文档库 最新最全的文档下载
当前位置:文档库 › 在由555 电路组成的几例倍压升压电路

在由555 电路组成的几例倍压升压电路

在由555 电路组成的几例倍压升压电路
在由555 电路组成的几例倍压升压电路

在由555 电路组成的几例倍压升压电路

2009-04-26 21:36:04| 分类:默认分类|字号订阅

将555 电路产生的振荡脉冲,通过二极管整流电路整流后向电容充电,使电容充电至电源电压,将这样的整流一充电电路逐级连接,就可以得到2 倍、3 倍、4 倍甚至多倍于电源电压的升压电路。下面介绍由555 电路组成的2 倍压、3 倍压和4 倍压升压电路,电路组成如图2-42 所示。

电路工作原理分析在图2-42 中,图(a) 是一个2 倍压升压电路。这个电路中,电容和二极管的数量与上一例介绍过的负电源变换电路一样,但二极管和电容的连接位置以及它们的连接方式均和上一例不同,它们的工作原理和最终输出电压也都是不同的。本例电路称为倍压整流电路。

电路工作过程:在图2-42 (a) 中,接通电源后,电源首先通过VDl 向C4 充电,使c4两端电压接近电源电压。当NE555 的③脚输出脉冲的上升沿时,再次向C4 充电。根据水涨船高的原理,使C4 正极对地电压达到:电源电压+脉冲峰值电压。随即这一电压通过VD2向C5 充电,使C5 正极对地电压达到C4 的电压,即等于电源电压的2 倍。当脉冲下降沿到来时,电源再次通过VDl 向C4 充电,重复上述过程。

图2-42 (b) 所示是一个3 倍压升压电路。由图可见,该电路的升压电路是由3 组二极管一电容电路组成的,如果与图2-42 (a) 来对照其连接方式就会发现,这一电路所加的元器件,按其位置对比是VDl 和c4。在该电路中, 3 组二极管电容电路的每-级均能将前一级输出电压提高一个电源电压值,3 组这样的电路可将输出电压提高到电源电压的3 倍。图2-42 (c)所示是一个由555 电路组成的4 倍压升压电路,该电路由4 组二极管一电容电路组成,最终可将输出电压提高到电源电压的4 倍。

压整流电路原理

图1 半波整流电压电路

(a)负半周 (b)正半周

(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.

其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一

电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

图3 输出电压波形

所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电

路称为半波电压电路。

正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

2、全波倍压电路

图4 全波整流电压电路

(a)正半周 (b)负半周

图5 全波电压的工作原理

正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

由于C1与C2串联,故输出直流电压,V0=Vm。如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。如果自电路抽取负载电流的话,电容器C1及C2上的电压是与由全波整流电路馈送的一个电容器上的电压同样的。不同之处是,实效电容为C1及C2的串联电容,这比C1及C2单独的都要小。这种较低的电容值将会使它的滤波作用不及单电容滤波电路的好。

正半周时,二极管D2所受的最大逆向电压为2Vm,负半周时,二极管D1所承受的最大逆向电压为2Vm,所以电路中应选择PVI >2Vm的二极管。

图6 三倍压电路图

(a)负半周 (b)正半周图7 三倍压的工作原理

负半周时,D1、D3导通,D2截止,电容器C1及C3都充电到Vm,其电流路径及电容器的极性如上图(a)所示。

正半周时,D1、D3截止,D2导通,电容器C2充电到2Vm,其电流路径及电容器的极性如上图(b)所示。

由于C2与C3串联。故输出直流电压V0=3m。

正半周时,D1及D3所承受的最大逆向电压为2Vm,负半周时,二极管D2所承受的最大逆向电压为2Vm,所以电路中应选择PIV >2Vm的二极管。

4、N倍电压路

下图中的半波倍压电路的推广形式,它能产生输入峰值的的三倍或四倍的电压。根据线路接法的发式可看出,如果在接上额外的二极管与电容器将使输出电压变成基本峰值(Vm)的五、六、七、甚至更多倍。(即N倍)

