明书

FH400B 液力缓速器安装说明
陕西法士特齿轮有限责任公司

1、FH400B 性能参数与特点
主要性能参数 缓速器型号 FH400B
额定输入转速( rpm ) 2800 最大制动扭矩( Nm ) 注油量( L ) 重量( kg ) 工作电流(A) 4000 8.5~9 102 <1
主要特点 有效减少主制动器磨损,延长轮胎寿命,保障汽车安全运行。 可长时间、大功率制动,无热衰退。 制动扭矩大;单位质量制动扭矩大。 制动平稳,无冲击,整车舒适性高。 制动、解除制动响应快速。 工作时温度低,对整车无潜在隐患。 轻量化设计,整机重量仅 102kg,提供车辆安全的同时,不增加燃油负担。 安全电控,对整车电气系统无干扰。 轴向尺寸短,便于安装。 适用于法士特各型变速器;适用于载货车、专用车、客车等各种
1

2、FH400B 外型图
FH400B 缓速器各向视图如下:
前视图
2
左视图

后视图
上视图
3

缓速器安装固定是利用其后盖上的三个螺栓过孔连接到法士特变速箱后部。变速箱后部有辅助支撑,缓速器不 需要侧支撑。
变速箱与缓速器连接示意图
4

3、气动系统—供气连接
气路连接取自整车气路。 由四回路保护阀的 24 口或者与变速箱气路共用。管路需要经过 空气滤清器滤掉水分与污物,要求气管内径不低于 8mm,气管需合 理布置支撑和避让运动部件以防磨损。
5

4、冷却水路
4.1、缓速器冷却水路引自整车冷却系统,可分为如下形式:
先冷却发动机后冷却缓速器,泵出口侧
4.2、冷却水路安装说明
1 水路的安装说明 缓速器的冷却水路必须设计成使水路中 100%的冷却水馈入缓速 器。 2 冷却水最小流量 冷却水最小流量与水泵的容量和整个冷却系统的阻力有关。 在转速 n=2000rpm 时,冷却水的最小流量不能低于 5L/s。 3 冷却水管的材料、技术要求及其布置 冷却水管可以是钢管,或者是黄铜管。 水管的直径尽可能选大的:使用大直径的水管,没有平接或瓶颈。 冷却水管的内径最小不小于Φ50mm。
6

钢冷却水管的要求:所有管子都用钢制造,如果需要,作钎焊或 焊接防漏试验;加工以后,必须清除管内的金属屑和焊渣,然后 完工的管子还必须除去内外的油渍;这些管子还必须防腐(粉沫喷 涂,锌粉沫油漆等)。 黄铜冷却水管的要求:所有管子都用黄铜制造,如果需要用钎焊 焊接;加工以后,必须清除管内的金属屑和焊渣;钎焊后,管子 必须酸洗中和,或浸入水中 5 小时以上,然后用蒸汽喷洗干净; 清洁以后,管子应该无电压退火,退火温度必须是约 250°C,时 间至少 30min。 装入车辆的冷却水管必须避免带电,对接管口必须确实对准。 冷却水管管头必须制成串珠状,防止滑脱。串珠状表面粗糙度不 超过 25μm。必须保证管头无毛刺或裂纹。 必须保证冷却系统和水管可靠的通风。 保证布置的冷却水管不超过发动机的最高点,保持与驾驶员的座 舱有一空间。 各水管必须支承或用管夹固定 (管夹之间最大间距: 1m)。 注意:管夹绝对不固定在驱动装置(发动机、变速器、缓速器)所处 区域的车架上。否则会有由于振动引起渗漏的危险 已固定的水管距发动机或变速器、车架间原距离至少 60mm,还 必须保证软管套入水管至少 30mm,防止脱落。 发动机冷却介质不能用水,以避免锈蚀堵塞缓速器热交换器而影 响热交换能力。
7

4 软管管夹的布置 软管管夹必须有高强度的、防腐蚀的铬镍钢制造。 最优的宽度是 14mm,让软管和钢带之间的接触最好。 软管夹用蜗轮快速收紧,关于拧紧力矩,EPDM 软管和硅有机树 脂软管,建议六角螺钉的拧紧力矩分别为 6Nm 和 4Nm。
4.3、外置节温器
如果发动机自身结构限制不能使用其原有节温器, 可使用以下形式 外置节温器
出水口
进水口
旁通口
8

5、控制系统
5.1.控制系统连接——缓速器控制系统与车辆系统的连接通过整车连接接头实现。
缓速器控制系统线束图
9

线束布置参考下图,具体尺寸根据不同车型协商确定。
缓速器线束尺寸图
10

5.2.缓速器控制器的安装
控制器安装在驾驶室内,周围应有足够的空间便于安装、拆卸。4 个 M4 螺钉固定到合适位置。
外形及安装尺寸
5.3 换挡手柄开关
换挡手柄安装在转向机上。 换挡手柄有 6 个位置, 对应 0 挡、 1~5 挡。0 挡,缓速器不工作。1 挡,恒速挡。2~5 挡,缓速制动挡。与 控制器的距离根据车型确定。
11

换挡手柄示意图
换挡手柄接头 X4-B 示意图
表 1 换挡手柄说明 端子代号 端子接点说明 1 开关公共端 24V 2 1 挡, 3 2挡 4 3挡 5 4挡 6 5挡
12

4.接线 HMA16FB 的视图与定义如下图。
16 线缓速器与车辆接头 X1-B(车辆侧)
表 2 部件型号 端子名称 编号 HMA16FB 壳体 617004BSS 插针 85901008640 防水塞 85900101700 盲堵 表 3 整车连接端子说明 端子代号 端子接点说明 1 电源+ 3 风扇离合器控制 4 5 7 8 9 10 14 15 16 电源ABS 输入 车辆速度信号输入 脚动禁止开关 缓速器制动指示
数量 1 16 10 10
供应商 连盈电子 (深圳)有 限公司
备注 24 伏 500 毫 安 高电平有效 脉冲频率信 号 高电平有效 刹车继电器 及仪表指示 仪表指示
缓速器工作指示 J1939 通讯地 J1939 CAN-H J1939 CAN-L 与整车连接信号描述: 电源(端子 1 和 4) :蓄电池提供(钥匙开关 ACC 位置时控制器 通电) 。该电源仅用于控制器本身使用,不得接入刹车灯负载。电源 通过 3A 保险接到端子 1,端子 4 负极搭铁。 ABS 信号 (端子 5) ABS 工作时, : 缓速器控制器应解除控制信号。 ABS 控制器在其工作时应提供有效的高电平信号。缓速器的 ABS 输 入信号在 0~0.7 伏低电平,4.5~32 伏高电平; 缓速器工作指示(端子 10) :提供额定 24 伏 500 毫安信号驱动指
13

