文档库 最新最全的文档下载
当前位置:文档库 › 基于空间透视仿射变换研究相贯线问题

基于空间透视仿射变换研究相贯线问题

基于空间透视仿射变换研究相贯线问题
基于空间透视仿射变换研究相贯线问题

几种证明全等三角形添加辅助线方法

全等三角形复习课 适用学科数学适用年级初中二年级 适用区域通用课时时长(分钟)120 知识点全等三角形的性质和判定方法 熟练掌握全等三角形的性质和判定方法,并学会用应用 教学目标 学会做辅助线证明三角形全等,常用的几种作辅助线的方法 教学重点 通过学习全等三角形,提高学生观察能力和分析能力 教学难点 教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1.如图1,AD是厶ABC的中线,求证:AB+ AC>2AD。 图1 图2 证明:延长AD至E,使AD= DE,连接CE如图2。??? AD是厶ABC的中线,二BD= CD。 又???/ 1 = Z 2,AD= DE, ???△ ABD^A ECD( SAS。AB= CE ???在△ ACE中,CE+ AC>AE, ??? AB+ AC> 2AD。 、沿角平分线翻折构造全等三角形

例 2.如图 3,在厶 ABC 中,/ 1 = / 2,/ ABC = 2/C 。求证:AB + BD = AC 。 A D 图3 ■ 3 ---- -- C 图4 证明:将厶ABD 沿AD 翻折,点B 落在AC 上的E 点处,即:在AC 上截取 AE = AB,连接EDb 如图4。 ???/ 1 = / 2, AD =AD , AB = AE, ???△ ABD^A AED ( SAS 。 ??? BD = ED,/ ABC =/ AED = 2/C 。 而/AED =/ C +/ EDC ???/ C =/ EDC 所以 EC = ED = BD 0 ??? AC = AE + EC,二 AB + BD = AG 三、作平行线构造全等三角形 例3.如图5,A ABC 中,AB = AG E 是AB 上异于A 、B 的任意一点,延长 AC 至U D , 使 CD = BE,连接 DE 交 BC 于 F 。求证:EF = FD 证明:过E 作EM // AC 交BC 于M ,如图6 则/ EMB =/ ACB / MEF =/ CDR ??? AB = AC,A / B =/ ACB ???/ B =/ EMB 。故 EM = BE ??? BE = CD,二 EM = CB 又???/ EFM=/ DFC / MEF =/ CDF

向量法求空间角(高二数学-立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形, DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26 . (1)求侧面与底面所成的二面角的大小; D B A

(2)若E是的中点,求异面直线与所成角的正切值; (3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面 角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD P-中,PD⊥底面ABCD,且底面ABCD为正方形,G , = =分别为 ,2 AD, F E PD ,的中点. PC, PD CB (1)求证:// AP平面EFG; (2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小.

线面平行与垂直的证明题

线面平行与垂直的证明1:如图,在棱长为1的正方体ABCD-A1B1C1D1中. (1)求证:AC⊥平面B1BDD1; (2)求三棱锥B-ACB1体积. 2:如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE. D1 C1 B1 A1 C D B A

3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2 1 AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .

5:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是P C的中点,作EF⊥PB交PB于点F. (1)证明PA//平面EDB;(2)证明PB⊥平面EFD; 6:已知正方形ABCD和正方形ABEF所在的平面相交于AB,点M,N分别在AC和BF上,且 AM=FN. C

求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;

8:如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点, 求证:(1) FD∥平面ABC (2) AF⊥平面EDB. 9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, (1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.

