文档库 最新最全的文档下载
当前位置:文档库 › 空气-蒸汽给热系数测定实验指导书

空气-蒸汽给热系数测定实验指导书

空气-蒸汽给热系数测定实验指导书
空气-蒸汽给热系数测定实验指导书

空气-蒸汽给热系数测定装置

实验指导书

空气-蒸汽对流给热系数测定

一、实验目的

1、 了解间壁式传热元件,掌握给热系数测定的实验方法。

2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。

3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。

二、基本原理

在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交 换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

达到传热稳定时,有

()()

()()m

m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 式中:Q - 传热量,J / s ;

m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ?℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ;

δ T

T W t W

t

图4-1间壁式传热过程示意图

c p 2 - 冷流体的比热,J / (kg ?℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;

α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ?℃);

A 1 - 热流体侧的对流传热面积,m 2;

()m W T T -- 热流体与固体壁面的对数平均温差,℃;

α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ?℃);

A 2 - 冷流体侧的对流传热面积,m 2;

()m W t t - - 固体壁面与冷流体的对数平均温差,℃;

K - 以传热面积A 为基准的总给热系数,W / (m 2 ?℃); m t ?- 冷热流体的对数平均温差,℃;

热流体与固体壁面的对数平均温差可由式(4—2)计算,

()()()

2

211

2211ln W W W W m W T T T T T T T T T T -----=

- (4-2)

式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;

T W 2 - 热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()()

2

21

12211ln t t t t t t t t t t W W W W m W -----=

- (4-3)

式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;

t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算,

()()1

2211221m t T t T ln t T t T t -----=

? (4-4)

当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,

()()M

W p t t A t t c m --=

212222α (4-5)

实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。

然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。

由式(4-1)得,

()m

p t A t t c m K ?-=

1222 (4-6)

实验测定2m 、2121T T t t 、、、、并查取()212

1

t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 。

下面通过两种方法来求对流给热系数。 1. 近似法求算对流给热系数2α

以管内壁面积为基准的总给热系数与对流给热系数间的关系为,

1

121212221

1d d d d R d bd R K S m S αλα++++= (4-7) 式中:d 1 - 换热管外径,m ;

d 2 - 换热管内径,m ;

d m - 换热管的对数平均直径,m ; b - 换热管的壁厚,m ;

λ - 换热管材料的导热系数,W / (m ? ℃);

1S R - 换热管外侧的污垢热阻,W K m ?2; 2S R - 换热管内侧的污垢热阻,W K m ?2。

用本装置进行实验时,管内冷流体与管壁间的对流给热系数约为几十到几百K m W .2

;而管外为蒸汽冷凝,冷凝给热系数1α可达~K m W .102

4

左右,因此冷凝传热热阻

1

12

d d α可忽略,同时蒸汽冷凝

较为清洁,因此换热管外侧的污垢热阻1

2

1

d d R S 也可忽略。实验中的传热元件材料采用紫铜,导热系数为383.8K m W ?,壁厚为2.5mm ,因此换热管壁的导热热阻

m

d bd λ2

可忽略。若换热管内侧的污垢热阻2S R 也忽略不计,则由式(4-7)得,

K ≈2α (4-8)

由此可见,被忽略的传热热阻与冷流体侧对流传热热阻相比越小,此法所得的准确性就越高。

2. 传热准数式求算对流给热系数2α

对于流体在圆形直管内作强制湍流对流传热时,若符合如下范围内:Re=1.0×104~1.2×105,Pr =0.7~120,管长与管内径之比l/d ≥60,则传热准数经验式为,

n 8.0Pr Re 023.0Nu = (4-9) 式中:Nu -努塞尔数,λ

α=

d

Nu ,无因次; Re -雷诺数,μρ

=

du Re ,无因次; Pr -普兰特数,λ

μ=p c Pr ,无因次;

当流体被加热时n =0.4,流体被冷却时n =0.3;

α - 流体与固体壁面的对流传热系数,W / (m 2 ?℃);

d - 换热管内径,m ;

λ - 流体的导热系数,W / (m ? ℃); u - 流体在管内流动的平均速度,m / s ; ρ - 流体的密度,kg / m 3; μ - 流体的粘度,Pa ? s ; c p - 流体的比热,J / (kg ?℃)。

对于水或空气在管内强制对流被加热时,可将式(4-9)改写为,

8

.0224.0228

.128

.02Pr 14023.011

???

? ???????? ???=m d μλπα (4-10) 令, 8

128

0402301..d .m ???

?

???=

π (4-11)

8

02240221

..m Pr X ???