N倍压电路的工作原理

负半周时,D1导通,其他二极管皆截止,电容器C1充电到Vm,其电流路径及电容器的极性如图(a)所示。

正半周时,D2导通,其他二极管皆截止,电容器C2充电到2Vm,其电流路径及电容器的极性如上图(b)所示。

负半周时,D3导通,其他二极管皆截止,电容器C3充电到2Vm,其电流路径及电容器的极性如上图(c)所示。

正半周时,D4导通,其他二极管皆截止,电容器C4充电到2Vm,其电流路径及电容器的极性如上图(d)所示。所以从变压器绕线的顶上量起的话,在输出处就可以得到Vm的奇数倍,如果从变压器的绕线的底部量起的话,输出电压就会是峰值电压的Vm偶数倍。

555时基电路及其应用

实验二555 时基电路及其应用 一、实验目的 1.熟悉555 型集成时基电路结构、工作原理及其特点。 2.掌握555 型集成时基电路的基本应用。 二、实验原理 集成时基电路又称为集成定时器或555 电路,是一种数字、模拟混合型的中规模集成电路,应用十分广泛。外加电阻、电容等元件可以构成多谐振荡器,单稳电路,施密特触发器等。它是一种产生时间延迟和多种脉冲信号的电路,由于内部电压标准使用了三个5K 电阻,故取名555 电路。其电路类型有双极型和CMOS型两大类,二者的结构与工作原理类似。一般双极型产品型号最后的三位数码都是555 或556, 而CMOS 产品型号最后四位数码都是7555 或7556,二者的逻辑功能和引脚排列完全相同,易于互换。555 和7555 是单定时器。556 和7556 是双定时器。双极型的电源电压U DD=+5V~+15V,输出的最大电流可达200mA,CMOS 型的电源电压为+3V~+18V,能直接驱动小型电机、继电器和低阻抗扬声器。 1.555 定时器的工作原理 555 定时器原理图及引线排列如图1 所示。其功能见表1。定时器内部由电压比较器、分压电路、RS 触发器及放电三极管等组成。 1)电压比较器 两个相同的电压比较器A1,和A2,其中A1的同相端接基准电压,反相端接外触发输人电压,称高触发端TH。电压比较器A2的反相端接基准电压,其同相端接外触发电压,称低触发端TR。 2)分压电路 分压电路由三个5K 的电阻构成,分别给A1和A2提供参考电平2/3 U DD和1/3 U DD。5 脚为控制端,平时等于2/3 U DD作为比较器的参考电平,当5 脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制。如果不在5 脚外加电压通常接0.01μF 电容到地,起滤波作用,以消除外来的干扰,确保参考电平的稳定。 3)基本RS触发器 它由交叉耦合的两个与非门组成。比较器A1的输出作为基本RS触发器的复位输入,比较器A2的输出作为基本RS触发器的置位输入。4 脚是直接复位控制端,当4 脚接入低电平时,则3脚输出U O=0;正常工作时4脚接高电平。 4)放电开关管VT A1和A2的输出端控制RS触发器状态和放电管开关状态。当输入信号自6 脚输入大于2/3 U DD时,触发器复位,3 脚输出为低电平,放电管VT导通;当输入信号自2 脚输入并低于1/3 U DD

555定时器的典型应用电路

555定时器的典型应用电路 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因u i=H,所以u o=L。当加入触发信号时,u i=L,所以u o=H,7脚内部的放电管关断,电源经电阻R向电容C充电,u C按指数规律上升。当u C上升到2V CC/3时,相当输入是高电平,5 55定时器的输出u o=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2V CC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用t W表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为u c(0)=0V,无穷大值u c(∞)=V CC,τ=RC,设暂稳态的时间为t w,当t= t w时,u c(t w)=2 V CC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 V CC/3,低电平必须小于 V CC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是R A、R B和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 V CC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2V CC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。

NE555内部结构及应用电路

555定时器及其应用 555定时器是一种中规模的集成定时器,应用非常广泛。通常只需外接几个阻容元件,就可以构成各种不同用途的脉冲电路,如多谐振荡器、单稳态触发器以及施密特触发器等。555定时器有TTL集成定时器和CMOS集成定时器,它们的逻辑功能与外引线排列都完全相同。TTL型号最后数码为555,CMOS 型号最后数码为7555。 一、555的结构组成和工作原理 555定时器是一种模拟电路和数字电路相结合的器件,下图为其内部组成和引脚图。 内部电路原理图 等效逻辑图引脚图