立体几何大题线面平行与垂直的证明题

线面平行与垂直的证明 1:如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中. (1)求证:AC ⊥平面B 1BDD 1; (2)求三棱锥B-ACB 1体积. 2:如图,ABCD 是正方形,O 是正方形的中心, PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA∥平面BDE ; (2)平面PAC ⊥平面BDE . 3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2 1=AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF . 5:.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形, 侧棱PD ⊥底面ABCD ,PD =DC ,E 是P C 的中点,作EF ⊥PB 交PB 于点F . (1)证明 P A //平面EDB ; (2)证明PB ⊥平面EFD ; D 1 C 1 B 1 A 1 C D B A D A B C O E P A B C D P E F

6:已知正方形ABCD 和正方形ABEF 所在的平面相交于AB ,点M ,N 分别在AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1; 8: 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点, 求证:(1) FD ∥平面ABC (2) AF ⊥平面EDB. 9:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点, (1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG. B C D E F N M F G E C1D1 A1 B1 D C B F E D C A M

射影几何中仿射变换解初等几何题

利用仿射变换可以解决许多初等几何问题,下面给出它在以下几个方面的应用。 平行投影 平行投影是仿射变换中最基本、最简单的一类。因此平行投影变换具有仿射变换中的一切性质。解这类题的关键是选定平行投影方向,应用平行线段之比是仿射不变量。 例1 P 是ABC ?内任一点,连结AP 、BP 、CP 并延长分别交对边于D 、E 、F 。求证: 1=++CF PF BE PE AD PD . [2] C 图1 证明:如图1,分别沿AB 和AC 方向作平行投影。P →P '、P →P ''由仿射变换保简单比不变得, DC DP BD D P AD PD '''==,所以BC P P AD PD ' ''= , 同理 BC C P BE PE ''=,BC BP CF PF ' = , 所以 1''''''=++=++BC BP BC C P BC P P CF PF BE PE AD PD . 例2 一直线截三角形的边或其延长线,所得的顶点到分点和分点到顶点的有向线段的比的乘积等于﹣1,其逆也真。(梅涅劳斯定理 )[3] 分析:如图2,本题要求证明当L 、M 、N 三点共线时,1-=??NB AN MA CM LC BL 。其逆命题亦成立 。 N B A L'(L) A'C B A M M N A' L C 图2 (1)证明梅涅劳斯定理成立 由于要证明的三条线段分别处在三条直线上,不便于问题的证明,为此应用平行投影将其集中到一条直线上,自然采用原三角形的一边最简便。

如图2(a),以MN 为投影方向,将A 、N 、M 点平行投影到直线BC 上的A '、L 、L '点,则 1''-=??=??LB L A LA CL LC BL NB AN MA CM LC BL .即原命题成立。 (2)证明逆命题成立 证明当BC 、CA 、AB 上三点L 、M 、N 满足1-=??NB AN MA CM LC BL 时,则L 、M 、N 三点共线。 设直线MN 交BC 于L ',如图2(b) ,由已知条件知,1''-=??NB AN MA CM C L BL , 所以L '与L 重合,故L 、M 、N 三点共线。 三角形仿射等价性 因为任一三角形可以经过平行投影变成正三角形。因此,如果我们要证明一个有关三角形的命题,只要这个命题的条件和结论都是图形的仿射性质,那么只要证明命题对正三角形成立,便可断言命题对任意三角形也成立。而正三角形是最特殊的三角形,它有很多特殊的性质可以利用,证明起来要容易得多。 例3 在ABC ?的中线AD 上任取一点P ,连接BP 、CP ,并延长BP 交AC 于E ,延长CP 交AB 于F ,求证:EF ∥BC . [4] D 'C ' D B B' 图3 证明:如图3,作仿射变换T ,使得ABC ?对应正C B A '''?,由仿射性质可知,点D 、P 、 E 、 F 相应地对应D '、P '、E '、F ',且D A ''为正C B A '''?的中线。 在正C B A '''?中D A ''也是C B ''边上的高,且B '、P '、E '与C '、P '、F '关于D A ''对称,E '、F '到C B ''的距离相等,则F E ''∥C B '', 由于平行性是仿射不变性,因此,在ABC ?中EF ∥BC . 例4 证明G 为ABC ?重心的充要条件是:BGC AGC AGB S S S ???==.[4]

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课 程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2?使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:[0,])

