文档库 最新最全的文档下载
当前位置:文档库 › 内燃机热力计算

内燃机热力计算

内燃机热力计算
内燃机热力计算

内燃机课程设计热力计算书

——解放CA-30汽油机热力计算

一、 课程设计的主要内容

2.1、解放CA_—30汽油机的热力计算

1、计算工况选择:转速 n=2800r/min 功率 81kw 平均有效压力 0.622MPa

2、原始参数及条件

(1)柴油机型号:解放CA —30汽油机 (2)增压方式:非增压 (3)冲程数:τ=4 (4)额定功率: e p =81kw (5)额定转速:n=2800r/min (6)气缸直径:D=101.6mm (7)活塞行程:S=114.3mm (8)行程缸径比:S/D=1.125 (9)气缸数目:Z=6

(10)活塞总排量:Z*h V =5.55L

(11)压缩比:ε=6.2(一般汽油机是7-11) (12)平均有效压力:me P =0.622MPa (13)扭矩: tq T =343N ·m (14)活塞平均速度:m C =10.5m/s

(15)升功率:L P =14.5kw/L (16)me P ·m C =65.5

3 热计算

3.1 燃料的平均元素和分子量

C=0.855 H=0.145 O=0.000 (内燃机学P41) 燃料低热值 Hu=43960J /KG 3.2 工质参数

3.2.1燃烧1Kg 汽油燃料理论上所必须的空气量

110.8550.14500.5130.208124320.208124C H O lo kmol KG ????

=

+-=+-= ? ?????

3.2.2汽油的空燃比0.8553

4.410.145014.796/3lo X Kg Kg ??=+-= ???

汽油机过量空气系数α一般取0.8-0.96此处取α=0.9。

3.2.3可燃混合气新鲜充量 0.90.5130.46/M Lo kmol kg α=?=?= 3.2.4燃烧产物单独成分数量Mx

222210.85510.920.20820.2080.5130.05702/1211210.5120.2080.01423/1120.2080.06539/21120.2080.00711/10.7920.792C Mco Lo Kmol kg k Mco Lo kmol kg

k H Mh o k Lo kmol kg

k Mh k Lo kmol kg

k

Mn lo αα

α

α

α--=

-?=-???=++-=?=+-=-?=+-=?=+=??=0.90.5130.3657/kmol kg ??= 其中汽油机K=0.45-0.5,此处K=0.50

3.2.5燃烧产物的总量 22220.50942/Mco Mco Mh Mh o Mn kmol kg ++++= 3.3周围介质参数和剩余气体

周围介质压力Pk=Po=0.103Mpa 周围介质温度Tk=To=293K

剩余气体压力Pr=(1.05-1.25)Po 这里取1.05Po=1.05x0.1013=0.106Mpa 剩余气体温度Tr=1000K 3.4 各热力过程的热力计算

3.4.1 进气冲程 新鲜充量温升ΔT=20K

3.4.1.1进气的充量密度

663

10/0.10310/(287293) 1.205/

K k k p R g T k g m ρ=??=?

?= 3.4.1.2 进气终了压力Pa=Pk-0.00797=.0.933Mpa

3.4.1.3 残余废气系数r φ

0r 293200.106

0.071000 6.20.09330.106r

r a r

T T p T p p φε+?=

+-+=

?=?-

3.4.1.4 进气终点温度Ta

0r 1293200.071000

35810.07

r

a r

T T T T k

φφ+?+=

+++?=

=+

3.4.1.5 充气系数

00

00112930.093310.1060.0930.826293200.103 6.210.1030.103a a r c T p p p T T

p p p φε????=

--?? ?+?-??????

??=

--= ???+-????

3.4.2 压缩过程

3.4.2.1 压缩绝热指数及多变平均指数 当ε=6.2,Ta=358K 时 选取绝热指数1n =1.35

3.4.2.2 压缩终点压力c p

1 1.35

0.0933 6.2

1.116n c a p p MPa

ε==?=

3.4.2.3 压缩终点温度Tc

111.381

358 6.2

678n a Tc T k

ε--==?=

3.4.3 做功过程

3.4.3.1 汽油机理论混合气分子摩尔变更系数0μ 1200.50942

1.1070.46

M M μ=

== 3.4.3.2 汽油机实际混合气分子摩尔变更系数μ

011.1070.07

1.04

10.07

r r

μφμφ+=

++=

=+

3.4.3.3 汽油机燃烧产物的热量

()

()

143960

89313/0.4610.071r

Hu KJ Kmo

M φ=

=

=?++

3.4.3.4 汽油机燃烧产物平均摩尔热量

()()()

00

0024.640.0020518.31532.7770.002051z z z t V z

t t t n p V z

t

t

MC t MC MC t =+=+=+

汽油机的压力升高比λ一般在3.2到4.2 此处取 λ= 3.2 3.4.3.5 燃烧过程的终点温度Tz

()

()0

00

.8.3152270()z z t t n pao cm V

c p t t H MC t MC αλλμμ??+++-=????

?

代入数据tz=2540K

Tz=tz+273k=2813K

3.4.3.6 燃烧最高压力 Pz=λPc=3.2x1.1=3.52Mpa 3.4.3.7初期膨胀比ρ

1.042813

1.353.2678

z c

T T μρλ=

?=

?=

3.4.4 排气冲程

3.4.4.1 后期膨胀比 6.2 4.61.35

εδρ=

== 3.4.4.2 汽油机膨胀多变系数2n 取1.32

膨胀终点压力2 1.32

3.52

0.3466.2Z

n b P P ε=

=

=MPa

膨胀终点温度210.32

281315696.2Z n b T

T K ε-==

= 取剩余温度校核

'1569

10531.49

r T K =

=

= 两者的误差Δ=

10531000

1053

-=5%,大致符合要求。

3.5经济技术指标

3.5.1理论平均指示压力'i p

()211

'

121111111110.8n c i n p p n n MPa λρρλρεεε--??????????=-+---???? ? ?---????????????=

3.5.2实际平均指示压力i p

'0.80.970.776i i n p p MPa

φ==?=

3.5.3平均有效压力me p

0.7760.780.605me i m p p MPa η=?=?=

3.5.4有效功率e p

0.6052800

14.1730304

me L P n P kw τ?=

==?