? ???=μλ (4-12) K

Y 1

=

(4-13) 1

1212122d d

d d R d bd R C S m S αλ+++= (4-14) 则式(4-7)可写为,

C mX Y += (4-15)

当测定管内不同流量下的对流给热系数时,由式(4-14)计算所得的C 值为一常数。管内径d 2

一定时,m 也为常数。因此,实验时测定不同流量所对应的2121T T t t 、、、,由式(4-4)、(4-6)、(4-12)、(4-13)求取一系列X 、Y 值,再在X ~Y 图上作图或将所得的X 、Y 值回归成一直线,该直线的斜率即为m 。任一冷流体流量下的给热系数α2可用下式求得,

8

.022

4

.0222Pr ???

? ???=

μλαm m

(4-16)

3. 冷流体质量流量的测定

(1)若用转子流量计测定冷空气的流量,还须用下式换算得到实际的流量,

()()

ρρρρρρ-''-='f f V V (4-17) 式中: V ' — 实际被测流体的体积流量,m 3 / s ;

ρ' — 实际被测流体的密度,kg / m 3;均可取()212

1

t t t +=

平均下对应水或空气的密度,见冷流体物性与温度的关系式;

V — 标定用流体的体积流量,m 3 / s ;

ρ — 标定用流体的密度,kg / m 3;对水ρ = 1000 kg / m 3;对空气ρ = 1.205 kg / m 3;

ρf — 转子材料密度,kg / m 3。

于是 ρ''=V m 2 (4-18)

(2)若用孔板流量计测冷流体的流量,则,

2m V ρ= (4-19)

式中,V 为冷流体进口处流量计读数,ρ为冷流体进口温度下对应的密度。

4. 冷流体物性与温度的关系式

在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。 (1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-?+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ?℃),

70℃以上p C =1009 J / (kg ?℃)。 (3)空气的导热系数与温度的关系式: 82

5

2108100.0244t t λ--=-?+?+ (4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-?+?+?)

三、实验装置与流程

1.实验装置

1—风机;2—冷流体管路;3-冷流体进口调节阀;4—转子流量计;5—冷流体进口温度;6—不凝性气体排空阀;7—蒸汽温度;8—视镜;9—冷流体出口温度;10—压力表;

11—水汽排空阀;12—蒸汽进口阀;13—冷凝水排空阀;14—蒸汽进口管路;15—冷流体出口管路;

图4-1 空气-水蒸气换热流程图

来自蒸汽发生器的水蒸汽进入不锈钢套管换热器环隙,与来自风机的空气在套管换热器内进行热交换,冷凝水经阀门排入地沟。冷空气经孔板流量计或转子流量计进入套管换热器内管(紫铜管),热交换后排出装置外。

2.设备与仪表规格

(1)紫铜管规格:直径φ21×2.5mm,长度L=1000mm

(2)外套不锈钢管规格:直径φ100×5mm,长度L=1000mm

(4)铂热电阻及无纸记录仪温度显示

(5)全自动蒸汽发生器及蒸汽压力表

四、实验步骤与注意事项

1.实验步骤

(1)打开控制面板上的总电源开关,打开仪表电源开关,使仪表通电预热,观察仪表显示是否正常。

(2)在蒸汽发生器中灌装清水,开启发生器电源,水泵会自动将水送入锅炉,灌满后会转入加热状态。到达符合条件的蒸汽压力后,系统会自动处于保温状态。

(3)打开控制面板上的风机电源开关,让风机工作,同时打开冷流体进口阀,让套管换热器里充有一定量的空气。

(4)打开冷凝水出口阀,排出上次实验余留的冷凝水,在整个实验过程中也保持一定开度。注意开度适中,开度太大会使换热器中的蒸汽跑掉,开度太小会使换热不锈钢管里的蒸汽压

力过大而导致不锈钢管炸裂。

(5)在通水蒸汽前,也应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。具体排除冷凝水的方法是:关闭蒸汽进口阀门,打开

装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝

水排除阀,方可进行下一步实验。

(6)开始通入蒸汽时,要仔细调节蒸汽阀的开度,让蒸汽徐徐流入换热器中,逐渐充满系统中,使系统由“冷态”转变为“热态”,不得少于10分钟,防止不锈钢管换热器因突然受热、

