文档库 最新最全的文档下载
当前位置:文档库 › 迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用
迈克尔逊干涉仪的调节和使用

实验报告

班级姓名学号日期2011-9-19

室温30.9℃气压102.34成绩教师

实验名称迈克尔逊干涉仪的调节和使用

【实验目的】

1.了解迈克尔逊干涉仪的工作原理,掌握其调节和使用的方法。

2.应用迈克尔逊干涉仪,测量He-Ne激光的波长

【实验仪器】

迈克尔逊干涉仪(WSM-200 03040303 20100538)

He-Ne激光器扩束镜

迈克尔逊干涉仪的主体结构

迈克尔逊干涉仪的主体结构如图3-45(a)所示,由下面6个部分组成。

1微调手轮2粗调手轮3读数窗口4可调螺母5毫米刻度尺6精密丝杆7导轨(滑槽)8螺钉9调平螺丝10锁紧圈11移动镜底座12紧固螺丝13滚花螺丝14全反镜15水平微调螺丝16垂直微调螺丝17观察屏固

定杆18观察屏

图3-45 迈克尔逊干涉仪结构

(1)底座

底座由生铁铸成,较重,确保仪器的稳定性。由3个调平螺丝9支撑,调平后可以拧紧锁紧圈10以保持座架稳定。

(2)导轨

导轨7由两根平行的长约280mm的框架和精密丝杆6组成,被固定在底座上,精密丝杆穿过框架正中,丝杆螺距为1mm,如图3-45(b)所示。

(3)拖板部分

拖板是一块平板,反面做成与导轨吻合的凹槽,装在导轨上,下方是精密螺母,丝杆穿过螺母,当丝杆旋转时,拖板能前后移动,带动固定在其上的移动镜11(即M1)在导轨面

上滑动,实现粗动。M1是一块很精密的平面镜,表面镀有金属膜,具有较高的反射率,垂直地固定在拖板上,它的法线严格地与丝杆平行。倾角可分别用镜背后面的3颗滚花螺丝13来调节,各螺丝的调节范围是有限度的,如果螺丝向后顶得过松,在移动时可能因震动而使镜面有倾角变化,如果螺丝向前顶得太紧,致使条纹不规则,严重时,有可能使螺丝口打滑或平面镜破损。

(4)定镜部分

定镜M2是与M1相同的一块平面镜,固定在导轨框架右侧的支架上。通过调节其上的水平拉簧螺钉15使M2在水平方向转过一微小的角度,能够使干涉条纹在水平方向微动;通过调节其上的垂直拉簧螺钉16使M2在垂直方向转过一微小的角度,能够使干涉条纹上下微动;与3颗滚花螺丝13相比,15、16改变M2的镜面方位小得多。定镜部分还包括分光板P1和补偿板P2,后面原理部分将介绍。

(5)读数系统和转动部分

①动镜11(即M1)的移动距离毫米数可在机体侧面的毫米刻尺5上直接读得。

②粗调手轮2旋转一周,拖板移动1mm,即M2移动1mm,同时,读数窗口3内的鼓轮也转动一周,鼓轮的一圈被等分为100格,每格为10-2mm,读数由窗口上的基准线指示。

③微调手轮1每转过一周,拖板移动0.01mm,可从读数窗口3中可看到读数鼓轮移动一格,而微调鼓轮的周线被等分为100格,则每格表示为10-4mm。所以,最后读数应为上述三者之和,如图3-46所示。

图3-46 迈克尔逊干涉仪的读数

(6)附件

支架杆17是用来放置像屏18用的,由加紧螺丝12固定。

【实验原理】

1.相干光的获得

迈克尔逊干涉仪是利用分振幅的方法产生双光束来实现干涉的。其工作原理如图3-47所示,M1、M2为两垂直放置的平面反射镜,分别固定在两个垂直的臂上。P1、P2平行放置,与M2固定在同一臂上,且与M1和M2的夹角均为45°。M1由精密丝杆控制,可以沿臂轴前后移动。P1的第二面上涂有半透明、半反射膜,能够将入射光分成振幅几乎相等的反射光1'、透射光2',所以P1称为分光板(又称为分光镜)。1'光经M1反射后由原路返回再次穿过分光板P1后成为1"光,到达观察点E处;2'光到达M2后被M2反射后按原路返回,在P1的第二面上形成2"光,也被返回到观察点E处。由于1'光在到达E处之前穿过P1 3次,而2'光在到达E处之前穿过P1 1次,为了补偿1'、2'两光的光程差,便在M2所在的臂上再放