示灯,用于缓速器工作指示。指示灯布置仪表板上,便于观察。 缓速器制动指示(端子 9) :提供额定 24 伏 500 毫安信号能驱动 继电器和指示灯。指示灯布置仪表板上,便于观察。继电器的常开触 点控制刹车灯主回路,缓速器制动时,整车及挂车制动灯接通。 车速信号源(端子 7) :脉冲车速信号取自仪表或车速传感器(变 速箱输出轴) 。 CAN 通讯(端子 14,15,16) :连接到整车 CAN 总线及缓速器 诊断接头。 怠速状态或油门位置信号:信号源应是 CAN 信息。 接线要求: 1.接线均采用 0.5mm2 以上的多芯软导线, 电线具有防柴油和机油 腐蚀功能,通讯线须采用屏蔽双绞线。 2.短接 11,12 即接入 J1939 CAN 通讯 120 欧姆终端电阻。
5.4 气压开关的安装及连接
本公司缓速器可安装气压脚控开关,气压脚控开关是通过在制动 气路中加装气压脚控开关来控制缓速器的工作, 气压脚控开关总成提 供的三组接点对应 0.05MPA,0.07MPA,0.1MPA 制动气压。 气压脚控控 制为选装装置。 气压脚控开关固定在缓速器两侧车架上(须加胶垫防止振动) ,并 连接到主制动气路,与电磁阀距离不应超过 1 米。可提供三组压力信 号,以开关量形式输入到控制器。
气压脚控开关外形尺寸及安装
14

气压脚控开关线束图
15

16

液力缓速器工作原理及结构

三液力缓速器工作原理及结构 液力缓速器具有高速制动力矩大、制动平稳、噪声小、寿命长、体积较小等优点,使其在军用车辆、重型载货车以及工程机械等领域得到了广泛应用。为了保证车辆具有良好的制动性能,一般采用联合制动方式,即: 在车辆上,机械制动器和液力缓速器配合使用。 3.1液力缓速器基本结构 常见液力缓速器的型号不同,其结构和组成部分有着一定的区别,但是转子、定子、工作腔、壳体等是它们共同不可缺少的组成部分。如图3-1所示为德国福伊特(VOITH)公司液力缓速器结构简图。它是由转子、定子、工作腔、输入轴、热交换器、储油箱和壳体组成。定子和转子对置形成工作腔经阀门和工作液贮槽(油池)相通。缓速时,电子控制系统控制比例阀向工作液贮槽内施加气压使工作液充入工作腔,转子产生缓速力矩,使汽车减速;而转子在工作液里旋转的过程中,工作液在运动所形成的进出口压力差的作用下循环流过热交换器,热交换器通向发动机冷却系统的冷却水管把热量带到发动机冷却系统散逸掉。当缓速作用解除时,控制装置系统把工作液释放会回工作液贮槽,从而消除对转子的阻力作用。 转子和定子通常采用30或45的前倾叶片,转子的力矩系数约为相同轮腔径向叶片液力偶合器的3~10倍。 其安装方式一般分为与传动轴串连和并连两种。串连时可在变速器前、后安装;如果采取并连,则缓速器和变速器做成一个整体来安装。对于装有带液力变矩器的自动变速器车辆来说,原变速器系统已配备了储油罐、油泵和散热器等部件,因此,在配有自动变速器的客车和载货汽车上安装液力缓速器成本更低。。。 图3-1xx伊特液力缓速器结构组成 1.控制阀 2."定子 3."转子

4."空心轴 5."凸缘 6."储油箱 7."热交换器 3.2液力缓速器工作原理 缓速器工作时,压缩空气经电磁阀进入储油箱,将储油箱内的变速器油经油路压进缓速器内,缓速器开始工作。转子带动油液绕轴线旋转;同时,油液沿叶片方向运动,甩向定子。 定子叶片对油液产生反作用,油液流出定子再转回来冲击转子,这样就形成对转子的阻力矩,阻碍转子的转动,从而实现对车辆的减速作用。工作液在运动过程中使进出口形成压力差,油液循环流动,通过热交换器时,热量被来自发动机冷却系统的冷却水带走。整个系统工作原理如图3-2所示。图3-2液力缓速器工作原理图 PS: 该色为《汽车液力缓速器的原理及应用》 该色为《液力缓速器和电涡流缓速器》

液力缓速器基本结构及工作原理

液力缓速器基本结构及工作原理 一、基本结构 液力缓速器结构大致相同,以VOITH液力缓速器为例(图1),它是由转子、定子、工作腔、输入轴、热交换器、储油箱和壳体组成。其安装方式一般分为与传动轴串连和并连两种。串连时可在变速器前、后安装;如果采取并连,则缓速器和变速器做成一个整体来安装。对于装有带液力变矩器的自动变速器车辆来说,原变速器系统已配备了储油罐、油泵和散热器等部件,因此,在配有自动变速器的客车和载货汽车上安装液力缓速器成本更低。 二、工作原理 缓速器工作时,压缩空气经电磁阀进入储油箱,将储油箱内的变速器油经油路压进缓速器内,缓速器开始工作。转子带动油液绕轴线旋转;同时,油液沿叶片方向运动,甩向定子。定子叶片对油液产生反作用,油液流出定子再转回来冲击转子,这样就形成对转子的阻力矩,阻碍转子的转动,从而实现对车辆的减速作用。工作液在运动过程中使进出口形成压力差,油液循环流动,通过热交换器时,热量被来自发动机冷却系统的冷却水带走。整个系统工作原理如图2所示。

1 热交换器整体 25 控制压力(Py)气路“A”1/1 液力缓速器油-冷却循环通路 26 供压(Pv)气路 1/2 变速箱油-冷却循环通路 36 排气管路“R” 2 控制盒 41 油管 4 接线端子1 5 42 油箱 6 熔断器(8A) 43 油池 8 接地端子 44 定轮 15 ABS-信号 46 动轮 16 液力缓速器手柄控制开关 47 车速表信号 17 液力缓速器指示灯 55 放油口堵头 18 刹车灯继电器 62 调压阀 19 冷却水温度传感器 63 单向阀(进) 20 油温传感器 64 单向阀(出) 21 比例阀 69 ISO接口 22 排气装置 70 附加功能接口 23 排气球阀 72 压力传感器

福伊特液力缓速器使用说明

福伊特液力缓速器使用说明 请用户特别注意阅读缓速器使用说明书,以免缓速器误操作造成不必要的缓速器效果差或者缓速器部件损坏。 1. 手控制方式。驾驶员通过逐级扳动手控开关手柄来实现对缓 速器的控制。手控开关分五档,各档缓速作用如下: 0档——缓速器关闭 1档——缓速器恒速档 2档——最大缓速力矩的1/4 3档——最大缓速力矩的1/2 4档——最大缓速力矩的3/4 5档——最大缓速力矩 0-5档使用如下: (1) 客车点火,缓速器就处于待命状态。 (2) 当需要缓速时,扳动手控开关手柄逐级到需要的档位就可 以达到缓速的目的(此时缓速器指示灯应该亮,除了1档恒速档指示灯不亮)。 (3) 把手控开关手柄扳回0档,就撤消了缓速命令。 2. 恒速档使用如下: (1) 下长坡时要启动恒速功能前,首先使车辆速度减到安全的 速度值时,当到达想保持的车速时,把缓速器的手控开关扳到恒速档1档。 (2) 如果使用了恒速档,如果车速仍会加快,请使用辅助刹车 使车辆减速。 (3) 开关扳回0档,恒速功能解除。 3. 脚控方式。 脚控方式中,由脚制动总阀控制,共分三级缓速。当制动踏板有效行程为8时,缓速器I 档开始工作,制动踏板有效行程为18时,缓速器II 档开始工作,制动踏板有效行程为28mm 时,缓速器III 档。 4. 手控制方式和脚控方式既可以根据用户任意选装,或同时配置。