受压而爆裂。

(7) 上述准备工作结束,系统也处于“热态”后,调节蒸汽进口阀,使蒸汽进口压力维持在

0. 01MPa ,可通过调节蒸汽发生器出口阀及蒸汽进口阀开度来实现。

(8) 通过调节冷空气进口阀来改变冷空气流量,在每个流量条件下,均须待热交换过程稳定后

方可记录实验数值,一般每个流量下至少应使热交换过程保持5分钟方为视为稳定;改变流量,记录不同流量下的实验数值。

(9) 记录6~8组实验数据,可结束实验。先关闭蒸汽发生器,关闭蒸汽进口阀,关闭仪表电源,

待系统逐渐冷却后关闭风机电源,待冷凝水流尽,关闭冷凝水出口阀,关闭总电源。 (10) 待蒸汽发生器为常压后,将锅炉中的水排尽。

2.注意事项

(1) 先打开水汽排空阀,注意只开一定的开度,开的太大会使换热器里的蒸汽跑掉,开的太

小会使换热不锈钢管里的蒸汽压力增大而使不锈钢管炸裂。

(2) 一定要在套管换热器内管输以一定量的空气后,方可开启蒸汽阀门,且必须在排除蒸汽

管线上原先积存的凝结水后,方可把蒸汽通入套管换热器中。

(3) 刚开始通入蒸汽时,要仔细调节蒸汽进口阀的开度,让蒸汽徐徐流入换热器中,逐渐加

热,由“冷态”转变为“热态”,不得少于10分钟,以防止不锈钢管因突然受热、受压而爆裂。

(4) 操作过程中,蒸汽压力一般控制在0.02MPa (表压)以下,否则可能造成不锈钢管爆裂。 (5) 确定各参数时,必须是在稳定传热状态下,随时注意蒸汽量的调节和压力表读数的调整。

五、实验报告

1、计算冷流体给热系数的实验值

2、冷流体给热系数的准数式:m 0.4Re A Nu/Pr =,由实验数据作图拟合曲线方程,确定 式中常数A 及m 。

3、以()

0.4Nu/Pr ln 为纵坐标,()Re ln 为横坐标,将处理实验数据的结果标绘在图上,并与教材中的经验式800230.0.4Re .Nu/Pr =比较。

六、思考题

1、实验中冷流体和蒸汽的流向,对传热效果有何影响?

2、在计算空气质量流量时所用到的密度值与求雷诺数时的密度值是否一致?它们分别表示什么位

置的密度,应在什么条件下进行计算。

3、实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷凝水?如果采用不同压强

的蒸汽进行实验,对α关联式有何影响?

空气-蒸汽给热系数测定实验指导书 (1)

空气-蒸汽给热系数测定装置 实验指导书

空气-蒸汽对流给热系数测定 一、实验目的 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 二、基本原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交 换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()() ()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 式中:Q - 传热量,J / s ; m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ?℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; δ T T W t W t 图4-1间壁式传热过程示意图

c p 2 - 冷流体的比热,J / (kg ?℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃; α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 1 - 热流体侧的对流传热面积,m 2; ()m W T T -- 热流体与固体壁面的对数平均温差,℃; α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 2 - 冷流体侧的对流传热面积,m 2; ()m W t t - - 固体壁面与冷流体的对数平均温差,℃; K - 以传热面积A 为基准的总给热系数,W / (m 2 ?℃); m t ?- 冷热流体的对数平均温差,℃; 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃; T W 2 - 热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃; t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5)

大学物理学实验指导书_4

大学物理学实验指导书 大学物理实验 力学部分 实验一长度与体积的测量 实验类型:验证 实验类别:专业主干课 实验学时:2 所属课程:大学物理

所涉及的课程和知识点:误差原理有效数字 一、实验目的 通过本实验的学习,使学生掌握测长度的几种常用仪器的使用,并会正确读数。练习作好记录和误差计算。 二、实验要求 (1)分别用游标卡尺、螺旋测微计测金属圆筒、小钢球的内外径及高度,并求体积。(2)练习多次等精度测量误差的处理方法。 三、实验仪器设备及材料 游标卡尺,螺旋测微计,金属圆柱体,小钢球,铜丝 四、实验方案 1、用游标卡尺测量并计算所给样品的体积。 2、分别用千分尺和读数显微镜测量所给金属丝的直径。 数据处理 注意:有效数字的读取和运用,自拟表格,按有关规则进行数据处理。 描述实验过程(步骤)以及安全注意事项等,设计性实验由学生自行设计实验方案。 五、考核形式 实际操作过程实验报告 六、实验报告 实验原理,实验步骤,实验数据处理,误差分析和处理。 对实验中的特殊现象、实验操作的成败、实验的关键点等内容进行整理、解释、分析总结,回答思考题,提出实验结论或提出自己的看法等。 七、思考题 1、游标卡尺测量长度时如何读数 游标本身有没有估读数 2、千分尺以毫米为单位可估读到哪一位初读数的正负如何判断 待测长度如何确定 实验二单摆 实验类型:设计 实验类别:专业主干课 实验学时:2 所属课程:大学物理 所涉及的课程和知识点:力学单摆周期公式 一、实验目的 通过本实验的学习,使学生掌握使用停表和米尺,测准单摆的周期和摆长。利用单摆周期公式求当地的重力加速度