一个与P 1的厚度、折射率严格相同的P 2平面玻璃板,满足了1'、2'两光在到达E 处时无光程差,所以称P 2为补偿板。由于1'、2'光均来自同一光源S ,在到达P 1后被分成1'、2'两光,所以两光是相干光。

综上所述,光线2"是在分光板P 1的第二面反射得到的,这样使M 2在M 1的附近(上部或下部)形成一个平行于M 1的虚像M 2'(即M 2'是M 2经P 1反射而成的虚像)。因而,在迈克尔逊干涉仪中,自M 1、M 2的反射相当于自M 1、M 2'的反射。也就是,在迈克尔逊干涉仪中产生的干涉相当于M 1与M 2'之间的空气薄膜所产生的干涉。当M 1与M 2'严格平行时,空气膜厚度相同,所发生的干涉为等倾干涉,可以观察到由一系列同心圆环组成的等倾干涉条纹。当M 1与M 2'不平行且M 2与M '1足够靠近时,空气膜可看作夹角恒定的楔形薄膜,所发生的干涉为等厚干涉,可以观察到一系列互相平行,宽度相同的等厚干涉条纹。

迈克尔逊干涉仪产生干涉的形成条件与条纹特点不仅与M 1、M 2的相对位置有关,而且与所用光源有关。

在干涉仪中,M 2可沿着与其表面垂直的方向平移,当M 2平移时,M '1与M 2之间的距离d 将发生变化。对等倾条纹来说,当d 逐渐增大时,同心圆环不断向外扩展;当d 逐渐减小时,同心圆环不断向内收缩。在实验中,我们就以等倾条纹的这一变化规律作为判断光程差增减的依据。

当M 2与M '1相交且交角很小时,若用白光作光源,则可看到彩色的条纹。若是等厚干涉,则中央是一条白色条纹,两侧有若干彩色条纹。中央条纹对应于d = 0。

2.测量He-Ne 激光波长

(1)单色点光源产生的干涉及波长的测量

He-Ne 激光用短焦距透镜会聚后是一个相干性很好的点光源,经M 1、M 2反射后的相干光束相当于两个距离为2d 的两个虚光源S 1和S 2',由这两个虚点光源发出的球面波在空间处处相干,这种干涉称为非定域干涉,即在两束光相遇的空间内均能用观察屏接收到干涉图像。若将观察屏放在不同的位置,则可以看到不同形状的干涉条纹。

普通光源不是点光源,它们是由许多互不相干的点光源集合而成,但每个点光源发出的光,经迈克尔逊干涉仪后可以发生干涉,形成稳定的干涉图样。

当M 1和M 2'严格平行且相距为d 时,所有倾角为i 的入射光束,由M 1和M 2'反射的光线的光程差为

22cos dn i δ=

(3-60) 它们将处于同一级干涉条纹,并定位于无穷远。

两束相干光明暗条件为 22cos (1,2,3)12k dn i k k λδλ??===???+ ???

??亮暗 (3-61) 式(3-61)中i 为反射光1′在平面反射镜M 1上的反射角,λ为激光的波长,n 2为空气薄膜的折射率,d 为薄膜厚度。

凡i 相同的光线光程差相等,并且得到的干涉条纹随M 1和M 2'的距离d 而改变。当i = 0时光程差最大,在O 点处对应的干涉级数最高。由(3-61)式得 2cos cos 2λλ?=?=i k d k i d (3-62) 2λ

?=?N d (3-63)

由公式(3-63)可得,当d 改变一个1/2λ时,就有一个条纹“涌出”或“陷入”,所以

在实验时只要数出“涌出”或“陷入”的条纹个数N ,读出λ的改变量?d 就可以计算出光波波长λ的值 N d ?=2λ (3-64)