5. 为保障能最长时间连续使用缓速器,请在使用缓速器的时候总是 挂进一个变速箱的档位,并尽量往低档位换保持发动机转速始终高于 1500rpm,禁止空档使用缓速器。 6.缓速器是属于辅助刹车装置,请有预期性使用,紧急状况清使用主 刹车器减速。 7.在雨雪天气、路面湿滑或者车辆ABS有故障时,请慎重使用缓速器。

福伊特新款自动变速器中国上市

福伊特新款自动变速器中国上市 搭载E300电控系统和阿拉丁诊断软件DIWA.5进入中国市场。 福伊特(Voith)新一代DIWA.5自动变速器具有E300电控系统和阿拉丁(ALADIN)诊断软件。DIWA.5仍旧保留了久经证明的特色——动力分流原理。这个原理使得起步加速阶段的换档相当于一般自动变速器的2到3个档位,结果使换档次数减少50%,从而带来更低磨损和更好舒适性。DIWA.5变速器的中心部件—液力变矩器—已经得到进一步改进。流体动力学是福伊特(Voith)的核心能力,已积累了100多年的经验。 DIWA.5自动变速器 DIWA.5系列中的D884.5是福伊特驱动为转矩达1900Nm的发动机提供了一个完美的解决方案,秉承了迪瓦(DIWA)产品家族一贯高端的品质。 DIWA.5为公交汽车自动变速器带来了新的革命 油只在变速器里循环,热交换器集成在变速器的输出端,变速器外面不再有任何油管,从而减少了相关服务及维修工时,达到了变速器缩短且重量更轻。即便在空间受限的情况下,

也很容易安装。如果在中心位置使用可靠性高的传感器,其接近性也会很好、维修方便且车辆可用率高。 新的阿拉丁(ALADIN)诊断软件是21世纪诊断系统的一个里程碑,能详细、快速、容易诊断并能排除任何故障。阿拉丁(ALADIN)带有完整的技术指南,是一个非常容易使用的诊断程序。阿拉丁(ALADIN)除了信号处理和操作指引外,还包含详细的外科手术式的修理说明,并提供车辆运行数据的评价系统和报告。事件存储系统能从容确定故障源并给出排除方法,使得停修时间和维修费用最小化。 DIWA.5自动变速器及其应用软件构成了一个具有技术创新的完美解决方案,正服务于迅速发展且要求更为复杂的BRT系统。在世界著名的BRT系统典范波哥大/哥伦比亚(Bogotá/Columbia)的市场份额超过了80%。在拉丁美洲、中国、伊朗、印尼等其它国家BRT系统的成功应用,实现了迪瓦(DIWA)自动变速器广泛且多样的应用。 DIWA.5的新特征 更换滤清器不需要换油;油面传感器使用了金触点以提高使用寿命;升级的E300电控系统;变速器中包含一个小芯片,即变速器识别模块(TIM),能记录很多变速器相关数据并且直接与E300电控系统通信;诊断软件阿拉丁(ALADIN)和第二代运行数据记录装置。这些改进有助于降低维修费用并显著优化运行效率。 Senso Top作为BASP(加速度换档程序)的升级软件,通过在电控装置中应用一个免维护的地形传感器而快速检测上坡和下坡的行驶状态,精确到1%的坡度变化,潜在节油高达7%。 全球主要车辆制造商正在利用Voith DIWA.5新技术帮助交通运营商节约运营成本、提高车辆可用率。全球每一台车辆的可靠质量所带来的价值,促使产业链所有环节达到成功。

电涡流缓速器和液力缓速器的优缺点

电涡流缓速器和液力缓速器的优缺点 电涡流缓速器和液力缓速器在作为车辆辅助制动装置,各有伯仲;必须针对不同的车型、考虑到装置的方便性、可靠性、可维护性、经济可接受性以及车辆行驶的路况环境,对车辆使用 的技术状态进行细分,找出性能和经济性之间的平衡点,才可以有一定的比较。 对于车辆使用者来说,电涡流缓速器和液力缓速器的使用效果基本上是相同的,主要是考虑到两者的经济性区别,可靠性高不高,维护性好不好。 一)电涡流缓速器和液力缓速器具有以下共同的特点: 1、在车辆主制动系统工作前,都能承担汽车的80%左右制动能量,其余20%左右的高强度制动能量由车辆主制动系统承担;减轻了车轮制动器的负荷,减少了制动碲片、摩擦块的磨损量(可使其寿命提高5倍左右)和制动系的维修时间,提高了汽车的使用经济性。 2、缓解由于制动器调整不当和磨损不均匀所造成的制动跑偏问题,和行车制动系联合使用,改善了制动性能,提高了行车的安全性。 3、缓速器制动柔顺、平稳,不会突然抱死,提高了乘坐的舒适性。 4、消除和减少由摩擦式制动器所产生的噪声和粉尘。 5、减少因制动过频或制动时间过长而产生的轮毂和轮辋温度过高和由此引发的爆胎现象。也因此使轮胎的使用寿命有了很大提高。 6、电涡流和液力缓速器都只能是车辆减速而不能使车辆停止;它们均为辅助制动系,需和行车制动系配合使用。 二)电涡流缓速器和液力缓速器的优缺点:

1、在缓速器制动力矩方面:由于液力缓速器的缓速力矩和缓速器工作腔有效直径的5次方成正比,受发动机冷却系统散热能力的限制,液力缓速器的制动力矩范围可达4000Nm左右,电涡流缓速器由于是风冷式散热制动力矩在3000Nm 左右。对于大型客车和重型货车,液力缓速器大制动扭矩优势比较明显。 2、同制动力矩的液力缓速器和电涡流缓速器比较,质量是电涡流缓速器的 1/3左右;其单位质量缓速力矩可达50 Nm/kg,电涡流缓速器为15Nm/kg。 3、电涡流和液力缓速器在非缓速的车辆行使状态转子随传动轴空转均消耗一定的发动机功率。液力缓速器当工作腔内没有充入工作液时, 不产生制动转矩, 但是由于动轮与车辆的传动系统相连, 动轮始终在旋转, 定轮和动轮带动工作腔内的空气产生循环流动, 造成一定的能量损失, 该损失称为鼓风损失, 其中液力缓速器的空转大约消耗发动机所传递功率的4%左右,电涡流缓速器空转大约为1%左右。 4、液力缓速器制动力矩在较宽的转速范围内几乎相等, 但在低速时急剧下降;当缓速器动轮转速低于400r/min ,车速在15km/h时制动转矩减速制动作用效果不明显, 不能很好的起到缓速器作用;电涡流缓速器在400r/min ,车速在15km/h时即可达到最大制动力矩的80%。液力缓速器一般与其它制动器配合使用,先通过液力缓速器使车速降低,再通过行车制动器实现车辆的停车制动。 5、液力缓速器缓速制动反应时间较长,由于缓速器缓速制动时是给油槽中施加压缩空气把工作液压入工作腔, 这就要求液压系统必须具有很大的流量和较快的动态响应能力。电涡流缓速器的制动反应时间在40ms左右,液力缓速器制动反应时间是电涡流缓速器的20倍。 6、在电力消耗方面,电涡流缓速器因为有电磁线圈,而电磁线圈相对于电控系统消耗电能要大的多,增加了蓄电池的负荷;而液力缓速器只有控制系统消耗很微少的电能,因此液力缓速器在这方面占有优势。