14.17 5.5581.64e L h P P iV kw ==?=

3.5.5指示热效率i η

0.77614.80.9

0.23643.960.826 1.205

i i u k r P lo H αηρη????=

==????

3.5.6指示燃油消耗率'i b

66

'

3.610 3.610347/()0.23643995

i i b g kw h H μη??===???

3.5.7实际燃油消耗率i b

66

3.610 3.61044

4.8/()0.2360.7843995i i m b g kw h H μηη??===????

3.5.8有效效率e η

0.2360.780.1841

e e m ηηη=?=?=

3.5.9扭矩tq T

81.649550

9550278.52800

e tq P T N m n ==?=?

第二章往复式活塞内燃机的定义与分类

第二章往复式活塞内燃机的定义与分类 2.1定义 活塞机器是将能量从流体(气体或液体)转移到运动的(displacer)活塞或者从活塞转移到流体的机器。它们因而算是流体能量类机器,如从动机器,吸收机械能转换为被转移流体的能量。在主动机器中,正相反,机械能在活塞或者曲柄机构上以有用功的形式释放。 工作体积随活塞运动周期性变化,是活塞式发动机的工作特性。往复活塞式发动机与旋转活塞式发动机的一个区别就是活塞运动的本质不同。在往复活塞式发动机,活塞呈圆柱形,往返于气缸内的两个极限位置——“止点(dead center)”。术语“活塞(piston)”也常以非圆柱形式存在。在旋转活塞式发动机中,旋转的活塞负责改变工作容积。 燃烧式发动机是燃烧空气和燃油的可燃混合物,将其中的化学能转化为机械能的机器。最广为人知的燃烧式发动机是内燃机和汽轮机。图表2-1是对此的概述 内燃机是活塞式发动机。往复活塞发动机与旋转活塞发动机区别在于密封结构,工作容积的改变形式和活塞运动的形式。旋转活塞发动机又可以细分为旋转发动机(rotary engine,一个内转子,一个外转子绕固定轴纯粹的旋转)和行星旋转发动机(planetary rotary engine,一个内转子,圆周运动的轴)。图表2-2显示了不同的工作原理。只有汪克尔发动机(Wankel engine)—一种行星活塞发动机,实现了突破。 工作过程类型 开式过程闭式过程 内燃外燃 燃烧气体=工质 燃烧气体≠工质 工质的状态变化 不变变化燃烧类型周期性燃烧连续燃烧 发火形式自燃外缘点火 机器类 型发动机柴油机混合动 力 汽油 机 Rohs发动 机 stirling发 动机 蒸汽 机 轮机——————燃气(gas)过热蒸汽superheated steam 蒸汽 混合形式复杂多种混合 heterogeneous 均质混 合(复 杂多种 混合)复杂多种混合heterogeneous (在燃烧室内)连续火焰 依据工作过程区分内燃机与外燃机也是必要的。对于内燃机,工质同时也是燃烧所需的氧气的来源。燃料燃烧产生废气,必须在每个工作循环前换气。燃烧因而是周期性的,汽油机、

热力循环比较

斯特林循环 Stirling cycle 热气机(即斯特林发动机)的理想热力循环,为19世纪苏格兰人R.斯特林 所提出,因而得名。图[斯特林循环的-和- 图]-和-图" class=image>为斯 特林循环在压-容(-)图和温-熵(T-S)图上的表示。它是由两个定容吸热过程和两个定温膨胀过程组成的可逆循环,而且定容放热过程放出的热量恰好为定容吸热过程所吸收。热机在定温(T1)膨胀过程中从高温热源吸热,而在定温(T2)压缩过程中向低温热源放热。斯特林循环的热效率为 [0727-01]式中W为输出的净功;Q1为输 入的热量。根据这个公式,只取决于T1和T2,T1越高、T2越低时,则越高,而且等于相同温度范围内的卡诺循环热效率。因此,斯特林发动机是一种很有前途的热力发动机。斯特林循环也可以反向操作,这时它就成为最有效的制冷机循环。 卡诺热机循环的效率 让我们分析以理想气体为工作物质的卡诺热机循环并求其效率。以v表示理想气体的摩尔数,以T1和T2分别表示高温和低温热库的温度。气体的循环过程如图10.12所示。它分为以下几个阶段,两个定温和两个绝热过程。 1→2:使温度为T1的高温热库和气缸接触,气缸内的气体吸热作等温膨胀。体积由V1增大到V2。由于气体内能不变,它吸收的热量就等于它对外界做的功。利用公式(10.3)可得

2→3:将高温热库移开,气缸内的气体作绝热膨胀,体积变为V3,温度降到T2。 3→4:使温度为T2的低温热库和气缸接触,缸内的气体等温地被压缩到体积V4,使状态4和状态1位于同一条绝热线上,在这一过程中,气体向低温热库放出的热量为 4→1:将低温热库移开,缸内的气体绝热地被压缩到起始状态1,完成一次循环。 在一次循环中,气体对外做的净功为 W=Q1-Q2 卡诺循环中的能量交换与转化关系可用图10.13那样的能流图表示。 根据热机效率的定义公式(10.23),可得理想气体卡诺热机循环的效率为 根据理想气体的绝热过程方程,对两条绝热线应分别有 两式相比,可得 从而有

活塞式发动机的基本常识

活塞式燃油发动机基础常识 活塞式燃油发动机通常是指燃油在汽缸里燃烧膨胀,推动活塞下行带动曲轴旋转,以此形式输出动力的发动机。这种发动机是目前最最接近平民百姓的实用型燃油发动机,大到火车、轮船~~,小到助力车、航模~~,可以说是随处可见;其中一些经过少许改装后,还可以使用汽体燃料。 最近几年,版友们最常接触的是踏板助力车上的燃油发动机,其实活塞式燃油发动机的范畴很大,不只是汽油机和柴油机,点火方式也不全是靠火花塞;在此写上一篇,以本版角度,将活塞式燃油发动机的一些常识简述一下,以四冲汽油机为主,作为车民常识资料,以便版内车友学习参考。 一、活塞式燃油发动机常见名词常识: A、活塞式燃油发动机: 通常指做功形式为燃油在汽缸里燃烧、以膨胀气体推动活塞,通过连杆带动曲轴输出动力,以消耗燃油而产生动力的发动机。它的主要产品为使用化油器实施汽缸外雾化燃油、汽缸内火花塞点火的汽油机,还有使用喷油泵直接对汽缸内喷射柴油、直接燃烧作功的柴油机。 B、发动机的工作循环与冲程: 工作循环是指发动机活塞由进气、压缩、燃烧膨胀(做功)、排气行程所组成的工作进程。发动机每完成一次进气,压缩、做功、排气的进程,称为一个工作循环,也称一个周期。 C、二冲程发动机:

凡发动机曲轴每旋转一转,即活塞上下往复运动两个行程而完成一个工作循环的发动机。按点火方式包含有:火花塞点火,压缩点火,喷油点火。按进气方式有:簧片阀进气,活塞阀进气,转盘阀进气~~~。D、四冲程发动机: 凡发动机曲轴每旋转两转,即活塞上下往复动动四个行程而完成一个工作循环的发动机。通常以化油器供油、火花塞点火的汽油发动机和直接向汽缸里喷射燃油的柴油机为主。其外观最大特征:有复杂的换气机构--缸头。 E、曲轴: 一根类似“弓”字形的转轴,用连杆连接活塞,通过它使活塞来回运动,完成吸气、压缩、作功、排气等功能。同时活塞也通过它将直线运动的作功力量转换为输出动力的旋转运动。 F、飞轮: 为了使活塞连续往复运动,曲轴需要靠飞轮的惯性来保持连续运转。在小型发动机中,飞轮通常与磁电机合并设计,在飞轮的内圈安置强力磁钢,使得飞轮一转动,底盘上的线圈就有点火电力输出。 G、连杆: 连接曲轴与活塞的部件,其主要功能是将曲轴的旋转运动转换成活塞的往复运动,同时也将活塞的推动力转换成曲轴的旋转运动。因其运动时的摆动幅度较大,所以需要尽量轻巧牢固。 H、曲轴箱: 将曲轴安装在内、并连接汽缸和变速机构的发动机箱体。常规二冲程发

内燃机热力循环-打印版

内燃机热力循环 一、燃气轮机循环 燃气轮机理想循环为布雷顿循环(Brayton Cycle) ,它是工质连续流动做功的一种轮机循环,如图1所示 。它既可作内燃布雷顿循环,又可作外燃布雷顿循环。内燃的布雷顿循环为开式循环,常用工质为空气或燃气。外燃的布雷顿循环是闭式循环,通过热交换器对工质加热,在另一热交换器排出工质余热。 循环过程为: 工质在压气机中等熵压缩1-2,在燃烧室(或热交换器中)等压加热2-3 ,在燃气轮机中等熵膨胀3-4和等压排气4-1 。 图1 燃气轮机循环 燃气轮机循环的指示热效率为 11k k i c ηπ-=- 式中,c π为压气机中气体的压比,k 为比热比。 燃气轮机开式循环常与内燃机基本循环配合使用。 二、涡轮增压内燃机热力循环 将涡轮增压技术(或燃气轮机技术)应用到内燃机上是内燃机循环的一项重大技术发展。一方面内燃机希望获得更多的进气(或可燃混合气)充量,以提高内燃机的功率和热效率;另一方面从内燃机排出的高温、高压废气能导入燃气涡轮中再作功,推动与燃气涡轮相连(同轴)的压气机来提高进气(或可燃混合气)的压力供给内燃机,这样就成为涡轮增压内燃机。涡轮增压内燃机有等压涡轮和变压涡轮两种系统,它们的热力循环也有所不同。 1.恒压涡轮增压内燃机热力循环 图2是等压涡轮增压内燃机热力循环。它由内燃机基本循环1→2→3’→3→4→1和燃气轮机循环7→1→5→6→7组成。

图2 等压涡轮增压内燃机热力循环 压气机将气体从状态7(大气压力p0)等熵压缩到状态1(压力为p s)之后进入内燃机。按内燃机热力循环到达状态4。气体在排气过程进入等压涡轮时由于排气门的节流损失和排气动能在排气总管内的膨胀、摩擦、涡流等损失而变成热能,气体温度升高,体积膨胀而到达状态5。气体从4→5 这部分能量没有利用,对内燃机来说相当于从状态4直接回到状态1。气体在等压涡轮中从状态5等熵膨胀到状态6,然后排入大气。 2 .变压涡轮增压内燃机热力循环 变压涡轮增压内燃机热力循环如图3 。与等压涡轮增压内燃机热力循环不同,变压涡轮增压内燃机中气体从状态4 进入变压涡轮中排气能量不会由于排气管突然变粗而膨胀损失,进入变压涡轮前的气体压力在p4与p1’之间变化。如不计气体流动中的摩擦损失,气体在涡轮中的膨胀从开始排气时的p4→p5到最后的p1’→p5(因为后面从气缸中排出的气体压力不断下降)。 图3 变压涡轮增压内燃机热力循环 内燃机的等容放热过程4→1可看成为涡轮的等容加热过程1→4 ,然后为气体在涡轮内的等熵膨胀4→5 。5→6为等压放热过程。6→1为气体在压气机中的等熵压缩过程。 三、涡轮增压中冷内燃机热力循环