二、实验要求 (1)测摆长为1m时的周期求g值。 (2)改变摆长,每次减少10cm,测相应周期T,作T—L图,验证单摆周期公式。 三、实验仪器设备及材料 单摆、米尺、游标卡尺、停表。 四、实验方案 利用试验台上所给的设备及材料,自己制作一个单摆,然后设计实验步骤测出单摆的周期,再根据单摆的周期公式计算当地的重力加速速。 改变摆长,讨论对实验结果的影响并分析误差产生的原因 五、考核形式 实际操作过程实验报告 六、实验报告 实验原理,实验步骤,实验数据处理,误差分析和处理。 对实验中的特殊现象、实验操作的成败、实验的关键点等内容进行整理、解释、分析总结,回答思考题,提出实验结论或提出自己的看法等。 七、思考题 1、为什么测量周期不宜直接测量摆球往返一次摆动的周期试从误差分析来说明。 2、在室内天棚上挂一单摆,摆长很长,你设法用简单的工具测出摆长不许直接测量摆长。 实验三牛顿第二定律的验证 实验类型:验证 实验类别:专业主干课 实验学时:2 所属课程:大学物理 所涉及的课程和知识点:力学牛顿第二定律摩擦 一、实验目的 通过本实验的学习,使学生掌握气垫导轨的使用,使学生通过在气垫导轨上验证牛顿第二定律,更深刻的理解牛顿第二定律的物理本质。 二、实验要求 验证当m一定时,a∝F,当F一定时,a∝1/m。 三、实验仪器设备及材料 气垫导轨,数字毫秒计,光电门,气源 四、实验方案 1、调整气垫导轨水平。 在导轨的端部小心安装好滑轮,使其转动自如,细心调整好导轨的水平。

饱和蒸汽PT实验

饱和蒸汽P--T关系实验 一、实验目的 1、通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而树立液体温度达到对应于液面压力的饱和温度时,沸腾便会发生的基本概念。 2、通过对实验数据的整理,掌握饱和蒸汽P—T关系图表的编制方法。 3、学会温度计、压力表、调压器和大气压力计等仪表的使用方法。 4、能观察到小容积和金属表面很光滑(汽化核心很小)的饱态沸腾现象。 二、实验设备 图1 1、压力表(-0.1~0~1.5㎏f/㎝2) 2、排气阀 3、缓冲器 4、可视玻璃及蒸汽发生器 5、电源开关 6、电功率调节 7、温度计(0~300℃) 8、可控数显温度仪9、电压表 三、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将电功率调节器指针至电压表零位,然后接通电源。 3、将调压器输出电压调至200~220V,待蒸汽压力升至一定值时,将电压降至20~50V保温,待工况稳定后迅速记录下水蒸气的压力和温度。重复上述实验,在0~10kgf/cm2(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 4实验完毕后,将调压指针旋回零位,并断开电源。 5、记录室温和大气压力。

四、数据记录和整理 将实验结果点在坐标上,清除偏离点,绘制曲线。 3、总结经验公式: 将实验曲线绘制在双对数坐标纸上,则基本呈一直线,故饱和水蒸气压力和温度的关系可近似整理成下列经验公式: 4 t= 100P

4、误差分析: 通过比较发现测量比标准值低1%左右,引起误差的原因可能有以下几个方面: (1)读数误差。 (2)测量仪表精度引起的误差。 (3)利用测量管测温所引起的误差。

空气比热容比的实验报告

空气比热容比的测量 实验目的: 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。实验原理: 对理想气体的定压比热容C p和定容比热容C v 之关系由下式表示: C p —C v =R(1) (1) 式中,R为气体普适常数。气体的比热容比r值为: r= C p /C v (2) 气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。 测量r值的仪器如图〈一〉所示。实验时先关闭活塞C 2 ,将原处于环境大气 压强P 0、室温θ 的空气从活塞C 1 ,处把空气送入贮气瓶B内,这时瓶内空气压 强增大。温度升高。关闭活塞C 1,待稳定后瓶内空气达到状态I(P ,θ ,V 1 ),V 1 为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与大气相通,到达状态II(P 1 ,θ ,V 1 )后, 迅速关闭活塞C 2 ,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程: P1V1’=P0V2’(3) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度θ 0 时,原状态为 I(P 1,θ ,V 1 )体系改变为状态III(P 2 ,θ ,V 2 ),应满足: P1V1=P0V2(4) 由(3)式和(4)式可得到: r=(log P0-log P1)/(logP2-log P1) 利用(5)式可以通过测量P 0、P 1 和P 2 值,求得空气的比热容比r值。 实验装置:

图〈一〉实验装置中1为进气活塞塞C 1,2为放气活塞C 2 ,3为电流型集成温 度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温 范围为-50℃至150℃。AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。当待测气体压强为环境大气压P 0 时,数字电压表显示为0;当待测气体压强为 P +10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。 实验内容: 1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。用Forton式 气压计测定大气压强P 0,用水银温度计测环境室温θ 。开启电源,将 电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。 2.把活塞C 2关闭,活塞C 1 打开,用打气球把空气稳定地徐徐进入贮气瓶