从迈克尔逊干涉仪装置中可以看出,S 1发出的凡与M 2的入射角均为i 的圆锥面上所有光线a ,经M 1与M 2'的反射和透镜L 的会聚于L 的焦平面上以光轴为对称同一点处;从光源S 2上发出的与S 1中a 平行的光束b ,只要i 角相同,它就与1′、2′的光程差相等,经透镜L 会聚在半径为r 的同一个圆上,如图3-48所示。

(2)用迈克尔逊干涉仪测量钠光的双线波长差

一般光学实验中所用的单色光源发出的光并不是绝对的单色光,它所辐射的光波有一定的波长范围?λ。钠光中光强最强的谱线有两条,波长分别为λ1、λ2。移动M 1,当光程差满足两列光波的光程差恰为λ1的整数倍,而同时又为λ2的半整数倍,即

11λδk =,又1212k δλ??=+ ??

? (3-65) 当改变?d 时,光程差为 2112

k m δλ?

?=++ ???

,又22)(λδm k += (3-66) 这时λ1光波生成亮环的地方,恰好是λ2光波生成暗环的地方。如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失)。那么干涉场中相邻的两次视见度为零时, 公式(3-65)和公式(3-66)两式对应相减得光程差变化量 21121122l m m δδλλ?????=-=+=- ? ????? (3-67) 由式(3-67)得

l m ?=-=-2112211λλλλ

于是,钠光的双线波长差为 l l ?=?=?2

2

1λλλλ (3-68) 式中12()λλλ=+/2在视场中心处,当M 1在相继两次视见度为0时,移过?d 引起的光程差变化量为

d l ?=?2

则 d ?=?22

λλ (3-69)

从式(3-69)可知,只要知道两波长的平均值λ和M 1镜移动的距离?d ,就可求出钠光的双线波长差?d λ。

【实验步骤】

1.迈克尔逊干涉仪的调整

(1)按图3-47所示安装He—Ne激光器和迈克尔逊干涉仪。打开He—Ne激光器的电源开关,光强度旋扭调至中间,使激光束水平地射向干涉仪的分光板P1。

图3-47 迈克尔逊干涉仪工作原理

(2)调整激光光束对分光板P1的水平方向入射角为45°。

如果激光束对分光板P1在水平方向的入射角为45°,那么正好以45°的反射角向动镜M1垂直入射,原路返回,这个像斑重新进入激光器的发射孔。调整时,先用一张纸片将定镜M2遮住,以避免M2反射回来的像干扰视线,然后调整激光器或干涉仪的位置,使激光器发出的光束经P1折射和M1反射后,原路返回到激光出射口,这已表明激光束对分光板P1的水平方向入射角为45°。

(3)调整定臂光路

将纸片从M2上拿下,遮住M1的镜面。发现从定镜M2反射到激光发射孔附近的光斑有4个,其中光强最强的那个光斑就是要调整的光斑。为了将此光斑调进发射孔内,应先调节M2背面的3个螺钉,改变M2的反射角度。微小改变M2的反射角度再调节水平拉簧螺钉15和垂直拉簧螺钉16,使M2转过一微小的角度。特别注意的是,在未调M2之前,这两个细调螺钉必须旋转到中间位置。

(4)拿掉M1上的纸片后,要看到两个臂上的反射光斑都应进入激光器的发射孔,且在毛玻璃屏上的两组光斑完全重合,若无此现象,应按上述步骤反复调整。

(5)用扩束镜使激光束产生面光源,按上述步骤反复调节,直到毛玻璃屏上出现清晰的等倾干涉条纹。

2.测量He-Ne激光的波长

用粗动手轮把平面射镜M1移至30mm左右。点亮氦氖激光器,使激光束经过分光板P1分束,会出现两排各3点的光斑。

调节M1和M2的两种镜后的螺旋。改变M1、M2镜的方位,使两排光斑重合并能观察到这些光斑有振动现象并有微少干涉条纹。再在激光器前放一扩束透镜,屏上即可呈现出干涉纹,缓慢细心调节M2镜后的调节螺丝,即可出现圆形条纹。