2、 法向量的方向: 一进一出,二面角等于法向量夹角;同进同出,二面 角等于法向量夹角的补角 . 3、 用空间向量解决立体几何问题的“三步曲” : (1) 建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2) 通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (进行 向量运算) (3) 把向量的运算结果“翻译”成相应的几何意义。 (回到图形) n 、典例分析与练习 例1、如图,ABCD 是一直角梯形, ABC 90 , SA 求面SCD 与面SBA 所成二面角的余弦值? 分析 分别以BA, AD,AS 所在直线为x,y,z 轴, 建立空间直角坐标系,求出平面 SCD 的法向量 仁, 平面SBA 法向量n 2,利用n i , n 2夹角 cos cos n 1, n 2 结论: 或 ——■ cos cos 门1,门2 cos cos n j , n 2 统一为: n 1 n 2 |n 1 n 2 1 面 ABCD , SA AB BC 1, AD -, 2

仿射变换仿射平面与投影变换平面

仿射平面与投影平面 第一章仿射几何学 本章内容的安排在于揭示一种思想方法,从观察到概念形成到不变量系统再到代数系统,这种安排思想也充分反映了历史上射影几何建立过程中综合方法与解析方法各有所长交替作用互相影响的发展历程。本节研究的内容来自于生活、自然与生产建设实践,如正交变换是从研究我们生活空间中物体位置改变的最简单的情形移动、转动和镜面反射开始的,仿射变换则是从太阳光的照射开始的。因此在本章的学习中应注重于培养观察能力。 《数学发现的艺术》中是这样描述“观察”与“归纳”的:“观察是有意知觉的高级形式,它与有意注意结合在一起,与思维相联系。怎样进行观察?需要注意三点:一是有意识、有目标,处处留心,总想‘找岔儿’,从中发现点什么,否则就会熟视无睹,看等于不看;二是要有基础,有必要的相关知识,否则难以看出‘门道儿’,而只能是‘外行看热闹’;三是要有方法,否则就看不到‘点子’上,抓不住要领。在观察中,要特别注意从个别想到一般,从平常中发现异常”;而“归纳是由个别事例向关于这一类事物的一般性的过渡,是一种对经验、以实验观察结果进行去粗取精、去伪存真的综合处理方法。人们用归纳法清理事实,概括经验,处理资料,从而形成概念,发现规律”。 通过本章学习,首先对观察、归纳应该有一个较为深刻的认识,为在以后的学习中能熟练应用观察而打下良好的基础,其次对数学研究的目标之一——对象的结构——有一个初步的了解。 12

13 §1 正交变换 本单元分两个部分介绍正交变换,其一是解析几何中坐标变换的复习,主要通过讨论刚体运动中的特例——平移、旋转和反射,揭示其中最基本的不变量——距离,进而提炼出正交变换的概念。其二是利用不变量系统建立相应的坐标系,从而引入解析法,用代数方法解决正交变换的结构问题。 一、基本概念 实例 (a) 平移是沿一定的方向推移物体的过程,建立适当的坐标系,就有 平移0X l : ? íì+=¢+=¢00y y y x x x , 即 0X X X +=¢; (b) 旋转是物体绕着固定点转动的过程,建立适当的坐标系,就有 旋转q r : ?íì+=¢-=¢q q q q cos sin sin cos y x y y x x , 即 X X ÷÷? ???è?-=¢q q q q cos sin sin cos ; (c) 反射是关于一条固定直线的对称,建立适当的坐标系,就有 反射x r : ?íì-=¢=¢y y x x , 即 X X ÷÷? ???è?-=¢1001。 这三种变换是平面上物体运动的最基本方式,它们的组合就形成了物体在平面上的丰富多彩的运动方式。这三种变

全等三角形之辅助线(习题及答案)

全等三角形之辅助线(习题) 例题示范 例1:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】1 读题标注:2梳理思路: 要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明. 观察图形,发现不存在全等的三角形. 结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE 在Rt △ACE 和Rt △ADE 中 AE AE AC AD =??=?(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等) 过程规划:1.描述辅助线:连接AE 2.准备条件:∠C =∠ADE =90°3.证明△ACE ≌△ADE 4.由全等性质得,CE = DE

巩固练习1.已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF . 2.已知:如图,∠C =∠F ,AB =DE ,DC = AF ,BC =EF .求证:AB ∥DE .过程规划: 过程规划:

3.已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的 中点.求证:BE=DF. 4.已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°, 点E,F分别在AB,BC上,且AE=BF,AF交DE于点G.求证:DE⊥AF.