空气-蒸汽给热系数测定

浙江科技学院 实验报告 课程名称:化工原理 实验名称:空气—蒸汽对流给热系数测定学院:生物与化学工程学院 专业班:材料科学与工程111 姓名:AAA 学号:1110450003 同组人员:AAA AAA 实验时间: 2014年5月9日 指导教师:

一、 实验课程名称:化工原理 二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求: 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四、实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (1) 热流体与固体壁面的对数平均温差可由式(2)计算, ()()() 2 211221 1ln W W W W m W T T T T T T T T T T -----=- (2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----=- (3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4)计算, ()()1221 1221 m t T t T ln t T t T t -----=? (4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2, T t 图4-1间壁式传热过程示意图

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

对流传热系数的测定实验报告

浙江大学化学实验报告 课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验内容和原理 (4) 1.间壁式传热基本原理 (4) 2.空气流量的测定 (6) 3.空气在传热管内对流传热系数的测定 (6) 3.1牛顿冷却定律法 (6) 3.2近似法 (7) 3.3简易Wilson图解法 (8) 4.拟合实验准数方程式 (8) 5.传热准数经验式 (9) 四、操作方法与实验步骤 (10) 五、实验数据处理 (11) 1.原始数据: (11) 2.数据处理 (11) 六、实验结果 (14) 七、实验思考 (15)

一、实验目的和要求 二、1)掌握空气在传热管内对流传热系数的 测定方法,了解影响传热系数的 三、因素和强化传热的途径; 四、2)把测得的数据整理成形 式的准数方程,并与教材中公认 五、经验式进行比较; 六、3)了解温度、加热功率、空气流量的自 动控制原理和使用方法。 七、实验流程与装置 八、本实验流程图(横管)如下图1所示, 实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。 九、空气-水蒸气换热流程:来自蒸汽发 生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。 十、注意:普通管和强化管的选取:在 实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切 换,电脑界面上通过鼠标选择,三者必学统一。 十一、 十二、 十三、 十四、

可视性饱和蒸汽压力和温度关系实验仪实验指导书

可视性饱和蒸汽压力和温度关系实验数 指导书

可视性饱和蒸汽压力和温度关系实验仪实验指导书 一、实验目的 1、通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解,从而树立液体温度达到对应于液面压力的饱和温度时,沸腾便会发生的基本概念。 2、通过对实验数据的整理,掌握饱和蒸汽P—T关系图表的编制方法。 3、学会温度计、压力表、调压器和大气压力计等仪表的使用方法。 4、能观察到小容积和金属表面很光滑(汽化核心很小)的饱态沸腾现象。 二、实验设备见图1 图1实验设备简图 1、压力表(-0.1~0~1.5Ma) 2、排气阀 3、缓冲器 4、可视玻璃及蒸汽发生器 5、电源开关 6、电功率调节 7、温度计(100~250℃) 8、可控数显温度仪 9、电流表 三、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将电功率调节器调节至电流表零位,然后接通电源。 3、调节电功率调节器,并缓慢逐渐加大电流,待蒸汽压力升至一定值时,将电流降低0.2安培左右保温,待工况稳定后迅速记录下水蒸气的压力和温度。重复

上述实验,在0~1.0Ma (表压)范围内实验不少于6次,且实验点应尽量分布均匀。 4实验完毕后,将调压指针旋回零位,并断开电源。 5、记录室温和大气压力。 四、数据记录和整理 1、记录和计算: 2、绘制P —t 关系曲线: 将实验结果点在坐标上,清除偏离点,绘制曲线。 a ] 图2 饱和水蒸气压力和温度的关系曲线 3、总结经验公式: 将实验曲线绘制在双对数坐标纸上,则基本呈一直线,故饱和水蒸气压力和温度的关系可近似整理成下列经验公式: 4100P t =

空气比热容比测定实验报告(实验数据及其处理)

007 实验报告 评分: 课程: ******** 学期: ***** 指导老师: **** 年级专业: ***** 学号:****** 姓名:!习惯一个人007 实验3-5空气比热容比的测定 一、实验目的 1. 用绝热膨胀法测定空气的比热容。 2. 观察热力学过程中状态变化及基本物理规律。 3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。 二、实验原理 测量仪器如图4-6-1所示。1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ) ,V 1为贮气瓶容积。 然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。绝热膨胀过程应满足下述方程 r r o r o r T p T p 1 1 11 --= (3-5-2) 在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ) ,两个状态应满足如下关系: 0 21T p T p o = (3-5-3) 由(3-5-2)式和(3-5-3)式,可得 )lg /(lg )lg (lg 1210P P P P --=γ (3-5-4) 利用(3-5-4)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。