由图知,电路由一个分压器,两个电压比较器,一个R-S触发器,一个功率输出级和一个放电晶体管组成。 比较器A1为上比较器,由BG1~BG8组成,它是由一个NPN管的复合结构做输出级的两级差分放大器。上比较器的反相输入端固定设置在2/3V CC上,它的同相输入端⑥脚称作阈值端(或高触发端),常用来测外部时间常数回路电容上的电压。 比较器A2为下比较器,由BG9~BG13组成,它是由一个PNP管组成的复合输出级的差分放大器。上比较器的同相输入端固定设置在1/3V CC上,反向入端②脚称作触发输入端,用来启动电路。 电路中的比较器的主要功能是对输入电压和分压器形成的基准电压进行比较,把比较的结果用高电平"1 "或低电平"0" 两种状态在其输出端表现出来。 555 电路中的R-S触发器是由两个与非门交叉连接,上图中是由BG14~BG18构成。其中BG15和B G14的基极分别受上比较器和下比较器的输出端控制。A1控制R端,A2控制S端。为了使R-S 触发器直接置零,触发器还引出一个④端,只要在④端置入低电平"0",不管触发器原来处于什么状态,也不管它输入端加的是什么信号,触发器会立即置零,即Q=O=Uo所以④端也称为总复位端。 BG18~BG21构成功率输出级,③脚为输出端,能输出最大为200mA的电流,故课直接驱动小型电机、继电器、地租扬声器等功率负荷。 BG22是复位放大器。555 电路中特设了一个放电开关,它就是三极管BG23。当555 电路输出端电平Uo =0 时,Q’=1, BG23处于导通状态;当输出端电平Uo =1 时,Q’=0 , BG23处于截止状态,相当于⑦端开路。因此三极管BG23起到了一个开关的作用。当Uo= 0 时,开关闭合,为电容提供了一个接地的放电通路;当Uo = 1 时,开关断开,⑦端开路,电容器不能放电。 R7、R8、R9是三只精密度高的5KΩ的电阻,三只电阻构成了一个电阻分压器,为上比较器和下比较器提供基准电压,因为分压器的三个电阻是5KΩ,“555”因此而得名。 555的⑤脚称为“控制端”,它是上比较器的基准电压端。若此端外接电压源,则比较器的基准电压由外接电压源所决定,从而实现了外电压控制,如果⑤脚不接外部电压源,则上、下比较器的基准电压分别是2/3V CC和1/3V CC。若⑤脚接6伏的电压源,则上比较器的基准电压就是6伏,而下比较器的基准电压为外接电压源的一半,为3伏。如果⑤脚接一交变电压,则上比较器和下比较器的基准电压都随时间而变化,从而使外部定时元件的充放电时间也随之变化,可以起到调制的作用。当⑤脚不接外部电压时,通常接入一个0.01~0.1微法的电容至地,以防外接干扰。 ⑧脚为电源正极,电源电压范围是4.5~18伏,①脚为电源负极(地)端。 工作原理:

实验八 555时基电路

实验八555时基电路 一、实验目的 1、熟悉555型集成时基电路的电路结构、工作原理及其特点 2、掌握555型集成时基电路的基本应用 二、实验原理 集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广泛。 它是一种产生时间延迟和多种脉冲信号的电路,由于内部电压标准使用了3个5K电阻,故取名555电路。其电路类型有双极型和CMOS型两大类,二者的机构与工作原理类似。几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,二者的逻辑功能和引脚排列完全相同,易于互换。555和7555是单定时器。556和7556是双定时器。双极型的电源电压Vec=+5V~+15V,输出的最大电流可达200mA。CMOS 型的电源电压为+3~+18V。 1、555电路的工作原理 555电路的内部电路方框图如图所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关管T,比较器的参考电压由三只5KΩ的电阻器构成分压器提供。它们分别使高电平比较器A1的同相输入端和低电平比较器A2的反相输入端的参考电平为Vcc和Vcc。A1与A2的输出端控制RS触发器状态和放电管开关状态。当输入信号自6脚,即高电平触发输入并超过参考电平Vcc 时,触发器复位,555的输出端3脚输出低电平,同时放电开关管导通;并输入信号自2脚输入并低于Vcc时,触发器置位,555的3脚输出高电平,同时放电开关管截止。 RD是复位端,当RD=0,555输出低电平。平时RD端开路或接Vcc。 Vc是控制电压端(5脚),平时输出Vcc作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外电压时,通常接一个0.01μf的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。 为放电管,当T导通时,将给接于脚7的电容器提供低电阻放电通路。 555定时器主要是与电阻、电容构成充放电电路,并由两个比较器来检测电容器上的电压,以确定输出电平的高低和放电开关的通断。这就很方便地构成从微秒到数十分钟的延时电路,可方便构成单稳态触发器,多谐振荡器,施密特触