法士特变速箱说明书

6JS160T型系列变速器 使用说明书 编写 校对 审核 批准 陕西法士特齿轮有限责任公司

1.概述 6JS160T双中间轴全同步器系列变速器是我厂为适应市场完全自主开发设计的,采用双中间轴的结构,主副箱组合式设计,主副箱均带有同步器,主箱前进档带新型双锥面同步器;副箱带锁销式同步器。 在同类产品中外形尺寸小,重量轻,结构简单,便于维修,成本低廉,可广泛运用于长途客车或公交车辆,以及水泥搅拌车等特殊车辆,市场前景看好。 2主要设计参数 2.1额定输入功率:209~285KW; 额定输入扭矩:1050~1600Nm; 最高输入转速:2600rpm; 中心距:116mm; 长度:778.8mm(2号离合器壳体前止口端面到输出法兰盘后止口端面); 重量:220Kg(含离合器壳体) 2.2各档速比: 2.3 总成代号的含义 6 J S 160 T A 速比代号 主箱带同步器 ×10 = 名义输入扭矩(Nm) 双中间轴结构 机械式 前进档数 3 6JS160T系列变速器主截面图 参见图1 4 6JS160T系列变速器动力传递 6JS160T双中间轴系列变速器双中间轴、全同步器、主副箱结构,由一个前置四档主变速器和一个两档的副变速器组成。动力从一轴输入后,分流到两根中间轴上,再由中间轴齿轮到二轴齿轮,,当移动同步器滑套,使滑套的结合齿(内花键)与和二轴齿轮的内齿相连的同步锥环的结合齿(外花键)结合时,二轴就与二轴齿轮成为一体并按一定的速比转动而传递动力。这样最后动力从二轴上的法兰盘输出(参见图2)。

行强化喷丸,提高了齿轮的承载能力。

在6JS160T系列双中间轴变速器的主变速器中,有两个结构尺寸完全相同的中间轴总成,副变速器也是如此。主轴及主轴齿轮浮动,取消了传统的主轴齿轮要用滚针轴承支撑的结构。 7 典型结构 7.1 双中间轴结构 与传统的三轴式变速器不同,6JS160T系列变速器的主、副变速器均采用两根结构相同的中间轴总成,相间180°,动力从一轴输入后,分流到两根中间轴上,然后再汇集到二轴输出,副变速器也是如此。 由于理论上每根中间轴只传递1/2的扭矩,所以采用双中间轴可以使变速器的中心距减小,齿轮的宽度减薄,轴向尺寸缩短,质量减轻。 采用了双中间轴以后,二轴上的各档齿轮必须同时与两只中间轴齿轮啮合。为了满 为了解决双中间轴结构中中间轴齿轮与二轴齿轮的正确啮合问题,必须要进行“对齿”。 所谓“对齿”,即在组装变速器时,将两根中间轴总成上中间轴传动齿轮涂有标记的轮齿分别插入一轴齿轮上涂有标记的两组轮齿(每组包括相邻两个牙齿)的齿槽中(见图5)。 a)先在一轴齿轮的任意两个相邻齿的齿顶面及齿端面涂上标记,然后在与其相对称的另一侧两相邻齿的齿顶面及齿端面涂上标记。两组记号间的齿数应相等。 b)在每只中间轴传动齿轮上与齿轮键槽正对的那个齿的齿顶面及齿端面涂上标记,以便识别。

液力缓速器作用及工作原理.

汽车液力缓速器的原理及应用 汽车制动系是汽车安全行驶中最重要的系统之一。随着发动机技术发展和道路条件的改善,汽车的行驶速度和单次运行距离都有了很大的发展,行驶动能大幅度的提高,从而使得传统的摩擦片式制动装置越来越不能适应长时间、高强度的工作需要。由于频繁或长时间地使用行车制动器,出现摩擦片过热的制动效能热衰退现象,严重时导致制动失效,威胁到行车安全[1]。车辆也因为频繁更换制动蹄片和轮胎导致运输成本的增加。为了解决这一问题,应运而生的各种车辆辅助制动系统迅速发展,液力缓速器就是其中一种。 一、液力缓速器的发展历史 最早出现液力缓速器是为了解决火车短距离内减速困难的问题。此后,液力缓速器被用在汽车列车上,发现其很好的辅助制动效果。当今液力缓速器越来越多地被运用到重型载货汽车和大、中型客车上。随着其应用的发展,出现了很多生产液力缓速器的公司。比较著名的液力缓速器厂商有德国福伊特(VOITH)公司、法国泰尔马(TELMA)公司、美国通用公司、日本TBK公司等[2]。目前来看,其生产技术已经比较成熟,形成了适用于各种车型的系列产品。我国的液力缓速器研发已经有一定的发展,但不管是技术水平还是应用数量都远落后于国外。 二、液力缓速器结构、工作原理及控制方式 (一)基本结构 液力缓速器结构大致相同,以VOITH液力缓速器为例(图1),它是由转子、定子、工作腔、输入轴、热交换器、储油箱和壳体组成。其安装方式一般分为与传动轴串连和并连两种。串连时可在变速器前、后安装;如果采取并连,则缓速器和变速器做成一个整体来安装。对于装有带液力变矩器的自动变速器车辆来说,原变速器系统已配备了储油罐、油泵和散热器等部件,因此,在配有自动变速器的客车和载货汽车上安装液力缓速器成本更低。