迈克尔逊干涉仪的手轮操作和读数练习,连

续同一方向转动微调手轮,仔细观察屏上的干涉

条纹“涌出”或“陷入”现象,先练习读毫米标

尺、读数窗口和微调手轮上的读数。掌握干涉条

纹“涌出”或“陷入个数、速度与调节微调手轮

的关系。经上述调节后,读出动镜M 1所在的相对

位置,然后沿同一方向转动微调手轮,仔细观察

屏上的干涉条纹“涌出”或“陷入”的个数。每

隔100个条纹,记录一次动镜M 1的位置。共记

500条条纹,读6个位置的读数,填入自拟的表

格中(在调节和测量过程中,一定要非常细心,

转盘的转动缓慢,均匀,为了防止引进螺距差,

每次测量必须沿同一方向旋转转盘,不得中途倒

退,且不能振动仪器)。

3.观察汞灯白光的彩色干涉条纹

用激光观察到干涉条纹时,缓慢转动粗动手

轮,使干涉圆环条纹向里陷入,使得干涉条纹变粗,当视场范围内只剩下几条干涉条纹时,把激光换成汞灯白光,就可以观察汞灯白光的彩色干涉条纹了。

4.测量钠光D 双线(D 1D 2)的波长差

用激光观察到干涉条纹时,缓慢转动粗动手轮,使干涉圆环条纹向里陷入,使得干涉条纹变粗,当视场范围内只剩下几条干涉条纹时,把激光换成钠光,将观察到干涉条纹,再仔细、慢慢地调节M 2镜旁的微调弹簧,使条纹成清晰的圆形。

向一个方向快速转动微动手轮(或缓慢转动粗动手轮)移动M 1镜,使视场中心的可见度最小(即干涉条纹变模糊时),记录M 1镜的位置d 1,再沿原来方向移动M 1镜,直到可见度最小(即干涉条纹第二次变模糊时),记下M 1镜的位置d2,即得到:12d d d -=?。

继续向原方向快速转动微动手轮(或缓慢转动粗动手轮)。当干涉条纹从清晰又一次变模糊时,再记录M 1镜的位置d 3,即得到:23d d d -=?,继续向同一方向前进,测量10个

模糊区的间距,计算出d ?,代入公式(3-69)计算出Δλ,记录表格自己设计(取λ为589.3nm )。

【实验数据记录及处理】

250N = =632.8nm λ公认 50.00015102mm -?==?仪

N d ?=2λ 次数

0 1 2 3 4 5 6 7 8 9 环数 0 50 100 150 200 250 300 350 400 450

读数 d i /mm 51.10000 51.11673 51.13364 51.14982 51.17212 51.17932 51.19635 51.21270 51.22930 51.2

5131

i i d d d -=

?+5 /mm

/ / / / / 0.07932 0.07962 0.07906 0.07948 0.07

919 图3-48 迈克尔逊干涉光路图

252)10*5(00010.0-+λ/nm

/ / / / / 634.6 637.0 632.5 635.8 633.5

=?___d (0.07932 + 0.07962 + 0.07906 + 0.07948 + 0.07919)/5=0.07933mm

____2()(1)i i d d d S n n ??-?==-∑

4*5)0.07933-0.07919(0.07933)-0.07948(0.07933)-0.07906(0.07933)-0.07962(0.07933)-0.07932(2

2222++++

=0.00010mm

22()d

d S ???=+?=仪 =0.00011mm λ=(634.6 + 637.0 + 632.5 + 635.8 +633.5)=634.7nm

=??=?)(2d N

λ(2*0.00011)/250=1nm 最后将实验测得的波长表为

=?±=λλλ 635±1nm

并与公认值比较,计算其相对误差

【实验注意事项】

1.在调节和测量过程中,一定要非常细心和耐心,转动手轮时要缓慢、均匀。

2.为了防止引进螺距差,每项测量时必须沿同一方向转动手轮,途中不能倒退。 3.在用激光器测波长时,M 1镜的位置应保持在30~60mm 范围内。

4.为了测量读数准确,使用干涉仪前必须对读数系统进行校正。

【实验小结与讨论】

这次试验做起来确实比较费力,因为很细小的动静都会影响到试验的过程,所以需要非常的耐心、细心。经过反复的重复试验过程,从中也发现了一些问题,上网查阅了资料,如下:

1.观察点光源非定域干涉时,屏上只看到一大片光斑,看不到干涉条纹,怎么办?