555时基电路总结报告剖析

电路与电子线路基础》课外设计制作 总结报告 题目(A):555时基电路设计 组号: 任课教师: 组长: 成员: 成员: 成员: 成员: 联系方式 2015年日

一、电路设计方案及实验原理 1.555基本组成及工作原理 555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压时即截止;脚⑦是放电端DIS;脚⑧是电源正极VCC。555 含有两个电压比较器,一个基本RS触发器,一个放电开关管T,比较器的参考电压由三只5K电阻器构成的分压器提供。它们分别使高电平比较器A1的同相输入和低电平比较器A2的反相器、、输入端的参考电平为2/3VCC和1/3VCC。A1与A2的输出端控制RS触发器状态和放电管开关状态。当输入信号自6脚,即高电平触发输入并超过参考电平2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电开关管导通;当输入信号自2脚输入并低于1/3VCC进,触发器复位,555的3脚输出高电平,同时放电 开关管截止。RD是复位端(4脚),当RD=0.555输出低电平。平时RD端开路或接VCC. 2、单稳态电路工作原理 单稳态电路是具有一个稳定状态的电路。稳定时,时基电路处在复位态,输出端3脚为低电平,此时7脚也处在低电平,所以定时电容Ct无法通过定时电阻Rt 放电。 如果在输入端输出一个负脉冲触发信号V1,使555触发端的2脚获得一个小于VDD/3的低电平触发信号,根据前面的内部结构图和真值表,可知时基电路置位,输出脚3跳变为高电平,电路即翻转进入暂态;同时555内部晶体管截止,7脚被悬空(即虚高),解除对Ct的封锁,正电源VDD通过Rt向Ct充电,使阈值端6脚电平不断升高,当升至2VDD/3时,由真值表知,时基电路复位,3

555芯片功能及电路

22:44:22 |只看该作者|倒序浏览 555内部电原理图 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。 在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555 电路。下面将分别介绍这3类电路。 单稳类电路

单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式; 1.2.2电路则带有一个RC微分电路。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。

双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

555电路组成的振荡电路集锦

555电路组成的振荡电路集锦 一、555单稳类电路 555单稳工作方式,它可分为2种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。 二、555双稳类电路

第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。 三、555无稳类电路

第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。 第三种(见图3)是压控振荡器。由于电路变化形式很复杂,为简单起见,只分成

数电实验题目:实验九 555时基电路及其应用

实验九 555时基电路及其应用 姓名: 班级: 学号: 一、实验目的 1. 熟悉555集成时基电路的电路结构、工作原理及其特点。 2. 掌握555集成时基电路的典型应用。 二、实验原理 集成定时器是一种模拟、数字混合型的中规模集成电路,在波形产生、整形、变换、定时及控制系统中有着十分广泛的应用。只要外接适当的电阻电容等元件,可方便地构成单稳态触发器、多谐振荡器和施密特触发器等脉冲产生或波形变换电路,由于内部电压标准使用了三个5k 电阻,故取名555电路。定时器有双极型和CMOS 两大类,其结构和工作原理基本相似。通常双极型定时器具有较大的驱动能力,而CMOS 定时器则具有功耗低,输入阻抗高等优点。几乎所有的双极型产品型号最后的三位数码都是555和556;所有的CMOS 产品型号最后四位数码都是7555和7556,二者的逻辑功能和引脚排列完全相同,易于互换。双极型集成时基电路的电源电压为U CC =+5V~+15V ,输出的最大电流可达200mA ;CMOS 型的集成时基电路电源电压为U CC =+3V~+18V 。 555的内部电路框图如图9-1所示,从图中可见,它含有两个高精度电压比较器A 1、A 2,一个基本RS 触发器G 1、G 2及放电晶体管T D 。比较器的参考电压由三只5kΩ的电阻的分压提供,它们分别使比较器A 1的同相输入端和A 2的反相输入端的电位分别为 3 1 U CC 和3 2 U CC ,如果在引脚5外加控制电压,就可以方便的改变两个比较器的比较电平,若控制电压端5不用时需在该端与地之间接入约0.01μF 的电容,以清除外接干扰,保证参考电压稳定值。比较器的状态决定了基本RS 触发器的输出,基本RS 触发器的输出一路作为整个电路的输出,另一路控制晶体管T D 的导通与截止,T D 导通时给接在7脚的电容提供放电通路。这就很方便地构成从微秒到数十分钟的延时电路。 集成定时器的典型应用 1.单稳态触发器 单稳态触发器在外来脉冲作用下,能够输出一定幅度与宽度的脉冲,输出脉冲的宽度就是暂稳态的持续时间t W 。 图9-2为由555定时器和外接定时元件R 、C 构成的单稳态触发器。在输入u i 端未加触发信号时,电路处于初始稳态,单稳态触发器的输出u O 为低电平。当在u i 端加入具有一定幅度的负脉冲时,在TR 端出现一个尖脉冲,使该端电位小于 3 1 U CC ,从而使比较器A 2触发翻转,触发器的输出u O 从低电平跳变为高电平,暂稳态开始。电容C 开始充