车用发动机余热回收的新型联合热力循环

第43卷 第11期2009年11月 西 安 交 通 大 学 学 报 JOURNAL OF XI AN JIAOT ON G U NIVERSIT Y Vo l.43 !11Nov.2009 收稿日期:2009 03 13. 作者简介:何茂刚(1970-),男,教授,博士生导师. 基金项目:国家自然科学基金资助项目(50776070,50821064). 车用发动机余热回收的新型联合热力循环 何茂刚,张新欣,曾科 (西安交通大学动力工程多相流国家重点实验室,710049,西安) 摘要:针对汽车发动机排气余热、冷却水余热和润滑油余热的特点,提出了一种新型的适用于车用发动机余热回收的热力循环系统.此系统由用来回收温度较高的发动机排气余热及润滑油余热的有机Rankine 循环(Or ganic Rankine Cycle,ORC)和用来回收温度较低的发动机冷却水余热的Kalina 循环耦合而成.基于P R 状态方程,编写了计算程序对此热力循环系统进行了热力学性能分析,还分析了采用不同有机工质对循环整体性能的影响.与传统的只回收发动机排气余热的热力循环系统相比,文中提出的构型其余热回收效率更高.当采用环戊烷为ORC 工质时,循环系统的整体效率为20 83%;当采用R113为ORC 工质时,循环系统的整体效率为16 51%.关键词:车用发动机;余热回收;新型热力循环;热力学性能 中图分类号:T K123 文献标志码:A 文章编号:0253 987X(2009)11 0001 05 A New Combined Thermodynamic Cycle for Waste Heat Recovery of Vehicle Engine H E M aogang,ZH ANG Xinx in,ZEN G Ke (S tate Key Laboratory of M ultiph as e Flow in Pow er Engineering,Xi an Jiaotong University,Xi an 710049,China) Abstract :From the characteristics of w aste heat in ex haust,cooling w ater and lubricant,a new therm ody nam ic cycle fo r w aste heat r ecovery o f vehicle engines w as pro posed.T he present sy s tem consists of tw o cy cles,organic Rankine cycle (ORC)for recov er ing the w aste heat in high temperatur e ex haust and lubricant and Kalina cycle fo r reco ver ing the w aste heat in low tempera tur e coo ling w ater.Based on P R equatio n of state,the thermo dynamic perform ance of the cycle w as theoretically calculated w ith a self w r itten computing prog ram.T hen the overall perform ance of the cycle w ith different o rganic w orking fluids w as analyzed indiv https://www.wendangku.net/doc/ad7280888.html,pared w ith the conv entional cy cle configuration used fo r only reco ver ing the exhaust heat,the pr esent cycle has higher w aste heat r ecovery efficiency.The ov erall efficiency of the cycle w ith cy clo pentane and R113is 20.83%and 16.51%,r espectively. Keywords :vehicle eng ine;w aste heat r ecovery;new thermodynamic cycle;ther modynam ic per for mance 车用发动机余热利用是提高其燃料利用率的重要研究课题.目前展开的研究工作有利用发动机余热进行温差发电[1]、取暖和吸收式制冷[2 4],以及利用发动机余热做功.利用排气温差的发电技术,能量转换效率很低,实际热电转换效率约为2 12%,而同类装置的转换效率最高也只有10%左右.发动机 余热取暖系统无法在发动机停止工作时使用,且在高寒地区使用时对换热元件要求较高.发动机余热吸收式制冷系统则存在单位质量的吸附剂产生的制冷功率小、系统笨重、余热利用率不高等问题.鉴于这两种余热利用方式存在的缺点,利用发动机余热做功已成为发动机余热利用领域新的研究热点.

热力循环比较.doc

斯特林循环Stirling cycle 所热气机(即斯特林发动机)的理想热力循环,为19 世纪苏格兰人 提出,因而得名。图[斯特林循环的- R.斯特林 和- 图 ]- 和 - 图" class=image> 为斯 特林循环在压 -容( - ) 图和温 -熵 (T-S)图上的表示。它是由两个定容吸热过程和两个定温膨胀过程组成的可逆循环,而且定容放热过程放出的热量恰好为定容吸热过程所吸收。热机在定温 (T1)膨胀过程中从高温热源吸热,而在定温 (T2)压缩过程中向低温热源放热。斯特林循环的热效率为 [0727-01] 式中W 为输出的净功; Q 1 为输入的热量。根据这个公式,只取决于 T1 和 T2,T1 越高、 T 2 越低时,则越 高,而且等于相同温度范围内的卡诺循环热效率。因此,斯特林发动机是一种很有前途的热力发动机。斯特林循环也可以反向操作,这时它就成为最有效的制冷机循环。 卡诺热机循环的效率 让我们分析以理想气体为工作物质的卡诺热机循环并求其效率。以v 表示理想气体的摩尔数,以 T1和2分别表示高温和低温热库的温度。气体的循环过 T 程如图 10.12 所示。它分为以下几个阶段,两个定温和两个绝热过程。 1→2:使温度为 T1的高温热库和气缸接触,气缸内的气体吸热作等温膨胀。 体积由 V1增大到2。由于气体内能不变,它吸收的热量就等于它对外界做的功。 利用公式 (10.3) V 可得

2→3:将高温热库移开,气缸内的气体作绝热膨胀,体积变为V3,温度降到T2。 3→4:使温度为 T2的低温热库和气缸接触,缸内的气体等温地被压缩到体积 V4,使状态4和状态1位于同一条绝热线上,在这一过程中,气体向低温热库放 出的热量为 4→1:将低温热库移开,缸内的气体绝热地被压缩到起始状态 1,完成一次循环。 在一次循环中,气体对外做的净功为 W=Q1-Q2 卡诺循环中的能量交换与转化关系可用图10.13 那样的能流图表示。 根据热机效率的定义公式(10.23) ,可得理想气体卡诺热机循环的效率为 根据理想气体的绝热过程方程,对两条绝热线应分别有 两式相比,可得 从而有

第二章往复式活塞内燃机的定义与分类

第二章往复式活塞内燃机的定义与分类 定义 活塞机器是将能量从流体(气体或液体)转移到运动的(displacer)活塞或者从活塞转移到流体的机器。它们因而算是流体能量类机器,如从动机器,吸收机械能转换为被转移流体的能量。在主动机器中,正相反,机械能在活塞或者曲柄机构上以有用功的形式释放。 工作体积随活塞运动周期性变化,是活塞式发动机的工作特性。往复活塞式发动机与旋转活塞式发动机的一个区别就是活塞运动的本质不同。在往复活塞式发动机,活塞呈圆柱形,往返于气缸内的两个极限位置——“止点(dead center)”。术语“活塞(piston)”也常以非圆柱形式存在。在旋转活塞式发动机中,旋转的活塞负责改变工作容积。 燃烧式发动机是燃烧空气和燃油的可燃混合物,将其中的化学能转化为机械能的机器。最广为人知的燃烧式发动机是内燃机和汽轮机。图表2-1是对此的概述 内燃机是活塞式发动机。往复活塞发动机与旋转活塞发动机区别在于密封结构,工作容积的改变形式和活塞运动的形式。旋转活塞发动机又可以细分为旋转发动机(rotary engine,一个内转子,一个外转子绕固定轴纯粹的旋转)和行星旋转发动机(planetary rotary engine,一个内转子,圆周运动的轴)。图表2-2显示了不同的工作原理。只有汪克尔发动机(Wankel engine)—一种行星活塞发动机,实现了突破。 图2-1