电涡流缓速器工作原理及结构

二 电涡流缓速器工作原理及结构 电涡流缓速器是一种非接触式辅助制动系统,俗称“电刹”,其可以有效提高汽车的安全性能。欧洲各国已于20世纪30年代开始在货车上安装电涡流缓速器。因其有效提高重型汽车的安全性能,许多国家将其规定为标准件安装在相关汽车。 2.1 电涡流缓速器结构 图2.1所示为电涡流缓速器的示意图。电涡流缓速器由机械部分和电气部分组成。机械部分包括定子、转子以及支撑架,其主要内容如下:①定子。该结构是缓速器的主要工作部件,在定子圆周方向均匀地固定安装有8个高导磁材料制成的铁心,线圈套在铁心上,铁心起增大磁通的作用。圆周上相对两个励磁线圈串联或并联成一组磁极,并且相邻两个磁极均为N 、S 相间,这样就形成了相互独立的4组磁极。定子通过固定支架刚性安装在车架上(或者驱动桥主减速器外壳上,也可安装在变速器后端盖上),定子相对于车架静止不动。②转子。该结构呈圆环状,由2片前后对称、带散热叶片的转盘组成,前后2转盘中间通过连接环将其固定为一体,前后转盘通过法兰或凸缘与传动轴相连,并随传动轴一起高速旋转。转子一般用导磁率高且剩磁率低的铁磁材料制成。定子和转子之间有一定气隙,可以相对转动。从减小磁阻角度讲,气隙越小越好,但又要保证转子在规定的偏心误差内自由转动,以便使转子盘旋转时不会刮擦到定子,综合考虑缓速器的性能要求以及运行可靠性,定子和转子之间的气隙一般在0.5~1.5mm 之间。这是一个对制动转矩影响很大的结构参数。 电气部分包括控制系统、ABS 连接器、车速信号传感器、制动压力传感器、手控开关信号以及指示灯,其主要内容如下: 1) 控制系统。该结构是电涡流缓速器各种信号的集中分析及处理中心,对缓速器的工作状况发出指令。 2) 车速信号传感器。该结构用于收集车速信息,并将信号以电信号方式传输给控制系统。控制系统根据此车速信号V 以及控制系统内预设的临界车速信号0V 来决定电涡流缓速器系统是否进入制动待命状态。当0V V 时进入制动待命状态,反之退出。 3) 制动压力传感器。一般为线性型传感器,其可以产生的反映制动气压线性变化的电信号并传送给控制系统,以便调整缓速器的励磁电流量值的大小。 4) ABS 连接器。该结构由数十个数字逻辑电路构成,能根据车辆的行驶状况自动控制缓速器的工作状态。如果ABS 发现某个车轮打滑,控制器将立即终止缓速器的制动作用。车轮打滑一旦结束,缓速器又进入待工作状态,始终保持缓速器的制动力矩在地面附着力的范围内。另外,当ABS 有故障时,控制系统将切断电涡流缓速器的脚控功能,手控制动仍然有效,以保证行车安全。因此,电涡流缓速器和ABS 系统是兼容的。 5) 指示灯。安装在仪表板上,显示电涡流缓速器的当前工作状态。

液力缓速器制动性能影响因素分析

液力缓速器制动性能影响因素分析 林彩霞1张建莉2 何效平3 (华南农业大学工程学院,广州 510640) 摘要:液力减速器是高速、重载车辆必备的辅助制动器,具有高速制动力矩大、无机械磨损等优点,特别适合车辆下长坡及高速减速用,使用液力缓速器的车辆能提高制动系统的可靠性,延长制动系统的使用寿命,并能由此而大幅度降低车辆使用成本。本文以福伊特液力缓速器为研究对象,通过对液力缓速器的制动性能进行分析,并指出影响液力缓速器制动性能的主要因素,如:流体介质的性质,缓速器的结构以及传动轴的转速等,为国内液力缓速器的研制开发提供理论依据。 关键词:液力缓速器;制动性能;影响因素;分析 0前言 随着我国经济和道路交通事业的发展,农村公路货物和旅客运输的需求量日益增加。中国农村面积广大特别是山区面积众多,公路运输是农村的主要运输方式,主要行驶在矿山或山区公路上的汽车,经常要下长坡,需要对它进行持续制动;在交通状况好的地区,车辆平均行驶速度大幅度提高。这就意味着在同样的制动条件下、同样的时间内,现在车辆的行车制动器要产生更多热量,承受更大的热负荷。现在,不论是客车还是卡车,都在向高功率、高负载的方向发展,越来越重型化和高速化的运输,对车辆的性能提出了非常严格甚至苛刻的要求。尽管车辆所选用的发动机功率在提高,但车辆行车制动器的制动效能在世界范围内还没有较大突破,由于受空间尺寸的限制,其散热能力有限等原因,在车辆频繁制动或持续制动的条件下会出现高温积累,造成过热现象,使制动器的摩擦系数减少,磨损增加,严重时还有可能导致制动失效引发安全事故。因此,除了必要的行车制动器外,还应装备辅助制动器——行车缓速器,将行车制动器的负荷进行分流,使温度控制在安全范围内。统计数字表明,使用液力缓速器,行车制动器平均故障率可降低48.12%,制动片和制动鼓用量分别可减少42.04%和50.78%。表1的统计数字是安装缓速器前后刹车片的平均寿命对比数据,从表中可以看出其中,未装缓速器的客车制动片寿命约5-25万公里,而安装缓速器的客车制动片寿命约15-75万公里,其平均寿命可以提高3倍。因此,液力缓速器能提高车辆制动系统的可靠性,延长制动系统的使用寿命,并能由此而大幅度降低车辆使用成本[1]。 表1刹车片平均寿命 Table. 1 Clutch Plate Average Life 车型未安装缓速器(km) 安装缓速器(km) 提高倍数 运输汽车 100,000 600,000 6 载重汽车 40,000 160,000 4 巴士 35,000 250,000 7 废物载重车 12,000 100,000 8.5 大客车* 150,000 450,000 3 注:*是马来西亚的经验值,其余为欧洲地区经验值 1、国内液力缓速器存在的问题 目前,我国商用车上所使用的缓速器基本上是国外的产品,这对于农村运输车辆而言, 林彩霞,(出生年—1976),女,广东阳江人,讲师,在读博士,研究方向:农业机械化 通讯地址:广东省广州华南农业大学工程学院车辆工程系,邮编:510640 Email:cxlin76@https://www.wendangku.net/doc/ad4941167.html,

6DS180T使用说明书

前言 6DS180T双中间轴变速器是陕西法士特汽车传动集团公司在本公司传统双中间轴变速器技术的平台上,自行开发制造的一款输入扭矩为1800Nm的新型变速器。 6DS180T双中间轴变速器设计新颖,采用单箱体结构、双中间轴传动,除倒档外采用全同步器换档,且一二、三四档均采用双锥面锁环式同步器,大大增加了同步扭矩;五六档采用单锥面锁环式同步器。 6DS180T双中间轴变速器速比配置合理、采用细高齿设计、齿轮啮合平稳、变速器噪音低、全同步器换档、档位清晰、换档灵活,操纵形式多样,可采用单杆、双杆操纵等。 6DS180T双中间轴变速器生产工艺先进。变速器的各个部件加工都有国际先进的机床(以数控、加工中心为主)、热处理设备(IPSEN连续炉和艾协林箱式炉)作保障,重要零件的生产在专门的生产线进行。 该变速器可匹配液力缓速器及电涡流缓速器,可广泛应用于大型公交车、豪华大客车等车型。另外也可应用于其他一些特种车。 陕西法士特汽车传动集团公司可根据用户需要进行变型设计、改装配套、维修服务、配件供应等。 为顾客提供满意的产品和服务是法士特公司的宗旨。欢迎广大客户光临我公司咨询、洽谈、参观指导,我们将竭诚为您服务。

一、6DS180T变速器的主要性能参数 额定输入功率:331Kw 最高输入扭矩:1800Nm 最高输入转速:2600rpm 各档速比: 注:a. 质量中包括离合器壳,但不包括润滑油和分离装置; b. 所指长度是从离合器壳体前止口端面到输出法兰盘后止口端面; c.加油量仅供参考,具体请参阅后面图示说明。 二、编号规则 6 D S 180 (T) A 速比代号 全同步器换档 ×10=名义输入扭矩(Nm) 双中间轴结构单箱 单箱 前进档数 三、6DS180T变速器主截面图(见图1) 四、6DS180T变速器安装尺寸图(见图2)