555时基电路原理以及应用

555时基电路原理以及应用 大小[6494] 更新时间[] 阅读[6613]次/评论[3]次 555内部电原理图 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。 在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。

第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。 第三种(见图3)是压控振荡器。由于电路变化形式很复杂,为简单起见,只分成最简单的形式(3.3.1)和带辅助器件的(3.3.2)两个单元。图中举了两个应用实例。

无稳电路的输入端一般都有两个振荡电阻和一个振荡电容。只有一个振荡电阻的可以认为是特例。例如:3.1.2单元可以认为是省略RA的结果。有时会遇上7.6.2三端并联,只有一个电阻RA的无稳电路,这时可把它看成是3.2.1单元电路省掉RB后的变形。 以上归纳了555的3类8种18个单元电路,虽然它们不可能包罗所有555应用电路,古话讲:万变不离其中,相信它对我们理解大多数555电路还是很有帮助的。 各种应用电路 555触摸定时开关 集成电路IC1是一片555定时电路,在这里接成单稳态电路。平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。 当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。 当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。 定时长短由R1、C1决定:T1=1.1R1*C1。按图中所标数值,定时时间约为4分钟。D1可选用1N4148或1N4001。

数电实验八 555时基电路

实验八 555时基电路 一、实验目的 1. 掌握555时基电路的结构和工作原理。 2. 学会分析和测试555时基电路的应用电路。 二、实验仪器及器件 1.仪器:数字电路学习机,双踪示波器。 2.器件:555时基电路 2片 其他元件若干 三、实验内容 1.555的基本工作原理及电路功能测试 按图8.1连接电路,Rd 接开关电平,OUT 接发光二极管。 按表8.1中步骤进行测试。可调电压取自电位器分压器。 555是一种常见的集模拟与数字功能于一体的集成电路。只要适当配接少量元件,即可构成多谐振荡、单稳触发等脉冲产生和变换的电路。 2.555时基电路构成的多谐振荡器 (1)按图8.2连接电路,R1=15k ,R2=5k ,C1=0.033μF ,C2=0.1μF 。观察并测量OUT 波形的频率,并和理论值比较。计算频率的相对误差。 答:实际测量输出频率为1.66 k Hz ,理论计算输出周期为T=(R1+2R2)Cln2=0.571ms , 555由分压电路、比较电路、基本RS 出发电路和放电管TD 四部分组成。TH 、TR 为比较电路的输入端,Rd 为基本RS 触发电路的清零端。

频率为1.75k Hz。相对误差为5%。 (2)若R1=15k,R2=10k,频率有何变化? 答:输出周期的理论值为T=0.8ms,频率为1.25k Hz。实际的输出频率为2.1相对误差为 (3)改变电路,按图8.3接成 为占空比可调的多谐振荡器,R3 调节占空比q。调q=0.2,调试正 脉冲宽度为0.2ms,调试电路,测 出所用元件数值。 答:因为q=(R1)/(R1+R2) 正脉冲宽度T2=R1C1ln2 所以R1=8.74KΩ R2=35KΩ R1+R2=43.74KΩ 由此得出:原有电阻R1=15KΩ, 数值太大,不能满足题目要求。 可以将原有电阻R1=15KΩ, R2=5KΩ互换位置,则正好满足题 目要求。 (3.555构成的单稳态触发器 (1)按图8.4连接电路,该电路稳态为输出低 电平,暂态为输出高电平。 测量当R=10kΩ,C1=0.033μF,C2=0.1μF, Vi是频率约为10kHz左右的方波时的输出脉冲宽 度。用双踪示波器同时观察并记录OUT端和Vi 端的波形。 答:该电路输出脉冲的宽度为 T W=RC1ln3=0.36ms, (2)调节Vi频率观察OUT端波形变化。 答:输出脉冲的宽度不受Vi频率的影响。