依据工作过程区分内燃机与外燃机也是必要的。对于内燃机,工质同时也是燃烧所需的氧气的来源。燃料燃烧产生废气,必须在每个工作循环前换气。燃烧因而是周期性的,汽油机、柴油机和混合发动机(hybrid engine)的区别就在于燃烧过程。 对于外燃机(如斯特林发动机Stirling engine),工作室外连续燃烧产生的热量转到工作室内的工质。这许可闭式循环工作过程(closed-circuit working process),可以使用任何燃料。 只有往复活塞内燃机,循环燃烧(cyclical combustion is examined from this point on.) 分类方法potentials for classification 由于复杂的相互关系,往复活塞式发动机的分类方法多种多样。往复活塞式发动机可以按照燃烧过程、燃料、工作的循环、混合物生成系统、换气控制系统、充量系统(charging system)、构造分类。进一步的特征差异表现在——点火系统、冷却系统、负荷调节系统、用途、速度和输出graduation。然而,许多特征差异现在只有历史意义。 2.2.1燃烧过程 在众多燃烧过程中,最初差异只是在奥托循环和狄赛尔之间。混合发动机展现出了奥托循环和狄赛尔循环两者的特性。汽油机在外缘同步点火的作用下,燃烧压缩后的燃油和空气的混合物。柴油机,则相反,空气充量压缩后被加热到燃料起燃温度,之后液态燃料被喷入燃烧室燃烧。混合发动机以充量分层发动机和多燃料发动机In the case of hybrid engines, one differentiates between engines featuring charge stratification an 2.2.2 燃料 气态的、业态的还有固态的燃料都在燃烧发动机中燃烧 气态燃料:甲烷,丙烷,丁烷,天然气、发生炉瓦斯(generator)、高炉气(blast furnace,主要成分CO)、生物气(污泥和填埋废弃物产生,主要是甲烷)和氢气。 液体燃料 清液态燃料:汽油、煤油、苯、醇类(甲醇、乙醇)、丙酮、乙醚、液化气(液化石油气、液化天然气)。 重液态燃料:石油、柴油、脂肪酸甲酯(fatty-acid methyl esters -FAME)和源于欧洲的菜籽甲酯(rape-seed56 methyl esters -RME)、生物柴油、植物油、重油(heavy fuel oils)和船用燃油(marine fuel oil --MFO) 混合燃油:柴油+菜籽甲酯,柴油+水,还有汽油+酒精 固体燃料:煤粉(Pulverized coal)

斯特林发动机循环分析-工程热力学

斯特林发动机循环分析 (北京交通大学机电) 摘要:斯特林发动机不仅理论热效率高,等于卡诺循环效率,而且作为外燃机其排放特性非常好,所以近三十年来一直是研究的热点。本文介绍了斯特林发动机的装置特点、动力性能等,并对理论循环进行了分析,提出了提高循环热效率的方法及措施。 关键词:斯特林发动机,斯特林循环,热效率 1.斯特林发动机介绍 1.1斯特林发动机的装置特点 热气机是一种外燃的、闭式循环往复活塞式热力发动机。 热气机可用氢、氮、氦或空气等作为工质,按斯特林循环工作。在热气机封闭的气缸内充有一定容积的工质。气缸一端为热腔,另一端为冷腔。工质在低温冷腔中压缩,然后流到高温热腔中迅速加热,膨胀作功燃料在气缸外的燃烧室内连续燃烧,通过加热器传给工质,工质不直接参与燃烧,也不更换。 已设计制造的热气机有多种结构,可利用各种能源,已在航天、陆上、水上和水下等各个领域进行应用。试验热气机的功率传递机构分为曲柄连杆传动、菱形传动、斜盘或摆盘传动、液压传动和自由活塞传动等。 按缸内循环的组成形式分,热气机主要有配气活塞式和双作用式两类。在一个气缸内有两个活塞作规律的相对运动,冷腔与热腔之间用冷却器、回热器和加热器连接,配气活塞推动工质在冷热腔之间往返流动。 1.2斯特林发动机的应用现状 1.2.1 国内发展状况 我国从七十年代末即开始斯特林发动机的研究开发工作,已设计出功率150发动机11种,多数已在实验室正常运转。现从事此项工作的约300人,并正筹建中国热气机研究会。北京农业工程大学凌泽芝同志在能源政策研究通讯1991年第一期“发展热气机、促进农村电气化”一文中介绍国内外斯特林发动机的发展概况及其特点后建议:“充分利用我国农村丰富的生物质能源和部分地区丰富的太阳能资源以解决农业用电问题”。并希望纳入国家“八五”科技规划和组织有关单位联合攻关。上海711研究所研制出热气机,是一种具有国际水准的科研成果,而排放的污染气体比目前市面上的其它发动机都要小,达到欧洲排放标准。 1.2.2 国外应用现状 1)用于热电联产型 充分利用它环境污染小的特点,在大城市里可以以天燃气作燃料,通过斯特林发动机的内部的冷却装置,冷却水被加热并回收烟气,即可采暖。1台25的斯特林外燃机完全可以满足500—1500建筑平方米采暖。 这种使用斯特林发动机的热电联产装置实际上相当于一台副产电力的供热锅炉,一般情况下是根据供热需求来确定其运行状态的,其电力系统可以与电网连接,多余的电

热力学基本概念

潍坊职业学院教案案首

3)孤立体系(isolated system ) 体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑 注意: 可见,体系与环境的划分并不是绝对的,实际上带有一定的人为性。原则上说,对于同一问题,不论选哪个部分作为体系都可将问题解决,只是在处理上有简便与复杂之分。因此,要尽量选便于处理的部分作为体系。一般情况下,选择哪一部分作为体系是明显的,但是在某些特殊场合下,选择方便问题处理的体系并非一目了然。 2 、状态函数

体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数(state function)。 状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。 状态函数在数学上具有全微分的性质。 体系的性质-状态函数性质 用宏观可测性质来描述体系的热力学状态,故这些性质又称为热力学变量。可分为两类: 广延性质(extensive properties) 又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。 强度性质(intensive properties) 它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。它在数学上是零次齐函数。指定了物质的量的容量性质即成为强度性质,如摩尔热容。 3.过程与途径 (1)体系状态的任何变化称过程(process)。 始态————————————————→终态 过程(具体可通过不同的途径来实现) (2) 实现状态变化的具体步骤称为途径(path)。 根据过程有无相变及化学反应分: 简单状态变化过程:T,p,V变化 化学变化过程 相变过程 常见的变化过程 ◆恒温过程:T始=T终=T外=常数 ◆恒压过程: p始=p终=p外=常数