如何维护及保养液力缓速器

缓速器是独立于车辆主制动系统和驻车制动系统以外的一个重要的辅助持续制动装置,它对 于在山区公路上使用的商用车来说是不可缺少的。液力缓速器在比较紧凑的结构环境下可以 获得较大的制动力,并且体积小、质量轻,在低速范围的制动力大。液力缓速器的维护和保 养是一项必须定期进行的作业,它是保证缓速器良好运行的关键。 液力缓速器是液力耦合器的一个派生类型,它并非传动元件,而是耗能减速的制动元件。液 力缓速器利用耦合叶轮搅动油液产生阻力,形成制动作用,它依靠工作轮腔内液流循环流动 对定轮叶片的冲击作用将车辆动能转化为液体热能,再通过一定的冷却散热方式将热能散发 出去,从而实现对车辆的减速制动。 1.液力缓速器的日常检查 车辆每次行驶后,都要对缓速器进行例行检查,检查内容包括: ●检查缓速器各个结合面、输入端或输出端是否有油液渗漏。 ●检查各接线端子、传感器接头是否有松动及踩踏损坏等情况。 ●检查缓速器控制盒的保险装置,确保其工作正常。 ●检查手动及脚动开关能否正常工作,并确保其动作时驾驶室内的缓速器工作灯可正常显示。 ●检查连接电缆是否正确固定,有无因磨损及受热造成的损坏。 ●检查电磁阀及进、排气管路是否漏气,管道过滤器滤芯是否有严重的污染情况。 ●检查冷却水路是否有老化裂纹及渗漏现象。 ●检查轴向窜动量,保证其与传动轴及变速器的连接支架上的螺栓没有松动、脱落现象。 2.液力缓速器清洗注意事项 ●刚停车时缓速器的温度很高,严禁用手触摸,以防烫伤,同时严禁在高温时冲洗缓速器, 以防止其变形。 ●禁止使用腐蚀性及挥发性溶剂清洗缓速器。 ●可使用高压水枪清洗,但水压不能超过 0.23MPa,并应避免清洗液进入传感器、线束及气 管接头等部位。 ●洗时必须断开电源总开关,缓速器的控制盒、比例阀等不可用高压清洗器(蒸气清洗设备)直接喷射。 3.油位及油质的检查 检查油位时,液力缓速器的温度必须高于60℃(工作温度)。检查方法如下: ●起动车辆并将缓速器完全开动(最高制动档),约5s 后关掉,重复3~5 次。 ●车辆保持水平状态,关掉缓速器,等待5min 后,通过量油尺及液面观察孔检查油位。 ●将油液收集槽放在缓速器下方,拧下放油螺塞,取下密封圈,将油液排出。 当发现油液有如下情况时,必须进行维修并换油。 ●油液为黑褐色并伴有刺鼻的气味,用手指轻轻磋磨可感到明显的粘稠感觉,说明缓速器工 作中温度过高,引起油液氧化变质。

客车缓速器工作原理

客车缓速器工作原理 液力缓速器 液力缓速器的工作原理:缓速器转子随变速箱输出轴转动,而导轮不动。当缓速器内充有油时,随输出轴转动的转子作用于油液一个

动量矩M1,带动油液绕轴旋转,同时,油液沿叶片运动作内循环圆旋转,甩向导轮。即油液有两个方向的运动;绕轴向的“公转”和绕径向的“自转”。油液甩向导轮时,油液的“公转”对导轮叶片产生冲击作用,将转子作用于油液的动量矩M1传递到导轮叶片上。同时,固定的导轮叶片也对油液产生一个反向作用的动量矩M2。油液流出导轮再流入转子时,同样将M2传递到转子上,形成对转子的阻力矩,阻碍转子的转动,从而实现对车辆的减速作用。由于油液在循环流动中没有受到任何其它附加外力,根据力学平衡原理,油液甩向导轮和流向转子的动量矩关系有M1=-M2。转子转动的能量经油液的阻尼作用转变成热量,通过散热器散发到空气中。 液力缓速器的控制原理:缓速器与车辆制动系联动,在车辆制动管路上,电脑(ECU)控制线联接制动灯开关,同时安装有三个压力传感器控制(P/N)。这三个压力传感器的工作压力分别为0.15、0.3、0.5MPa。 缓速器内的变速器油平时储藏在储能器中,当司机踩下制动踏板时,制动灯开关给ECU一个信号,使ECU的缓速器控制处于待命状态。在制动管路的气压达到0 15MPa时,压力传感器信号通过ECU 传给N电磁阀使其动作,压缩空气经电磁阀进入储能器,推动活塞将储能器内的变速器油经油路6压进缓速器内,缓速器起作用。此时进入缓速器的油量较少,减速能力为最大值的1/3。制动踏板继续下踩,气压升高至0 3MPa时,第二个压力传感器信号指令N电磁阀,控制储能器增大供油量给缓速器,减速能力达最大值的2/3。当气压

法士特变速箱说明指导书样本

法士特变速箱说明指导书

6JS160T型系列变速器 使用说明书 编写 校对 审核 批准 陕西法士特齿轮有限责任公司

1.概述 6JS160T双中间轴全同步器系列变速器是我厂为适应市场完全自主开发设计的,采用双中间轴的结构,主副箱组合式设计,主副箱均带有同步器,主箱前进档带新型双锥面同步器;副箱带锁销式同步器。 在同类产品中外形尺寸小,重量轻,结构简单,便于维修,成本低廉,可广泛运用于长途客车或公交车辆,以及水泥搅拌车等特殊车辆,市场前景看好。 2主要设计参数 额定输入功率:209~285KW; 额定输入扭矩:1050~1600Nm; 最高输入转速:2600rpm; 中心距:116mm; 长度:(2号离合器壳体前止口端面到输出法兰盘后止口端面); 重量:220Kg(含离合器壳体) 2.2各档速比: 型号各档速比 1 2 3 4 5 6 7 8 倒 6JS160T 11.26 7.88 5.55 3.98 2.83 1.98 1.39 1.00 11.48 6JS160TA 8.08 5.66 3.98 2.86 2.03 1.42 1.00 0.72 8.24 6JS125T 11.26 7.88 5.55 3.98 2.83 1.98 1.39 1.00 11.48 6JS125TA 8.08 5.66 3.98 2.86 2.03 1.42 1.00 0.72 8.24 6JS105T 11.26 7.88 5.55 3.98 2.83 1.98 1.39 1.00 11.48 6JS105TA 8.08 5.66 3.98 2.86 2.03 1.42 1.00 0.72 8.24 总成代号的含义 6 J S 160 T A 速比代号 主箱带同步器 ×10 = 名义输入扭矩(Nm) 双中间轴结构 机械式 前进档数 3 6JS160T系列变速器主截面图 参见图1 4 6JS160T系列变速器动力传递 6JS160T双中间轴系列变速器双中间轴、全同步器、主副箱结构,由一个前置四档主变速器和一个两档的副变速器组成。动力从一轴输入后,分流到两根中间轴上,再由中间轴齿轮到二轴齿轮,,当移动同步器滑套,使滑套的结合齿(内花键)与和二轴齿轮的内齿相连的同步锥环的结合齿(外花键)结合时,二轴就与二轴齿轮成为一体并按一定的速比转动而传递动力。这样最后动力从二轴上的法兰盘输出(参见图2)。