555时基电路的四种常用电路

555时基电路的四种常用电路 555时基电路是一种双极型的时基集成电路,工作电源为4.5v~18v,输出电平可与TTL、CMOS 和HLT逻辑电路兼容,输出电流为200mA,工作可靠,使用简便而且成本低,可直接推动扬声器、电感等低阻抗负载,还可以在仪器仪表、自动化装置及各种电器中作定时及时间延迟等控制,可构成单稳态触发器、无稳态多谐振荡器、脉冲发生器、防盗报警器、电压监视器等电路,应用及其广泛 1 555时基电路的内部结构 国产双极型定时器CB555的电路结构如图l所示。它由分压器、电压比较器C1和C2、SR锁存器、缓冲输出器和集电极开路的放电三极管TD组成。 1.1 电压比较器 电压比较器C1和C2是两个相同的线性电路,每个电压比较器有两个信号输入端和一个信号输出端。C1的同向输入端接基准比较电压VR1,反向输入端(也称阈值端TH)外接输入触发信号电压,C2的反向输入端接基准比较电压VR2,同向输入端(也称触发端TR')外接输入触发信号电压。 1.2 分压器 分压器由三个等值电阻串联构成,将电源电压Vcc分压后分别为两个电压比较器提供基准比较电压。在控制电压输入端Vco悬空时,C1、C2的基准比较电压分别为 通常应将Vco端接一个高频干扰旁路电容。如果Vco外接固定电 压,则 1.3 SR锁存器 SR锁存器是由两个TTL与非门构成,它的逻辑状态由两个电压比较器的输出电位控制,并有一个外引出的直接复位控制端R'D。只要在R'D端加上低电平,输出端vo便立即被置成低电平,不受其它输入端状态的影响。正常工作时必须使R'D处于高电平。SR锁存器有置0(复位)、置1(置位)和保持三种逻辑功能。电压比较器C1的输出信号作为SR锁存器的复位控制信号,电压比较器C2的输出信号作为SR锁存器的置位控制信号。 1.4 集电极开路的放电三极管

555芯片应用电路大全

555内部电原理图

将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。 双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。

第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。 无稳类电路 第三类是无稳工作方式。无稳电路就是多谐振荡电路,是555电路中应用最广的一类。电路的变化形式也最多。为简单起见,也把它分为三种。 第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。

555电路原理

555电路原理 (一)555芯片引脚图及引脚描述 555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器6脚A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。 4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。 5脚是控制端。 7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。 (二)555集成电路的框图及工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。 555芯片管脚介绍

实验七 555时基电路

实验七 555时基电路 一、实验目的 1. 掌握555 时基电路的结构和工作原理,学会对此芯片的正确使用。 2. 学会分析和测试用555 时基电路构成的多谐振荡器、单稳态触发器、两 种典型电路。 二、实验仪器及材料 1. 双踪示波器 2. 器件 NE556(或LM556,5G556 等)双时基电路 1片 二极管1N4148 2 只 电位器22KΩ、1KΩ 2 只 电阻、电容若干 扬声器 1支 三、实验内容 1. 555 时基电路功能测试 本实验所用的555 时基电路芯片为NE556,同一芯片上集成了两个各自独立的555 时基电路,芯片的管脚如图7.1所示,功能简图如图7.2所示,图中各管脚的功能, 述如下: TH 高电平触发端:当TH 端电平大于2/3VCC,输出端OUT 呈低电平,DIS 端导通;TR 低电平触发端:当TR 端电平小于1/3VCC 时,OUT 端呈现高电平,DIS 端关断;R 复位端:当R =0时,OUT 端输出低电平,DIS 端导通; VC 控制电压端:VC 接不同的电压值可以改变TH、TR 的触发电平值; DIS 放电端:其导通或关断为RC 回路提供了放电或充电的通路; OUT 输出端。 芯片的功能如表7.1所示。 图7.1 图7.2