空气水蒸气对流给热系数测定实验报告

空气水蒸气对流给热系数测定实验报告 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4 -2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4 -3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算,

大学物理实验4-指导书

1.1 静电场 实验内容 图示静电场的基本性质: 同心球壳电场及电势分布图。 实验设置 有两个均匀带电的金属同心球壳配置如图。内球壳(厚度不计)半径为R 1=5.0 cm ,带电荷 q 1 = 0.6?10-8 C ;外球壳半径R 2 = 7.5 cm ,外半径R 3 = 9.0 cm ,所带总电荷q 2 = - 2.0?10-8 C 。 实验任务 画出该同心球壳的电场及电势分布。 实验步骤及方法 基本原理:根据高斯定理推导出电场及电势的 分布公式;利用数据分析软件,如Microsoft Excel 绘制电场及电势的分布图。 在如图所示的带电体中,因内球壳带电q 1,由于静电感应,外球壳的内表面上将均匀地分布电荷-q 1;根据电荷平衡原理,外球壳的外表面上所带电荷除了原来的q2外,还因为内表面感应了-q 1而生成+q 1,所以外球壳的外表面上将均匀分布电荷q 1+q 2。 在推导电场和电势分布公式时,须根据r 的变化范围分别讨论r < R 1、R 1 < r < R 2、R 2 < r < R 3、r > R 3几种情况。 场强分布: 当r < R 1时, 001=?=???E dS E S 当R 1 < r < R 2时, ?= ???0 1 εq dS E S 2 1 0241 r q E επ= 当R 2 < r < R 3时, 00 3=?=???E dS E S 当r > R 3时, 1

2 210 40 2 141r q q E q q dS E S += ? += ??? επε 电势分布: 根据电势的定义,可以求得电势的分布。 当r < R 1时, 3 2 10210110143211414141 3 3 2 21 1R q q R q R q U dr E dr E dr E dr E dr E U R R R R R R r r ++ -=?+?+?+?=?=?????∞ ∞ επεπεπ 当R 1 < r < R 2时, 3 2 102101014321414141 3 3 2 2R q q R q r q U dr E dr E dr E dr E U R R R R r r ++ -=?+?+?=?=????∞ ∞ επεπεπ 当R 2 < r < R 3时, 3 2 10143141 3 3 R q q U dr E dr E dr E U R R r r += ?+?=?=???∞ ∞ επ 当r > R 3时, r q q U dr E dr E U r r 2 1014141 += ?=?=??∞ ∞επ 至此,可以用MS Excel 来绘制电场及电势分布图。方法如下: 打开Excel 后会有一个默认的表格出现(如下图) 在A1、A2、A3单元格内分别输入“R1=”、“R2=”、“R3=”;在B1、B2、B3单元格内分别输入R1、R2、R3的数值。

12固体小球对流传热系数的测定讲解

固体小球对流传热系数的测定 A 实验目的 工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。了解与测定各种环境下的对流传热系数具有重要的实际意义。 通过本实验可达到下列目的: (1) 测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。 (2) 了解非定常态导热的特点以及毕奥准数(Bi )的物理意义。 (3) 熟悉流化床和固定床的操作特点。 B 实验原理 自然界和工程上,热量传递的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。 当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。 通过对导热的研究,傅立叶提出: dy dT A Q q y y λ-== (1) 式中: dy dT - y 方向上的温度梯度[]m K / 上式称为傅立叶定律,表明导热通量与温度梯度成正比。负号表明,导热方向与温度梯度的方向相反。 金属的导热系数比非金属大得多,大致在50~415[]K m W ?/范围。纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。本实验中,小球材料的选取对实验结果有重要影响。 热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。具有宏观尺度上的运动是热对流的实质。流动状态(层流和湍

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

磁性物理实验指导书

磁性物理实验 讲义 磁性物理课程组编写 电子科技大学微电子与固体电子学院 二O一二年九月

目录 一、起始磁导率温度特性测量和居里温度测试计算分析 (1) 二、电阻率测试及磁损耗响应特性分析 (3) 三、磁致伸缩系数测量与分析 (6) 四、磁化强度测量与分析 (9) 五、磁滞回线和饱和磁感应强度测量 (11) 六、磁畴结构分析表征 (12)