法士特液力缓速器安装说明书

FH400B 液力缓速器安装说明
陕西法士特齿轮有限责任公司

1、FH400B 性能参数与特点
主要性能参数 缓速器型号 FH400B
额定输入转速( rpm ) 2800 最大制动扭矩( Nm ) 注油量( L ) 重量( kg ) 工作电流(A) 4000 8.5~9 102 <1
主要特点 有效减少主制动器磨损,延长轮胎寿命,保障汽车安全运行。 可长时间、大功率制动,无热衰退。 制动扭矩大;单位质量制动扭矩大。 制动平稳,无冲击,整车舒适性高。 制动、解除制动响应快速。 工作时温度低,对整车无潜在隐患。 轻量化设计,整机重量仅 102kg,提供车辆安全的同时,不增加燃油负担。 安全电控,对整车电气系统无干扰。 轴向尺寸短,便于安装。 适用于法士特各型变速器;适用于载货车、专用车、客车等各种
1

2、FH400B 外型图
FH400B 缓速器各向视图如下:
前视图
2
左视图

后视图
上视图
3

缓速器安装固定是利用其后盖上的三个螺栓过孔连接到法士特变速箱后部。变速箱后部有辅助支撑,缓速器不 需要侧支撑。
变速箱与缓速器连接示意图
4

3、气动系统—供气连接
气路连接取自整车气路。 由四回路保护阀的 24 口或者与变速箱气路共用。管路需要经过 空气滤清器滤掉水分与污物,要求气管内径不低于 8mm,气管需合 理布置支撑和避让运动部件以防磨损。
5

陕西法士特汽车传动工程研究院简介

陕西法士特汽车传动工程研究院简介 陕西法士特汽车传动工程研究院(简称:法士特研究院),成立于2011年3月,是法士特集团直接投资、管理,并在授权范围内相对独立运营的事业部,是国内汽车零部件行业第一家由企业设立的研究院,是国家发展改革委员会、财政部、税务总局、海关总署认定的国家级“企业技术中心”,固定资产近3亿元人民币。 法士特研究院坐落于古都西安国家级开发区-西安高新技术开发区,并在陕西宝鸡蔡家坡设有分支机构。研究院设有“一室三所三中心”,分别是院办公室、设计研究所、智能传动研究所、工艺研究所、实验中心、材料中心、试制中心。 研究院拥有国际一流的实验与监测设备。拥有疲劳寿命试验台、噪音试验台、转毂试验台等先进实验设备;拥有企业自己建设的多路面试车场,为研发工作提供强有力的技术支撑。 截止2017年8月,法士特研究院共拥有研发人员600余人,86%年龄在40周岁以下,平均年龄32岁,其中本科及以上学历人员占91.6%,硕士学历195人,占总人数32%,博士学历3人。研究院设有院士专家工作站、博士后流动工作站,并在吉林大学、北京理工大学、西安交通大学、西北工业大学等六所知名高校设有“法士特齿轮奖学金”,吸引了大批创新人才的加盟。 研究院充分吸收现代企业管理的思想,研究院采用宽带薪酬体系,实施矩阵式项目管理制度,为广大工程技术人员设计了管理和技

术双职业通道,每位员工从进入公司之初就有清晰的上升路线和广阔的发展通道。研究院充满朝气与活力、学术氛围浓重,是广大学子实现抱负的理想工作场所。 法士特研究院坚持"改进一代、开发一代、预研一代"的产品开发方针,在AT液力自动变速器、AMT自动变速器、S变速器、客车变速器、轻卡变速器和液力缓速器、离合器、减速机八大系列新产品以及轮边减速机、纯电动汽车传动系统等新能源产品的开发方面取得了显著成功,拥有国家专利700余项,为中国汽车工业发展做出了重大贡献。 面向未来,法士特研究院将努力抓住机遇,积极开拓进取,秉承法士特集团“团结、务实、顽强、开拓”的企业精神,发扬“三敢、三实”的研发精神,在智能化、信息化领域不断创新,使研究院成为法士特集团核心竞争力的代表,成为支撑法士特集团未来可持续发展的重要力量。

液力缓速器制动力矩影响因素研究

10.16638/https://www.wendangku.net/doc/ad4941167.html,ki.1671-7988.2016.12.034 液力缓速器制动力矩影响因素研究 张孟锋,强中伟 (陕西法士特汽车传动工程研究院实验中心,陕西西安710119) 摘要:文章说明了安装液力缓速器的必要性,以法士特FHB320B为例,描述了液力缓速器的基本组成和工作原理,并重点分析了液力缓速器制动力矩的影响因素:充液量、缓速器结构参数和转子转速,为液力缓速器的研究提供参考。 关键词:液力缓速器;制动力矩;充液量;结构参数 中图分类号:U463.53 文献标识码:A 文章编号:1671-7988 (2016)12-101-04 Study On Factors Influencing Breaking Torque Of Hydraulic Retarder Zhang Mengfeng, Qiang Zhongwei ( Shaanxi Fast Auto Drive Group Transmission Test Center, Shaanxi Xi'an 710119 ) Abstract: This paper illustrates the necessity of installation of Retarder. Take the Fast FHB320B Retarder as an example, it describes the structure and principle of the retarder, and analyzes the factors of the breaking torque of hydraulic retarder. The factors are liquid volume, structural parameters and rotor speed of retarder, which provide the references of the research of retarder. Keyworks: hydraulic retarder; breaking torque; liquid volume; structural parameters CLC NO.: U463.53 Document Code: A Article ID: 1671-7988 (2016)12-101-04 引言 随着我国经济和道路交通事业的发展,汽车的客货运输量和行车速度不断提高,行车安全也越发重要,而良好的制动性能是汽车安全行驶的重要保障。传统的汽车制动方式是在车轮上安装机械式摩擦制动器,依靠车轮上的制动蹄块张合,对车轮上的轮毂施加摩擦力矩,从而使车辆减速或制动。但这种机械式摩擦制动器在频繁或长时间制动时,产生的大量热量得不到及时传递,造成制动轮毂和制动摩擦衬片过热、制动轮毂龟裂、制动摩擦衬片烧毁而引起制动失效,甚至轮胎早期爆裂,造成重大交通事故[1]。为了提高汽车特别是长途大客车和城市公交车的制动安全性,配备汽车辅助制动装置十分必要,如发动机排气制动、电涡流制动装置和液力缓速器制动。由于液力缓速器具有制动力矩大、制动平稳、噪声小、寿命长和体积较小等优点,在内燃机车、重型载货车、军用车辆以及工程机械等领域得到了广泛的应用[2]。 制动力矩的大小是考察液力缓速器工作效果的关键,影响液力缓速器制动力矩的关键因素是工作腔的充液量、缓速器结构参数和转子转速,本文以法士特并联缓速器FHB320B 为例,对影响制动力矩的因素进行总结和概括。 1、液力缓速器的组成 液力缓速器是集机、电、气、液、比例控制等一体化的产品,其主要由液力缓速器机械总成、操作手柄、缓速器控制器、线束、指示灯和CAN端口等组成,如图1所示。缓速器机械总成为产生制动力矩的主体装置,操作手柄是司机操作发出指令的装置,控制器是接收指令并根据指令进行判断再发出指令来控制机械总成上的执行装置——气动比例控 作者简介:张孟锋,就职于陕西法士特汽车传动工程研究院实验中心工程师,研究方向为机械传动与检测技术。