表7.1 (1)按图7.3接线,可调电压取自电位器分压器。 图7.3 测试接线图(2)按表7.1逐项测试其功能并记录。 2. 555 时基电路构成的多谐振荡器 电路如图7.4所示。 图7.4 多谐振荡器

(1)按图7.4接线。图中元件参数如下: R1 = 15KΩ, R2 = 5KΩ C1 = 0.033μF , C2 = 0.1μF (2)用示波器观察并测量OUT 输出端波形的频率,和理论估算值比较,算出频率的相对误差值。 (3)若将电阻值改为R1 = 15KΩ、R2 = 10KΩ、电容C 不变,上述的数据有何变化? (4)根据上述电路原理,充电回路的支路是R1、R2、C1 ,放电回路的支路是R2、C1,将电路略做修改,增加一个电位器RW和两个引导二极管,构成图7.5 所示的占空比可调的多谐振荡器: 其占空比为: 改变RW活动端的位置,可调节q 值。合理选择原件参数(电位器选用22KΩ),使电路的占空比q = 0.2,调试正脉冲宽度为0.2mS 。调试电路,测出所用元件的数值,估算电路的误差。 图7.5 占空比可调的多谐振荡器 3. 555 构成的单稳态触发器 实验如图7.6 所示。 图7.6 单稳态触发器

555时基电路内部结构及工作原理实例详解

2.3.1 555时基电路的介绍和内部结构 555集成电路定时器是一种将模拟功能和逻辑功能集成在同一硅片上的单片时基电路。它的型号很多,如FX555,5G555,J55,UA555,NE555,它们的逻辑功能与外部引线排列完全相同,555定时器的电源电压范围宽,双极型555定时器为5~16V,CMOS555 定时器为3~18V,它可提高与TTL,CMOS的数字电路兼容的接口电平。由于555定时 器价格低廉,使用灵活方便,只需外接少量元件就可构成多种模拟和数字电路,因而极广泛地应用在波形产生与变换,测量与控制,家用电器及电子玩具领域,它的外部引脚 555定时器能在较宽电压范围工作,输出交电平不低于90%电源电压,带拉电流负载和电流负载能力可达到200MA。 图2-3 555定时器外部引脚 555时基电路由运算放大电路器A1,A2组成电压比较器,由F1F2组成的

基本R—S触发器以及由F3和NPN型集成电极开路输出的放电三极管TD等组成的输出级和放电开关。其中电压比较器的分压偏置电阻采用三个阻值相同的5K电阻,所以电路因此特征而被命名为“555时基电路”。555时基电路的内部结构图如图2-4。 图2-4 555时基电路图 2.3.2 555时基电路的工作原理及功能电压比较 1)分压器3个5K 电阻组成,为两个A1和A2提供基准电平,如控制端C O,则经分压后,A的基准电平为2/3Ucc,B的基准电平为1/3Ucc,如改变管脚的接法就改变了两个电压比较器的基准电平 2)比较器 比较器A1,B2是两个结构和性能完全相同的高精度电压比较器,其输出直接控制着基本R-S触发器的状态。TH是比较器A1的输入端,TR是比较器A2的输入端。 当TH输入信号使U6》2/3Ucc,则A1输出交电平,否则A输出为低电平,当R输入信号使号使V2》1/3Ucc,A2输出为低电平,否则输出高电平3)基本R—S触发器 基本R——S触发器要求低电平触发,图中F1的输入端接UC1,为置O 输入端(R),F2的输入端接Uc2为置输入端(S)。Uc1=0,Uc2=1,时Q=0。当Uc1=1,Uc2=时,Q=1 4)放电器和输出缓冲器 集电极开路输出的放三极管TD组成放电器当输出U0为‘0“时,Q为1使UTD导通,管脚T和地间构成通路,而输出U0为”1“时,Q为0 使UTD 截止,通路被切断。输出缓冲器由反相器构成,一方面增强了带负载能力,另一方面隔离负载对555定时器的影响。 总上所述可得555时基器电路功能表如下表2-1所示 2-1 表555时基电路功能表

555芯片的常用电路应用

单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为 1

简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。 双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6 端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻 2