线线,线面平行与垂直专项练习

线面、面面平行 1、已知m、n、l1、l2表示不同直线,α、β表示不同平面.若m?α,n?α, l1?βl2?β,l1∩l2=M,则能得到结论α∥β的选项是( ) A.m∥β且l1∥αB.m∥β且n∥β C.m∥β且n∥l1 D.m∥l1且n∥l2 2、a,b是两条直线,α,β是两个平面,则能使a⊥b成立的条件是( ) A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥β C.a?α,b⊥β,α∥βD.a?α,b∥β,α⊥β 3、若有直线m、n和平面α、β,下列四个命题中,正确的是( ) A.若m∥α,n∥α,则m∥n B.若m?α,n?α,m∥β,n∥β,则α∥β C.若α⊥β,m?α,则m⊥β D.若α⊥β,m⊥β,m?α,则m∥α 4、能使平面α∥平面β成立的条件是( ) A.存在一条直线a,a∥α,a∥β B.存在一条直线a,a?α,a∥β C.存在两条平行直线a、b,a?α、b?β、a∥β、b∥α D.存在两条异面直线a、b,a?α、b?β、a∥β、b∥α 5、已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的( ) A.若m∥β,则m∥l B.若m∥l,则m∥β C.若m⊥β,则m⊥l D.若m⊥l,则m⊥β 6、设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( ) A.若m∥α,m∥n,则n∥α B.若m?α,n?β,m∥β,n∥α,则α∥β C.若α∥β,m∥α,m∥n,则n∥β D.若α∥β,m∥α,n∥m,n?β,则n∥β 7、设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题 是( ) A.若m?α,n?α,且m∥β,n∥β,则α∥β B.若m∥α,m∥n,则n∥α

全等三角形中辅助线的添加解析

全等三角形中辅助线的添加 一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。 二.知识要点: 1、添加辅助线的方法和语言表述 (1)作线段:连接……; (2)作平行线:过点……作……∥……; (3)作垂线(作高):过点……作……⊥……,垂足为……; (4)作中线:取……中点……,连接……; (5)延长并截取线段:延长……使……等于……; (6)截取等长线段:在……上截取……,使……等于……; (7)作角平分线:作……平分……;作角……等于已知角……; (8)作一个角等于已知角:作角……等于……。 2、全等三角形中的基本图形的构造与运用 常用的辅助线的添加方法: (1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 (2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。 (3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。 (4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。 (5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。 (6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。 三、基本模型: (1) △ABC中AD是BC边中线 方式1:延长AD到E,使DE=AD,连接BE

考点二 用空间向量求线面角

考点二 用空间向量求线面角 【例2】 (2018·全国Ⅱ卷)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. (1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2, 所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12 AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB . 由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC . (2)解 如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O -xyz . 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB →=(2,0,0). 设M (a ,2-a ,0)(0

设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得 ? ??2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2 . 由已知可得|cos 〈OB →,n 〉|=32 , 所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去),a =43, 所以n =? ????-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34 . 所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法: (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角. 【训练2】 (2019·郑州测试)在如图所示的多面体中,四边形ABCD 是平行四边 形,四边形BDEF 是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ; (2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理 一、线面平行。 1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平 面平行。符合表示: β ββ////a b a b a ??? ????? 2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ?????=??βαβαα 二、面面平行。 1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 符号表示: β α//////????? ?????==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。 符号表示: d l d l ////??? ???==γβγαβα (更加实用的性质:一个平 面内的任一直线平行另一平面) 三、线面垂直。 1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直 线垂直这个平面。 符号表示: α⊥?????? ??????=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示: PA a A oA a po oA a ⊥??? ? ????=⊥⊥??ααα 2、性质定理:垂直同一平面的两条直线互相平行。(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。) 四、面面垂直。 1、判定定理:经过一个平面的垂线的平面与该平面垂直。 βααβ⊥??⊥a a , 2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。βαβαβα⊥?⊥?=?⊥a b a a b ,,,