重型汽车变速器的特点

重型汽车变速器的特点与发展趋势 重型汽车变速器是指与重型商用车和大型客车匹配的变速器,尽管在行业中对变速器的容量划分没有明确的界限,但我们通常将标定输入扭矩在900Nm以上的汽车变速器称为重型汽车变速器。 一、国外重型汽车变速器的特点 在国外,变速器专业化生产厂家很注重产品系列化,为主机厂选择最满意的变速器提供了极大的方便和灵活性。例如德国ZF(采埃孚)公司有中心距8.0、95、105、115、120、143、154mm7种基型变速器,适应输入扭矩为130—1900Nm,档位数从3—17个,有各种操纵方式的变速器适应不同匹配要求的车辆。日本丰田汽车公司爱信精机公司备有中心距72、78、88、98、135mm5种基型组合,286种变速器供用户选择。 重型汽车的装载质量大,使用条件复杂。欲保证重型汽车具有良好的动力性、经济性和加速性,必须扩大变速器传动比的范围并增加档位数。为避免变速器的结构过于复杂和便于系列化生产,多采用组合式机械变速器。目前,组合式机械变速器已成为重型汽车采用的主要型式。组合式机械变速器一般分为倍档(分段式配档)组合式机械变速器和半档(插入式配档)组合式机械变速器。 半档组合式变速器在国外被广泛应用,如曼、依维柯、斯太尔、沃尔沃等。特别是在欧洲中型和中重型汽车大量采用这种变速器,其中长途汽车(包括大客车)应用得更多些。汽车发动机功率从85~200kW的各种车辆多用半档副变速器增加档位,因为半档组合式变速器的长度小于倍档组合式变速器,而且它的结构简单、成本低、维修保养容易,深受用户青睐。国外中型和重型汽车发动机功率在200kWl)l下的基本上都采用半档组合变速器,发动机功率在200kW以上的多采用倍档(或倍档加半档)组合式变速器。 二、国内重型汽车变速器的特点 国内重型车变速器产品的技术多源于美国、德国、日本几个国家,引进技术多为国外上世纪80—90年代的产品。作为汽车高级技术领域的重型汽车变速器在国内漫长的引进消化过程中,如今已有长足的进步,能够在原有技术引进的基础上,通过改型自行开发出符合配套要求的新产品,每年重型车变速器行业都能有十几个新产品推向市场。但从当今重型车变速器的发展情况来看,在新产品开发上国内重型车变速器仍然走的是一般性的开发过程,没有真正的核心技术产品;从国内重型汽车变速器市场容量来看,有三分之一的产品来自进口,而另外三分之二的产品中有80%以上源自国外技术,国内自主开发的重型汽车变速器产品销量很小,从而说明国内重型汽车变速器厂家的自主开发能力仍然很薄弱,应对整车新车型配套产品的能力远远不够。我国城市车辆将重点发展的13.8m客车上使用的变速器,目前只有ZF一家能向国内企业供应,就足以说明国内的重型车变速器企业仍然很渺小,在技术方面仍然有很长的路要走。 国内重型汽车变速器几乎由陕西法士特齿轮有限责任公司、綦江齿轮传动有限公司、山西大同齿轮集团有限责任公司、一汽哈尔滨变速器厂等几大家包揽。这些企业生产的变速器产品针对的市场各有侧重,像陕西法士特在8t以上重型车市场占有率达到40%以上,并且在15t以上重型车市场占有绝对的优势,拥有85%以上的市场份额;綦江齿轮传动有限公司主要为安凯、西沃、亚星奔驰、桂林大宇及厦门金龙等企业的7~12m 高档大、中型客车以及总质量在14~50t重型载货车、鞍式牵引车、自卸车及各种专用车、特种车配套;山西大同齿轮集团配套市场主要在8~10t级的低吨位重型载货车。

缓速器

汽车缓速器 汽车在减速或下长坡时,启用缓速器,可以平稳减速,免去使用刹车而造成的磨损和发热。 目前有两种结构的: 电涡轮缓速器:相当于在传动轴上装了个“发电机”,不通电时,无接触无磨损,需要制动时接通电路,传动轴便受到电磁场的阻力,达到制动目的。无磨损但结构庞大。目前重卡、大客多有选用(国外还可在工作时向电瓶充电)。 电涡流缓速器的原理与发电机一样,传动轴上有定子线圈,固定在横梁上有转子线圈包围传动轴(不过外形与发电机大相径庭),不需要电脑控制,只要接通线圈的电路,缓速器就会对传动轴产生阻力。 液涡轮缓速器:在变速箱箱壳后端增加一个涡轮室,当制动电路开启后,使变速箱油在涡轮中产生阻尼达到制动效果,无磨损但要增加散热。目前ZF变速箱在高档客车上有使用。 深圳市特尔佳科技股份有限公司(简称:特尔佳,代码:002213) 1)作为中国最早从事汽车缓速器研发、生产、销售的专业厂家,公司产品系列齐全,基本覆盖6 米以上所有客车缓速器,产品经过中国最严酷的公交营运考验,产品质量得到进一步的提高。特尔佳作为汽车缓速器行业标准主要起草单位,其技术水平得到业内人士认可。 2)近年来汽车缓速器市场的需求量增长迅速,一方面是大中型客车的销量增长,另一方面由于政策影响,新增大中型客车的缓速器安装率不断上升。2004年-2006年大中型客车缓速器安装率分别为30.62%、42.74%、49.37%。随着汽车缓速器制造企业规模的扩大、技术的更新、成本的下降,重型货车市场将全面打开。 负面因素: 1)国家未出台针对所有重型车辆的汽车缓速器安装应用相关政策成了行业发展 的瓶颈 2)产业规模小、产业结构单一,知识产权保护力度低,行业的恶性竞争导致行业毛利率的下降 综合评价: 公司是国内汽车缓速器产业的创立和开拓者,所处行业潜力巨大,公司未来成长性良好,中线可持有。 液力缓速器的工作控制原理 液力缓速器的作用与车辆的制动系联动,由变速箱的电脑控制器(ECU)调节控制。我们从其工作和控制两方面来讲述: 液力缓速器的工作原理缓速器转子随变速箱输出轴转动,而导轮不动。当缓速器内充有油时,随输出轴转动的转子作用于油液一个动量矩M1,带动油液绕轴旋转,同时,油液沿叶片运动作内循环圆旋转,甩向导轮。即油液有两个方向的运动;绕轴向的“公转”和绕径向的“自转”。油液甩向导轮时,油液的“公转”对导轮叶片产生冲击作用,将转子作用于油液的动量矩M1传递到导轮叶片上。同时,固定的导轮叶片也对油液产生一个反向作用的动量矩M2。油液流出导轮再流入转子时,同样将M2传递到转子上,形成对转

相关文档
相关文档 最新文档