调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。无稳类电路 第三类是无稳工作方式。无稳电路就是多谐振荡电路,是555电路中应用最广的一类。电路的变化形式也最多。为简单起见,也把它分为三种。 第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单 3

555内部电路原理图及应用

555内部电路原理图及应用 555内部电原理图 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。 在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除

画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以和为代号。他们的输入端的形式,也就是电路的结构特点是:“”和“”。 第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“”,都是从2端输入。电路的2端不带任何元件,具有最简单的形式;电路则带有一个RC微分电路。

第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为;使用晶体管、运放放大器等辅助器件的电路为。图中列出了2个常用电路。 双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。

第一种(见图1)是触发电路,有双端输入()和单端输入()2个单元。单端比较器()可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的()和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的()共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。

555完整应用电路

555时基集成电路的应用--------------------------------------------------------------------------------

一、单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)就是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 与1、1、2为代号。她们的输入端的形式,也就就是电路的结构特点就是:“RT-6、2-CT”与“CT-6、2-RT”。 第2种(图2)就是脉冲启动型单稳,也可以分为2个不同的单元。她们的输入特点都就是“RT-7、6-CT”,都就是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1、2、2电路则带有一个RC微分电路。 第3种(图3)就是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1、3、2。图中列出了2个常用电路。

-------------------------------------------------------------------------------- 二、双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。 第一种(见图1)就是触发电路,有双端输入(2.1.1)与单端输入(2、1、2)2个单元。单端比较器(2、1、2)可以就是6端固定,2段输入;也可就是2端固定,6端输入。 第2种(见图2)就是施密特触发电路,有最简单形式的(2.2.1)与输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2、2、2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻与定时电容。这就是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1与R2起直流偏置作用。…………………………………………………………………、、 三、无稳类电路 第三类就是无稳工作方式。无稳电路就就是多谐振荡电路,就是555电路中应用最广的一类。电路的变化形式也最多。为简单起见,也把它分为三种。

555经典分析

555电路图要点分析及经典实例 555 集成电路经多年的开发,实用电路多达几十种,几乎遍及各个技术领域。但对初学者来讲,常见的电路也不过是上述几种,因此在读图时,只要抓住关键,识别它们是不难的。 从电路结构上分析,三类555 电路的区别或者说它们的结构特点主要在输入端。因此当我们拿到一张555 电路图时,在大致了解电路的用途之后,先看一下电路是CMOS 型还是双极型,再看复位端( MR)和控制电压端( V c )的接法,如果复位端( MR )是接高电平、控制电压端( V c )是接一个抗干扰电容的,那就可以按以下的次序先从输入端开始进行分析:( 1 ) 6 、2 端是分开的 ①7 端悬空不用的一定是双稳电路。如有两个输入的则是双限比较器;如只有一个输入的则 是单端比较器。这类电路一般都是作电子开关、控制和检测电路的用途。 ②7 、 6 端短接并接有电阻电容、取 2 端作输入的一定是单稳电路。它的输入可以用开关人工启动,也可以用输入脉冲启动,甚至为了取得较好的启动效果在输入端带有RC 微 分电路。这类电路一般用作定时延时控制和检测的用途。 ( 2 ) 6 、2 端短接的 ①输入没有电容的是施密特触发器电路。这类电路常用作电子开关、告警、检测和整形的用途。 ②输入端有电阻电容而7 端悬空的,这时要看电阻电容的接法:( a ) R 和C 串联接在电源和地之间的是单稳电路,R 和C 就是它的定时电阻和定时电容。( b ) R 在上C 在下,R 的一端接在V 0 端上的是直接反馈型无稳电路,这时R 和C 就是决定振荡频率的元件。 ③7 端也接在输入端,成“ R A - 7 - R B - 6 、2—C ”的形式的就是最常用的无稳电路。这时R A 和R B 及C 就是决定振荡频率的元件。这类电路可以有很多种变型:如省去R A ,把7 端接在V 0 上;或者在R B 两端并联二极管VD 以获得方波输出,或者用电阻和电位器组成R A 和R B ,而且在R A 和R B 两端并联有二极管以获得占空比可调的 脉冲波等等。这类电路是用途最广的,常用于脉冲振荡、音响告警、家电控制、电子玩具、医疗电器以及电源变换等用途。

相关文档
相关文档 最新文档