一、起始磁导率温度特性测量和居里温度测试计算分析 (一) 、实验目的: 了解磁性材料的起始磁导率的测量原理,学会测量材料的起始磁导率,并能够从自发磁化起源机制来分析温度和离子占位对材料起始磁导率和磁化强度的影响。 (二)、实验原理及方法: 一个被磁化的环型试样,当径向宽度比较大时,磁通将集中在内半径附近的区域分布较密,而在外半径附近处,磁通密度较小,因此,实际磁路的有效截面积要小于环型试样的实际截面。为了使环型试样的磁路计算更符合实际情况,引入有效尺寸参数。有效尺寸参数为:有效平均半径r e ,有效磁路长度l e ,有效横截面积A e ,有效体积V e 。矩形截面的环型试样及其有效尺寸参数计算公式如下。 ???? ??-=21 1 211ln r r r r r e (1) ???? ??-=21 12 11ln 2r r r r l e π (2) ???? ??-=2112 211ln r r r r h A e (3) e e e l A V = (4) 其中:r 1为环型磁芯的内半径,r 2为环型磁芯的外半径,h 为磁芯高度。 利用磁芯的有效尺寸可以提高测量的精确性,尤其是试样尺寸不能满足均匀磁化条件时,应用等效尺寸参数计算磁性参数更合乎实际结果。材料的起始磁导率(i μ)可通过对环型磁心施加线圈后测量其电感量(L )而计算得到。计算公式如式(5)所示。 2 0i e e A N L l μμ= (5)

对流给热系数的测定(数据处理)

实验三 对流给热系数的测定 一、实验目的 1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2、测定空气(或水)在圆直管内强制对流给热系数i α; 3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 4、掌握热电阻测温的方法。 二、基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式: V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1) 式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃); αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃; A i ——内管的外壁、内壁的传热面积,m2; (T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 2 2112211ln )()()(w w w w m T T T T T T T T Tw T -----= - (1-2) (t w -t)m ——内壁与流体间的对数平均温度差,℃; 2 211 2211ln )()()(t t t t t t t t t t w w w w m w -----= - (1-3) 式中:T 1、T 2——蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。 当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。 由式(1-3)可得: m w P i t t A t t C V )() (012--= ρα (1-4) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。 流体在直管内强制对流时的给热系数,可按下列半经验公式求得: 湍流时: 4.08.0Pr Re 023 .0i i d λ α= (1-5) 式中:αi —— 流体在直管内强制对流时的给热系数,W/ (m 2·℃); λ—— 流体的导热系数,W/(m 2·℃); d i —— 内管内径,m ; Re —— 流体在管内的雷诺数,无因次; Pr —— 流体的普朗特数,无因次。 上式中,定性温度均为流体的平均温度,即t f = (t 1 + t 2) / 2。 过渡流时: αi ’=φαi (1-6)

液体饱和蒸汽压的测定实验报告

液体饱和蒸汽压的测定 实验报告 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

宁波工程学院 物理化学实验报告 专业班级化工姓名序号 ________ 同组姓名 ___________ 指导老师胡爱珠、杨建平实验日期 2010年3月19日 实验名称实验一液体饱和蒸汽压的测定 一、实验目的 1.掌握用等位计测定乙醇在不同温度下的饱和蒸汽压。 2.学会用图解法求乙醇在实验室温度范围内的平均摩尔蒸发含与正常沸点。 二、实验原理 纯物质的蒸气压随温度的变化可用克拉贝龙方程表示: dp/dT = △ vap H m /T△V m (1) 设蒸气为理想气体,在实验温度范围内摩尔蒸发焓△vapHm可视为常数,并略去液体的体积,将(1)式积分得克劳修斯—克拉贝龙方程: ㏑(P/Pa) = (-△ vap H m /R)×(1/T)+ C (2) 由(2)式可见,实验测定不同温度T下的饱和蒸汽压p,以㏑(P/kPa)对1/(T/K)作图,得一直线,求得直线的斜率m和截距C,则乙醇的平均摩尔蒸发焓为: △ vap Hm = -m×(R/[R]) ×[△H ] (3)习惯上把液体的蒸气压等于101.325kPa时的沸腾温度定义为液体的正常沸点,由(2)式还可以求乙醇的正常沸点。 本实验采用静态法直接测定乙醇在一定温度下的蒸气压。DPCY-2C型饱和蒸气压教学实验仪面板如图所示 三、实验仪器、试剂 仪器:DPCY-2C型饱和蒸气压教学实验仪1套,HK-1D型恒温水槽1套,WYB-1型真空稳压包1个,稳压瓶1个,安全瓶1个。