热力学习题答案

第9章热力学基础 一. 基本要求 1. 理解平衡态、准静态过程的概念。 2. 掌握内能、功和热量的概念。 3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。 4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。 5. 了解可逆过程与不可逆过程的概念。 6. 解热力学第二定律的两种表述,了解两种表述的等价性。 7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。 二. 内容提要 1. 内能功热量 内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。对于理想气体,其内能E仅为温度T的函数,即 当温度变化ΔT时,内能的变化 功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功A也不相同。 系统膨胀作功的一般算式为 在p—V图上,系统对外作的功与过程曲线下方的面积等值。 热量热量是系统在热传递过程中传递能量的量度。热量也是过程量,其

大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。 2. 热力学第一定律 系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即 热力学第一定律的微分式为 3. 热力学第一定律的应用——几种过程的A 、Q 、ΔE 的计算公式 (1)等体过程 体积不变的过程,其特征是体积V =常量;其过程方程为 在等体过程中,系统不对外作功,即0=V A 。等体过程中系统吸收的热量与系统内 能的增量相等,即 (2) 等压过程 压强不变的过程,其特点是压强p =常量;过程方程为 在等压过程中,系统对外做的功 系统吸收的热量 )(12 T T C M M Q P mol P -= 式中R C C V P +=为等压摩尔热容。 (3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为 pV =常量 在等温过程中,系统内能无变化,即 (4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程 pV γ =常量 在绝热过程中,系统对外做的功等于系统内能的减少,即 7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。其特点是内能变化为零,即 在循环过程中,系统吸收的净热量(吸收热量1Q 与放出热量2Q 之差。注意这

航空活塞式发动机组成及工作原理

航空活塞式发动机组成及工作原理 航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。(一)活塞式发动机的主要组成

主要由气缸、活塞、连杆、曲轴、气门机构、螺旋桨减速器、机匣等组成。气缸是混合气(汽油和空气)进行燃烧的地方。气缸内容纳活塞作往复运动。气缸头上装有点燃混合气的电火花塞(俗称电嘴),以及进、排气门。发动机时气缸温度很高,所以气缸外壁上有许多散热片,用以扩大散热面积。气缸在发动机壳体(机匣)上的排列形式多为星形或V形。常见的星形发动机有5个、7个、9个、

14个、18个或24个气缸不等。在单缸容积相同的情况下,气缸数目越多发动机功率越大。活塞承受燃气压力在气缸内作往复运动,并通过连杆将这种运动转变成曲轴的旋转运动。连杆用来连接活塞和曲轴。曲轴是发动机输出功率的部件。曲轴转动时,通过减速器带动螺旋桨转动而产生拉力。除此而外,曲轴还要带动一些附件(如各种油泵、发电机等)。气门机构用来控制进气门、排气门定时打开和关 zbc6e 通用航空 https://www.wendangku.net/doc/ad7280888.html,

闭。 (二)活塞式发动机的原理 活塞顶部在曲轴旋转中心最远的位置叫上死点、最近的位置叫下死点、从上死点到下死点的距离叫活塞冲程。活塞式航空发动机大多是四冲程发动机,即一个气缸完成一个循环,活塞在气缸内要经过四个冲程,依次是进气冲程、压缩冲程、膨胀

冲程和排气冲程。发动机开始时,首先进入“进气冲程”,气缸头上的进气门打开,排气门关闭,活塞从上死点向下滑动到下死点为止,气缸内的容积逐渐增大,气压降低——低于外面的大气压。于是新鲜的汽油和空气的混合气体,通过打开的进气门被吸入气缸内。混合气体中汽油和空气的比例,一般是1比15即燃烧一公斤的汽油需要15公斤的空气。 zbc6e 通用航空 https://www.wendangku.net/doc/ad7280888.html,

往复活塞式内燃机的基本结构及基本术语

往复活塞式内燃机的基本结构及基本术语 一、基本结构往复活塞式内燃机的工作腔称作气缸,气缸内表面为圆柱形。在气缸内作往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端则与曲轴相连,构成曲柄连杆机构。因此,当活塞在气缸内作往复运动时,连杆便推动曲轴旋转,或者相反。同时,工作腔的容积也在不断的由最小变到最大,再由最大变到最小,如此循环不已。气缸的顶端用气缸盖封闭。在气缸盖上装有进气门和排气门,进、排气门是头朝下尾朝上倒挂在气缸顶端的。通过进、排气门的开闭实现向气缸内充气和向气缸外排气。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构。通常称这种结构形式的配气机构为顶置气门配气机构。现代汽车内燃机无一例外地都采用顶置气门配气机构。构成气缸的零件称作气缸体,支承曲轴的零件称作曲轴箱,气缸体与曲轴箱的连铸体称作机体。 二、基本术语 1. 工作循环 活塞式内燃机的工作循环是由进气、压缩、作功和排气等四个工作过程组成的封闭过程。周而复始地进行这些过程,内燃机才能持续地作功。 2. 上、下止点 活塞顶离曲轴回转中心最远处为上止点;活塞顶离曲轴回转中心最近处为下止点。在上、下止点处,活塞的运动速度为零. 3. 活塞行程 上、下止点间的距离S 称为活塞行程。曲轴的回转半径R 称为曲柄半径。显然,曲轴每回转一周,活塞移动两个活塞行程。对于气缸中心线通过曲轴回转中心

的内燃机,其S=2R 4. 气缸工作容积 上、下止点间所包容的气缸容积称为气缸工作容积。 5. 内燃机排量 内燃机所有气缸工作容积的总和称为内燃机排量。

【CN109948231A】发动机热力循环参数分析方法和装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910194230.9 (22)申请日 2019.03.14 (71)申请人 中国航发湖南动力机械研究所 地址 412002 湖南省株洲市芦淞区董家塅 高科园中国航发动研所 (72)发明人 张鑫 张平平 李维 刘渊  张海彪  (74)专利代理机构 北京律智知识产权代理有限 公司 11438 代理人 袁礼君 阚梓瑄 (51)Int.Cl. G06F 17/50(2006.01) (54)发明名称发动机热力循环参数分析方法和装置(57)摘要本发明涉及发动机技术领域,提出一种发动机热力循环参数分析方法和发动机热力循环参数分析装置。该发动机热力循环参数分析方法包括建立发动机各部件之间的参数耦合关系;根据所述参数耦合关系计算得到初始热力循环参数选择范围;确定所述各部件的强度限制参数;根据所述强度限制参数和初始热力循环参数选择范围得到目标热力循环参数选择范围。该发动机热力循环参数分析方法将各部件之间参数相互耦合,绘制得到的热力循环参数选择范围更加精确;考虑了压气机、涡轮等部件结构强度限制,进一步缩小了热力循环参数选择范围,提高了涡轴发动机性能设计合理性;有效减少了涡轴发动机性能设计迭代次数, 缩短项目研制周期。权利要求书2页 说明书7页 附图5页CN 109948231 A 2019.06.28 C N 109948231 A