移走扩束镜,调节激光管方位,配合调M 1、M 2后螺钉,使由M 1、M 2反射的最亮光点能大致回到激光管中,此时入射光与分光板成45°角。然后重新微调M 1、M 2后面的螺钉,使得屏上两排光点中最亮光点完全重合,重合的标准是最亮光点中出现细条纹(其它光点也有细条纹),再放上扩束镜,屏上必看到干涉条纹。

2.调节微调旋钮时,没看到圆环“冒出”或“缩进”,怎么办?

100%E λλλ-=?=公认

公认%

3.0=8.6328.6327.634-

原因:可能是微调旋钮与移动可动镜M1的精密丝杆之间出现了“滑丝”。

办法:可调节粗调大手轮,使M1重新移到一个粗调位置,再使微调手轮多转几圈,确保微动鼓轮螺帽与螺杆间无间隙(空程误差),转动微动鼓轮,必可看到圆环“冒出”或“缩进”现象。每次正式测量读数前,为防止空程误差,也应使微动鼓轮多转几圈,看到圆环“冒”或“缩”时才往一个方向转动读数,中途微动鼓轮不能反转。

3.如何对M1位置进行读数?

该读数由3部分组成:①标尺读数,只读出整毫米数即可,不需估读;②粗调大手轮读数,直接由窗口读出毫米的百分位,也不需估读;③微动鼓轮读数,由微动鼓轮旁刻度读出,需要估读一位,把读数(格数)乘10-4即毫米数。M1位置读数为上三个读数之和。

4.什么是定域干涉?什么是非定域干涉?

干涉条纹是定域还是非定域的,取决于光源的大小。如果是点光源,条纹是非定域的,在平面镜M1M2反射光波重叠区域内都能看到干涉条纹。如果在扩束镜与分光板间放一毛玻璃,则点光源发出的球面波经毛玻璃散射成为扩展面光源,条纹则是定域干涉(等倾干涉条纹)。

5.观察点光源非定域干涉时,屏上只看到干涉圆弧,没看到干涉圆环,怎么办?

调节水平拉簧螺钉和垂直拉簧螺钉,使干涉条纹往变粗变稀方向移动,必可调出干涉圆环的圆心。

6.迈克耳逊干涉仪中补偿板、分光板的作用是什么?

分光板是后表面镀有半反射银膜的玻璃板,激光入射后经半反射膜能分解为两束强度近似相等光线。

补偿板是折射率和厚度与分光板完全相同的玻璃板,使分光板分解的两束光再次相遇时在玻璃板中通过相同的光程,这样两光束的光程差就和在玻璃中的光程无关了。

7.当反射镜M1和M2不严格垂直时,在屏上观察到的干涉条纹分布具有什么特点?

此时M1与M2'之间形成一楔形空气薄层,用平行光照射将产生等厚干涉条纹,即空气层厚度相同的点光程差相同构成同一级干涉条纹,这些条纹是一系列等间距的直条纹。

8.为什么不能用眼睛直接观察未扩束的激光束?

因为没有扩束的激光能量集中,光强较大,直接射入眼内会使视网膜形成永久性的伤害。

9.在迈克耳逊干涉仪实验中,用激光作光源的调整过程中,看到的是两排光点还是两个光点?为什么?

实验中看到的是两排光点,因为光线在玻璃板与平面镜之间有多次反射。实验中只需调节两排光点中最亮光点即可。

10.实验中为什么用逐差法处理实验数据?