基于仿射变换的人脸对齐的实现方法

基于仿射变换的人脸对齐的实现方法报告 1.仿射变换(Affine Transform)的定义: 仿射变换是空间直角坐标变换的一种,它是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”( straightness ,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”( parallelism ,即保持二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变)。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation )、缩放(Scale )、翻转(Flip )、旋转(Rotation )。 2.二维仿射变换的几何特征 1) 仿射变换的逆变换,仍是仿射变换。 2) 仿射变换是线性变换,直线段仿射变换后仍然是直线段,并且保持线段上点的定比关系不变。 3) 两条平行直线经过仿射变换后,仍可保持其平行性。 4)任意平面图形经仿射变换后,其面积将发生变化,为变化前的( ad - bc)倍。只有当( ad - bc) = 1时,面积在仿射变换前后才不变。 3.二维仿射变换的数学表达式 二维仿射变换的数学表达式为 '''' x ax by c y dx ey f ?=++?=++? (1) 其中, x ′和y ′是变换前像素的坐标值, x 和y 是变换后像素的坐标值; a, b, c, d, e, f 是仿射变换系数 由一个线性变换接上一个平移组成: x Ax b →+。在有限维的情况,每个仿射变换可以由一个矩阵A 和一个向量b 给出,它可以写作A 和一个附加的列b 。一个仿射变换对应于一个矩阵和一个向量的乘法,而仿射变换的复合对应于普通的矩阵乘法,只要加入一个额外的行到矩阵的底下,这一行全部是0除了最右边是 一个1:0...01A b ?? ????,而列向量的底下要加上一个1:1x y ?? ???????? 将方程(1)写成向量形式有:

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

线面平行与垂直的证明题精选

线面平行和垂直的证明 1:如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中. (1)求证:AC ⊥平面B 1BDD 1; (2)求三棱锥B-ACB 1体积. 2:如图,ABCD 是正方形,O 是正方形的中心, PO ⊥底面ABCD ,E 是PC 的中点. 求证:(1)PA∥平面BDE ; (2)平面PAC ⊥平面BDE . 3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1, 2 1 = AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF . 5:.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形, 侧棱PD ⊥底面ABCD ,PD =DC ,E 是P C 的中点,作EF ⊥PB 交PB 于点F . (1)证明 P A //平面EDB ; (2)证明PB ⊥平面EFD ; 6:已知正方形ABCD 和正方形ABEF 所在的平面相 交于AB ,点M ,N 分别在AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1; 8: 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点, D 1 C 1 B 1 A 1 C D B A D A B C O E P A B C D P E F B C D E F N M F E D C A M

(完整版)直线、平面平行与垂直的综合问题

第六节 直线、平面平行与垂直的综合问题 考点一 立体几何中的探索性问题 [典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧?CD 所在平面垂直,M 是?CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC . (2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. [解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ?平面ABCD , 所以BC ⊥平面CMD ,所以BC ⊥DM . 因为M 为?CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 因为DM ?平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点. 连接OP ,因为P 为AM 的中点, 所以MC ∥OP . 又MC ?平面PBD ,OP ?平面PBD , 所以MC ∥平面PBD . [题组训练] 1.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°. (1)求三棱锥P -ABC 的体积; (2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6 .

浅谈仿射变换在解决椭圆问题中的应用(精选.)