权 利 要 求 书1/2页CN 109948231 A 1.一种发动机热力循环参数分析方法,其特征在于,包括: 建立发动机各部件之间的参数耦合关系; 根据所述参数耦合关系计算得到初始热力循环参数选择范围; 确定所述各部件的强度限制参数; 根据所述强度限制参数和初始热力循环参数选择范围得到目标热力循环参数选择范围。 2.根据权利要求1所述的发动机热力循环参数分析方法,其特征在于,建立发动机各部件之间的参数耦合关系,包括: 建立压气机压比与绝热效率之间的耦合关系; 建立空气系统引气量与燃烧室出口温度之间的耦合关系; 建立涡轮绝热效率、燃烧室出口温度以及压气机压比之间的耦合关系。 3.根据权利要求2所述的发动机热力循环参数分析方法,其特征在于,建立压气机压比与绝热效率之间的耦合关系,包括: 统计压气机出口换算流量与多变效率的耦合关系; 根据所述多变效率与所述绝热效率的耦合关系和压气机出口换算流量与多变效率的耦合关系得到所述压气机出口换算流量与所述绝热效率的耦合关系; 根据所述压气机出口换算流量与所述绝热效率的耦合关系和出口换算流量与压气机压比的耦合关系得到压气机压比与绝热效率的耦合关系。 4.根据权利要求2所述的发动机热力循环参数分析方法,其特征在于,建立涡轮绝热效率、燃烧室出口温度以及压气机压比之间的关系,包括: 统计燃气涡轮进口流函数与绝热效率的耦合关系; 根据所述燃气涡轮进口流函数与所述绝热效率的耦合关系、所述燃气涡轮进口流函数、燃气涡轮流量平衡公式以及燃烧室焓平衡公式得到燃气涡轮绝热效率与燃烧室出口温度和压气机压比的耦合关系。 5.根据权利要求4所述的发动机热力循环参数分析方法,其特征在于,根据所述参数耦合关系得到初始热力循环参数选择范围,包括: 根据多组所述压气机压比与所述燃烧室出口温度之间的耦合关系,计算多组一一对应的单位功率与发动机油耗,并拟合得到初始热力循环参数选择图; 根据所述初始热力循环参数选择图确定初始热力循环参数选择范围。 6.根据权利要求4所述的发动机热力循环参数分析方法,其特征在于,确定所述各部件的强度限制参数,包括: 确定压气机结构强度限制参数; 确定涡轮结构强度限制参数。 7.根据权利要求6所述的发动机热力循环参数分析方法,其特征在于,所述压气机结构强度限制参数包括低压压气机第一级转子叶尖切线速度、离心叶轮叶尖切线速度、平均级负荷和机匣压力。 8.根据权利要求6所述的发动机热力循环参数分析方法,其特征在于,所述涡轮结构强度限制参数包括燃气涡轮出口AN2值、燃气涡轮第一级转子叶片金属温度和动力涡轮不冷却。 2

认识往复活塞式内燃机工作原理

认识往复活塞式内燃机工作原理 一、四冲程汽油机工作原理四冲程往复活塞式内燃机在四个活塞行程内完成进气、压缩、作功和排气等四个过程,即在一个活塞行程内只进行一个过程。因此,活塞行程可分别用四个过程命名 1. 进气行程活塞在曲轴的带动下由上止点移至下止点。此时排气门关闭,进气门开启。在活塞移动过程中,气缸容积逐渐增大,气缸内形成一定的真空度。空气和汽油的混合物通过进气门被吸入气缸,并在气缸内进一步混合形成可燃混合气。 2. 压缩行程 进气行程结束后,曲轴继续带动活塞由下止点移至上止点。这时,进、排气门均关闭。随着活塞移动,气缸容积不断减小,气缸内的混合气被压缩,其压力和温度同时升高。 3. 作功行程压缩行程结束时,安装在气缸盖上的火花塞产生电火花,将气缸内的可燃混合气点燃,火焰迅速传遍整个燃烧室,同时放出大量的热能。燃烧气体的体积急剧膨胀,压力和温度迅速升高。在气体压力的作用下,活塞由上止点移至下止点,并通过连杆推动曲轴旋转作功。这时,进、排气门仍旧关闭。 4. 排气行程 排气行程开始,排气门开启,进气门仍然关闭,曲轴通过连杆带动活塞由下止点移至上止点,此时膨胀过后的燃烧气体(或称废气)在其自身剩余压力和在活塞的推动下,经排气门排出气缸之外。当活塞到达上止点时,排气行程结束,排气门关闭。 二、四冲程柴油机工作原理 四冲程柴油机的工作循环同样包括进气、压缩、作功和排气等四个过程,在各个活塞行程中,进、排气门的开闭和曲柄连杆机构的运动与汽油机完全相同。只是由于柴油和汽油的使用性能不同,使柴油机和汽油机在混合气形成方法及着火方式上有着根本的差别。 1. 进气行程在柴油机进气行程中,被吸入气缸的只是纯净的空气。