本实验采用分组隔项逐差法,可以充分利用所测数据,更好地估算最佳值,更合理地估算测量误差及不确定度。

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

实验7迈克尔逊干涉仪的调整和使用

实验7 迈克尔逊干涉仪的调整和使用 【实验目的】 1. 了解迈克尔逊干涉仪的原理并掌握调节方法。 2. 观察等倾干涉,等厚干涉的条纹,并能区别定域干涉和非定域干涉。 3. 测定He-Ne 激光的波长。 【实验仪器】 迈克耳逊干涉仪、多光束激光器、叉丝、毛玻璃屏 【预习要求】 1. 叙述非定域干涉和定域干涉特点及观察方法 2.制定观察和测量步骤 【研究内容与方法】 1. 观察非定域干涉条纹并测量光波波长 (1)非定域干涉条纹的调节: 为了获得肉眼直接可观察得到的干涉条纹,要求两束相干光的传播方向夹角必须很小,几乎是共线传播。为此,作如下调节:在He —Ne 激光器前设一小孔光阑,使激光束通过小孔,并经过分光板1G 中心透射到反射镜2M 中心上。然后调节2M 后面三个螺丝,使光点反射像返回到光阑上并与小孔重合。再调从1G 后表面反射到1M 的光束,调节1M 后面三个螺丝,使其反射光到达1G 后表面时恰好与2M 的反射光相遇(两光点完全重合),同时两反射光 在光阑的小孔处也完全重合。这样1M 和2M 就基本上垂直即1M 和2 M '互相平行了。 去掉光阑,该处放一短焦距的透镜,使激光束会聚成一点光源,这时在屏上就可以看到 干涉条纹了,再仔细调节2M 的两个微调拉簧螺钉,使1M 和2 M '严格平行,则在屏上就可看到非定域的圆条纹。 转动手轮使1M 在导轨上移动,观察条纹变化情况。并体会非定域的含义。 (2)测量He —Ne 激光的波长 利用非定域的干涉条纹测定波长。移动1M 以改变d ,记下“冒”出或“缩”进的条纹数N ?,可每累进50条读取一次数据,连续取10个数据,利用(2)式即可算出λ(参见阅读材料)。 表1 波长测量数据记录与处理表

迈克尔逊干涉仪测‘

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δ cos 22122212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλπδcos 22???=d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2cos 4~2 22δ??=a A I (3) Maxima thus occur when δis equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

迈克尔逊干涉仪实验与最佳测量区间的分析

迈克尔逊干涉仪实验与最佳测量区间的分析 摘要:用迈克尔逊干涉仪能观察到等倾干涉、等厚干涉条纹和白光干涉的彩色条纹。产生等倾干涉与等厚干涉不仅与M 1与2'M 之间的夹角α有关,还受其间空气 层厚度d 的影响。在测H e-N e 激光波长时,通过分析,在一定的测量区间内,测得的波长误差较小。本文主要对等倾干涉等厚干涉所遇到的现象、特点及仪器的调节图像的判断进行分析,接着分析白光干涉现象中央条纹的亮暗,最后对测波长的最佳区间分析,并经过实验得出最佳测量范围。 关键词:迈克尔逊干涉仪 等倾干涉 等厚干涉 白光干涉 最佳测量区间 Michelson interferometer experiment with the best measurement interval analysis Abstract: Such dumping intervention, uniform thickness interference, white stripe and color interference fringes as can be observed in the Michelson interferometer. Inclined to interfere in the formation and the thickness intervention with the M 1 and 2'M the angle, which is also affected by the air layer thickness d effects. The He – Ne laser wavelength measurement, after analysis, in a certain interval measurement, the measurement error of wavelength is smaller. In this paper, such as the dumping of interference encountered thick interference phenomena, characteristics and the regulatory apparatus judgment image analysis then analyzes white interference fringes of the central-darkness, in the final test ,after the best wavelength interval analysis, we carry out some experiments and make out the best measurement range Key words: Michelson interferometer dumping intervention uniform thickness interference the white light interference best sampling interval

迈克尔逊干涉仪的调整与使用概要

实验40 迈克尔逊干涉仪的调整与使用 教学目标 实验内容 教学方法 教学过程设计 一.讨论 1.何谓等倾干涉? 图1是迈克尔逊干涉仪的光路原理图。调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1和M 2′之间的空气薄膜产生的薄膜干涉。 当镜M 1⊥M 2,即M 1∥M 2′(图2)时,由扩展光源S 射出的任一束光,经薄膜上下表面反射形成的相干光束①和光束②的光程差为 2cos 22cos nd r d i δ=== (空气薄膜折射率n=1) ① 可见,薄膜厚度d 一定时,光程差δ由入射角i 决定。显然干涉条纹是等i (等倾角) 的轨迹,即由干涉产生的条纹与一定的倾角对应,这种干涉称为等倾干涉。 图1 迈克尔逊干涉仪 2 ′ P 图2 等倾干涉