试剂:无水乙醇(A.R) 四、实验步骤 1.读取室温和大气压 2.装样 在等温计内装入适量待测液体乙醇。球管中约2/3体积,U型管两边各1/2体积,然后连接好装置。 3.教学实验仪置零 打开试验仪电源,预热5分钟,选择开关打到kPa,按下面板上的置零键,显示00.00数值。 5.排除球管上方空间的空气 打开恒温水槽电源,设定温度为25℃,接通冷凝水,同时调节搅拌器匀速搅拌,使等温计内外温度平衡,用真空稳压包控制抽气速度,抽气减压气泡逸出的速度以一个一个的逸出为宜,至液体轻微沸腾,沸腾3-5分钟,可认为空气被排尽(压力显示-94kPa)。抽气结束后,先关闭真空稳压包上与稳压瓶相连的阀门,再关闭另一侧阀门,打开于真空泵相连的安全瓶活塞,使其通大气,最后关电源。 6.测定饱和蒸汽压 当空气排除干净且体系温度恒定后,旋转稳压瓶上的直通活塞,缓缓放入空气,直至U型管中液面相平,关闭活塞,记录温度与压力。依次测定30℃、35℃、40℃、45℃的压力。 7.结束实验 实验结束后,关闭电源,打开真空稳压包上中间的阀门,将体系放入空气,待等温计内乙醇冷却后,关掉冷凝器中的水。整理好仪器装置。

空气—蒸汽对流给热系数测定实验报告及数据答案

空气—蒸汽对流给热系数测定 一、实验目的 ⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值。 ⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验装置 本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。饱和蒸汽由配套的电加热蒸汽发生器产生。该实验流程图如图1所示,其主要参数见表1。 表1 实验装置结构参数

图1 空气-水蒸气传热综合实验装置流程图 1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀; 12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口; 孔板流量计测量空气流量 空气压力 蒸汽压力 空气入口温度 蒸汽温度 空气出口温度

三、实验内容 1、光滑管 ①测定6~8个不同流速下光滑管换热器的对流传热系数α1。 ②对 α1的实验数据进行线性回归,求关联式Nu=ARe m 中常数A 、m 的值。 2、波纹管 ①测定6~8个不同流速下波纹管换热器的对流传热系数α1。 ②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。 四、实验原理 1.准数关联 影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe m Pr n Gr l (1) 式中C 、m 、n 、l 为待定参数。 参加传热的流体、流态及温度等不同,待定参数不同。目前,只能通过实验来确定特定 范围的参数。本实验是测定空气在圆管内作强制对流时的对流传热系数。因此,可以忽略自然对流对传热膜系数的影响,则Gr 为常数。在温度变化不太大的情况下,Pr 可视为常数。所以,准数关联式(1)可写成 Nu =CRe m (2) Re 4 du V d ρ ρ π μ μ == 其中: , 500.02826W/(m.K)d Nu αλλ = =℃时,空气的导热系数

大学物理 学习指南

学习指南 1、物理实验课的教学目的 大学物理实验教学目的与中学阶段的物理实验教学有着本质的不同。“大学物理实验”是一门独立的基础课程,它不是“大学物理学”的分支或组成部分。虽然物理实验必须以物理学的理论为基础,运用物理学的原理进行实验或研究,但是“大学物理实验”又独立于“大学物理学”,它不是以验证物理定律、加强理解物理规律为主要目的的,分散的力、热、电、磁、光实验的堆切,而是以物理实验的基本技术或基本物理量的测量方法为主线,再贯穿以现代误差理论,现代物理实验仪器设备、器件的原理、使用方法,构建成一个完整的,但又不断发展的课程体系框架。其教学目的如下: (1)掌握基本物理量的各种测量方法,学会分析测量的误差,学会基本的实验数据处理方法,能正确的表达测量结果,并对测量结果进行正确的评价(测量不确定度)。 (2)掌握物理实验的基本知识、基本技能,常用实验仪器设备、器件的原理及使用方法,并能正确运用物理学理论指导实验。 (3)培养、提高基本实验能力,并进一步培养创新能力。基本实验能力是指能顺利完成某种实验活动(科研实验或教学实验)的各种相关能力的总和,主要包括: 观察思维能力──在实验中通过观察分析实验现象,并得出正确规

律的能力。 使用仪器能力──能借助教材或仪器使用说明书掌握仪器的调整和使用方法的能力。 故障分析能力──对实验中出现的异常现象能正确找出原因并排除故障的能力。 数据处理能力──能正确记录、处理实验数据,正确分析实验误差的能力。 报告写作能力──能撰写规范、合格的实验报告的能力。 初步实验设计能力──能根据课题要求,确定实验方案和条件,合理选择实验仪器的能力。 (4)培养从事科学实验的素质。包括理论联系实际和实事求是的科学作风;严肃认真的工作态度;吃苦耐劳、勇于创新的精神;遵守操作规程,爱护公共财物的优良品德;以及团结协作、共同探索的精神。 2、大学物理实验课的基本程序 实验课与理论课不同,它的特点是同学们在教师的指导下自己动手,独立完成实验任务,通常每个实验的学习都要经历三个阶段。 (1)实验的准备 实验前必须认真阅读讲义,做好必要的预习,才能按质按量按时完成实验。同时,预习也是培养阅读能力的学习环节。预习时要写预习报告,预习报告包括以下内容:

相关文档
相关文档 最新文档