工程热力学试卷终极版

工程热力学考试试卷 All rights reserved. 判断题 1.流动功是系统维持流动所花费的代价,所以流动功不能为0。(×) 2.质量保持不变的系统就是闭口系。(×) 3.处于稳定状态的系统一定处于平衡状态(×) 4.根据熵的定义T q s rev δ= d ,热量是过程量,所以熵也是过程量。 (×) 5.等温过程的膨胀功与与吸收的热量相等。(×) 6.v p -图上,理想气体的等熵线比等温线陡;s T -图上,理想气体的等压线比等容线陡。(×) 7.绝热系可以是开口系。(√) 8.可以从单一热源中取热并使之完全转换为功。(√) 9.定容过程对湿蒸汽进行加热,干度一定增大。(×) 10.可逆循环的热效率一定大于不可逆循环的热效率。(×) 11.w du q δδ+=及pdv dT c q v +=δ二式均适用于任何工质,任何过程。(×) 分析、简答题 1.“系统经某一初态经不可逆与可逆两条途径到达同一终态,则经不可逆途径系统的熵变必大于可逆途径的熵变。”,这种说法是否正确,为什么? 答:不正确。因为熵是状态参数,不论过程是否可逆,只要初终态相同,其熵变均相同,故系统从某一初态经不可逆与可逆两条途径到达同一终态,经不可逆途径系统的熵与可逆途径的熵变相等。 2.试在s T -图上把理想气体两状态间热力学能及焓的变化表示出来。

答:通过2点作等温线,分别与过1点的等容线和等压线相交于2v 及2p 点;由于理想气体的热力学能和焓是温度的单值函数,p v T T T 222==,可以得到p v h h u u 2222,==。 等容过程的吸热量与相同温限下的热力学能的变化相等,可以得到 12u u q v v -=。 等压过程的吸热量与相同温度下的焓的变化相等,可以得到 12h h q p p -=。s T -图上过程线下方的面积表示热量,所以 11212s s q v v v 面积=;11212s s q p p p 面积=。从而可以得到, 1121212s s q u u v v v 面积==-;1121212s s q h h p p p 面积==-。 3.某理想气体在v p -图上的两种过程如下图所示,试在s T -图上画出相应的两个过程,指出过程多变指数n 的范围,并说明各过程中工质是膨胀还是压缩,吸热还是放热,升温还是降温,降压还是升压。 答:1-2过程:0-<<∞n ,压缩、放热、降温、降压。

涡轮喷气发动机热力循环

涡轮喷气发动机热力循环 组成 单转子涡轮喷气发动机是由进气道、压气机、燃烧室、涡轮、喷管五大部件组成。 各组成部分的功能如下: 进气道:将足够的空气量,以最小的流动损失顺利引入压气机;除此之外,当飞行速度大于压气机进口处的气流速度时,可以通过冲压压缩空气,提高空气的压力。 压气机:通过高速旋转的叶片对空气做功,压缩空气,提高空气的压力。 燃烧室:高压空气和燃油混合,燃烧,将化学能转变位热能,形成高压高温的燃气。 涡轮:高温高压的燃气在涡轮内膨胀,向外输出功,去带动压气机和其他附件。 喷管:使燃气继续膨胀,加速,提高燃气速度。 足够量的空气,通过进气道以最小的流动损失顺利地引入发动机。压气机以高速旋转地叶片对空气做功压缩空气,提高空气地压力。高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压地燃气。高温高压地燃气首先在涡轮内膨胀,推动涡轮旋转,去带动压气机。然后燃气在喷管内继续膨胀,加速燃气,提高燃气的速度。使燃气以较高的速度喷出,产生推力。 发动机中压力最高的位置是在燃烧室进口,温度最高的位置是在涡轮的进口,发动机出口的压力可以等于,也可以大于外界的大气压。 中间的三个部分:压气机、燃烧室、涡轮称为燃气发生器。 燃气发生器是各种发动机的核心。这是因为:燃气发生器可以完成发动机将热能转变为机械能的工作,即燃油在燃烧室燃烧,将化学能转变为热能;涡轮将部分热能转变为机械能;而热能转变为机械能需要在高压下进行,压气机就是来提高压力的。 燃气发生器所获得的机械能按其分配方式不同就形成了不同类型的燃气涡轮发动机,即涡扇发动机,涡桨发动机,涡轴发动机等;所以涡轮发动机中的风扇,涡桨发动机中的螺旋桨和直升机的旋翼所需的功率都来自燃气发生器。故又称为这几种发动机的核心机。 单转子涡喷发动机的站位 为了讨论方便,表示了单转子涡喷发动机的站位规定。

活塞式发动机

活塞式航空发动机(aircraft piston engine) 1、概念:往复式发动机也叫活塞发动机,是一种利用一个或者多个活塞将压力转换成旋转动能的发动机。航空活塞式发动机是利用汽油与空气混合,在密闭的容器(气缸)内燃烧,膨胀作功的机械。活塞式发动机必须带动螺旋桨,由螺旋桨产生推(拉)力。所以,作为飞机的动力装置时,发动机与螺旋桨是不能分割的。 为航空器提供飞行动力的往复式内燃机。发动机带动空气螺旋桨等推进器旋转产生推进力。本身不能产生推力,只能从轴上输出功率带动螺旋桨,由螺旋桨产生推力,所以螺旋桨称为推进器。活塞式发动机(热机)加螺旋桨(推进器)称为活塞式动力装置。 最常用的往复式发动机是利用汽油或者柴油燃料产生压力的。通常都不止一个活塞,每个活塞都在气缸内,燃料-空气混合物被注入其内,然后被点燃。热气膨胀,推动活塞向后运动。活塞的这种直线运动通过连杆和曲轴转换成圆周运动。这种发动机经常被通称为内燃机,尽管内燃机并不必须包括活塞。 现在的利用并不是很多,水蒸气是另一种叫做蒸气式发动机的往复式发动机的能源。这种情况下是利用非常高的蒸气压力来驱动活塞。蒸气能的大部分利用中,活塞发动机已经被更为高效的涡轮机所取代,由于要求有更高的力矩活塞已经更多的运用到轿车领域中。 2、工作原理:活塞式航空发动机是一种4冲程、电嘴点火的汽油发动机。曲轴转动2圈,每个活塞在汽缸内往复运动4次,每次称1个冲程。4个冲程依次为吸气、压缩、膨胀和排气,合起来形成1个定容加热循环(见工程热力学)。发动机热效率与压缩比和燃烧后工质(工作介质)温度有关。过大的压缩比会使工质的压力和温度过高,燃油可能在未被电嘴点火前就自动燃烧并形成爆震波(见燃烧学),引起汽缸局部过热和增大零件负荷,降低发动机的可靠性。提高汽油的辛烷值(见航空燃油)是提高压缩比、防止爆震的有效措施。航空汽

相关文档
相关文档 最新文档