2、如何利用等倾干涉现象测量光波长? 等倾干涉条纹的亮暗应满足下面条件: 亮条纹 λ=?=δk i d c o s 2 (k=0、1、2…) 暗条纹 2 ) 12(c o s 2λ +=?=δk i d 可见,空气薄层厚度d 一定时,入射角i 越小,即越靠近中心,圆环条纹的级数k 越 高(这与牛顿环正好相反),在中心处,i =0,级次最高。若这时,中心处刚好是亮斑, 则有 λ==δc k d 2 由此式可得 λ??=?)()(2c k d 可见,移动M1镜改变空气薄膜的厚度d ,中心亮斑的级次k c 也会改变。而且当中心亮 斑变化一个级次(Δk c =±1),即每冒出或吞没一个亮条纹,就意味着空气薄层厚度改变了(λ/2),也就是M 1镜移动了(λ/2)的距离。显然,当中心亮斑变化了N 个级次( Δk c =±N ),即冒出或吞没了N 个亮条纹,则有 2 λ =?N d 所以,我们只要测出M 1镜移动的距离Δd (可从仪器读出),并数出冒出或吞没干涉条纹的个数N ,就可以通过上式计算出光源的波长λ。 二.预习检查提问问题 1、 请问迈克尔逊光路图中,P1和P2个起什么作用?为什么光束①和②相遇时会产生干涉? 2、 M1、M2镜背后的三个螺钉作用是什么? 3、 实验如何测量M1镜移动的距离?该仪器能读准到几位有效数字? 4、 在P.56图5-40-3中,光束①和光束②之间的光程差与什么因数有关?(5-40-1)式中的 n 是什么?等于多少? 5、 什么叫“等倾干涉”?干涉产生的明暗条纹应满足什么条件? 6、 实验是根据什么物理现象和什么测量公式测量激光波长的? 7、 你有没有分析过,等倾干涉的同心圆环条纹与牛顿环的同心圆环条纹有什么异同? 三.课后思考题 1. 迈克尔逊干涉仪中的P 1和P 2各起什么作用?用钠光或激光做光源时,没有补偿板

大学物理实验之迈克尔逊干涉仪的调整与应用方法及步骤详解

迈克尔逊干涉实验 实验前请认真阅读本要点: (1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。 测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。 注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。 仿真实验位于: 桌面\大学物理仿真实验\大学物理仿真实验(第二部分),其中 大学物理仿真实验(第二部分).exe为正式版,大学物理仿真实验示教版(第二部分).exe为示教版,同学们在使用之前可先看示教版。 (2)实验内容 1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。 2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。 3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。 4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。 (3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记

环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。 (4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。(一些问题详见附录4 疑难解答) 测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。 测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。 (5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次 M镜 1 的位置,至少连续测8组,将数据填入表格,并观察其实验现象。 测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。 注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。 (6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。 (7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪(实验报告) 一、实验目的 1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2、区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne 激光波长 二、实验仪器 迈克尔逊干涉仪、He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。 (图一) (图二) 三、实验原理 ①用He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板P1和P2上后就将光分成了两束分别射到M1 和M2 上,反射后通过P1 、P2 就可以得到两束相关光,此时就会产生干涉条纹。 ②产生干涉条纹的条件,如图2 所示,B 、C 是两个相干点光源,则到A 点的光程差δ =AB-AC=BCcosi , 若在A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数) ,因为i 和k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k? 。 四、实验步骤 1、打开激光电源,先不要放扩束镜,让激光照到分光镜P1 上,并调节激光的反射光照射到激光筒上。 2、调节M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。 3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。没有的话重复2 、3 步骤,直到产生同心圆的干涉条纹图案。 4、微调M2是干涉图案处于显示屏的中间。 5、转动微量读数鼓轮,使M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。记下当前位置的读数d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进30 次则记一次数据,共记录10 次数据即d0、d1 (9) 6、关闭激光电源,整理仪器,处理数据。 五、实验数据处理 数据记录: 数据处理: Δd0=d5-d0=0.05202mm??????? Δd1=d6-d1=0.05225mm Δd2=d7-d2=0.04077mm??????? Δd3=d8-d3=0.04077mm Δd4=d9-d4=0.05071mm Δd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mm