浅谈仿射变换在解决椭圆问题中的应用 文[1]介绍了在解决椭圆的某些综合问题时,可以利用仿射变换的办法,把椭圆变换为圆来进行研究,会使得问题的解决过程变得简化.笔者也结合自身的教学与解题实践,通过几道例题,浅谈一下仿射变换在解决椭圆综合问题中的一些用法. 例1 已知椭圆22221(0)x y a b a b +=>>,O 为坐标原点,A 为椭圆右顶点,若椭圆上存在点P (异于点A ),使得PO PA ⊥,则椭圆离心率的取值范围为________. 分析 此题中的点P 满足PO PA ⊥,即点P 在以AO 为直径的圆上,也即椭圆22221(0)x y a b a b +=>>与以AO 为直径的圆有不同于点A 的公共点.利用仿射变换将椭圆变换为圆,点P 变换为点'P ,则点P 与点'P 的纵坐标之比即为椭圆短半轴与长半轴之比. 解 作仿射变换,令','a x x y y b ==,可得仿射坐标系'''x O y ,在此坐标系中,上述椭圆变换为圆222''x y a +=,原坐标系中以AO 为直径的 圆的方程为220x ax y -+=,则0'b y a y ?=== ??,不难 求得椭圆离心率,12e ??∈ ? ??? . 说明 此题解法较多,用别的方法也不难求得本题的结果,但由上述过程我们看到,仿射变换也为我们提供了一种方便简洁的求解思路.

例2 已知椭圆22221(0)x y a b a b +=>>,12F F 、分别为椭圆左右焦点,过12F F 、作两条互相平行的弦,分别与椭圆交于M N P Q 、、、四点,若当两条弦垂直于x 轴时,点M N P Q 、、、所形成的平行四边形面积最大,则椭圆离心率的取值范围为________. 分析 利用仿射变换将椭圆变换为圆,此时M N P Q 、、、四点分别变换为''''M N P Q 、、、四点,由仿射变换时变换前后对应图形的面积比不变这个性质,故将上述题目中的椭圆变换为圆时,''''M N P Q 、、、四点所形成的平行四边形面积最大值仍在两条弦与x 轴垂直时取到,故只需研究在圆的一条直径上,取关于圆心对称的两点12F F 、,当1OF 为多少时,能使得过12F F 、的两条互相平行的弦与此直径垂直时刻, 与圆的四个交点所形成的面积最大. 解 作仿射变换,令','a x x y y b ==,可得仿射坐标系'''x O y ,在此坐标系中,上述椭圆变换为圆222''x y a +=,点12F F 、坐标分别为 (,0)(,0)c c -、,过12F F 、作两条平行的弦分别与圆交于''''M N P Q 、、、四点.由平行四边形性质易知,三角形'''O P Q 的面积为''''M N P Q 、、、四点所形成的平行四边形面积的14 ,故只需令三角形'''O P Q 面积的最大值在弦''P Q 与x 轴垂直时取到即可.由文[2]中的结论,易得当 0,2c ??∈ ? ?? 时,三角形'''O P Q 面积的最大值在弦''P Q 与x 轴垂直时取到.故此题离心率的取值范围为02? ??,. 说明 此题的一般解法也较多,但按照常规解法则较为繁琐.而上述解法利用仿射变换把椭圆变换为圆后,由于圆中三角形面积的计算

(完整版)几种证明全等三角形添加辅助线的方法

教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD ⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。 证明:作CF⊥AC交AD的延长线于F。如图8。 ∵∠BAC=90°,AD⊥BM, ∴∠FAC=∠ABM=90°-∠BAE。 ∵AB=AC,∠BAM=∠ACF=90°, ∴△ABM≌△CAF(ASA)。 ∴∠F=∠AMB,AM=CF。 ∵AM=CM,∴CF=CM。 ∵∠MCD=∠FCD=45°,CD=CD, ∴△MCD≌△FCD(SAS)。所以∠F=∠DMC。 ∴∠AMB=∠F=∠DMC。 五、沿高线翻折构造全等三角形 例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。求证:AB>AC。

相关文档
相关文档 最新文档