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用 迈克尔逊干涉仪是一种典型的分振幅双光束干涉装置,可以用来研究多种干涉现象,并进行较精密的测量。其在近代物理和近代计量技术中有着重要的应用,如测量标准长度等。从迈克尔逊干涉仪发展而成的各种干涉仪(如泰曼干涉仪),在制造精密光学仪器的工作中应用得相当广泛。 【实验目的】 1.了解迈克尔逊干涉仪的构造,并学会该仪器的调节与使用。 2.用迈克尔逊干涉仪测定钠光的波长。 【实验仪器】 迈克尔逊干涉仪、钠灯及其电源、叉丝。 【实验原理】 1.仪器构造简介 实验室中最常用的迈克耳逊干涉仪,其原理图和结构图如图1和图2所示。M 1和M 2 是在相互垂直的 图1 图2 两臂上放置的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可沿臂轴前后移动,其移动距离由转盘读出。仪器前方粗动手轮分度值为10-2mm,右侧微动手轮的分度值为10-4mm,可估读至10-5mm,两个读数手轮属于蜗轮蜗杆传动系统。在两臂轴相交处,有一与两臂轴各成45o的平行平面玻璃板P 1 ,且在P1的第二平面上镀以半透(半反射)膜,以便将入射光分成振幅近乎相等的反射光1和透射 光2,故P 1板又称为分光板。P 2 也是一平行平面玻璃板,与P1平行放置,厚度和折射率均

与P 1相同。由于它补偿了1与2之间附加的光程差,故称为补偿板。 从扩展光源S 射来的光,到达分光板P 1后被分成两部分。反射光1在P 1处反射后向着M 1前进;透射光2透过P 1后向着M 2前进。这两列光波分别在M 1、M 2上反射后沿着各自的入射方向返回,最后都到达E 处。既然这两列光波来自光源上同一点O ,因而是相干光,在E 处的观察者能看到干涉图样。 由于从M 2返回的光线在分光板P 1的第二面上反射,使M 2在M 1附近形成一平行于M 1 的虚像M?2,因而光在迈克耳逊干涉仪中自M 1和M 2的反射,相当于自M 1和M?2的反射。由此可见,在迈克耳逊干涉仪中所产生的干涉与厚度为d 的空气膜所产生的干涉是等效的。 2.实验原理 当M 1和M?2严格平行时,所得的干涉为等倾干涉。所有倾角为i 的入射光束,由M 1和M?2反射光线的光程差Δ均为 2cos d i ?= (1) 式中i 为光线在M 1镜面的入射角,d 为空气薄膜的厚度,它们将处于同一级干涉条纹,并定位于无限远。这时,在图1中的E 处,放一会聚透镜,在其焦平面上(或用眼在E 处正对P 1观察),便可观察到一组明暗相间的同心圆纹。这些条纹的特点是: 干涉条纹的级次以中心为最高。在干涉纹中心,因i =0,由圆纹中心出现亮点的条件 2d k λ?== (2) 得圆心处干涉条纹的级次 2d k λ = (3) 当M 1和M ′2的间距d 逐渐增大时,对于任一级干涉条纹,例如第k 级,必定以以其 cos k i 的值来满足2cos k d i k λ=,故该干涉条纹向k i 变大(cos k i 变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d 增加/2λ时,就有一 个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为/2λ。 因此,只要数出涌出或陷入的条纹数,即可得到平面镜M 1以波长λ为单位的移动距离。显然,若有N 个条纹从中心涌出时,则表明M 1相对于M′2移远了 2d N λ ?= (4) 反之,若有N 个条纹陷入时,则表明M 1和M?2移近了同样的距离。根据(4)式,如果已知光波的波长λ,便可由条纹变动的数目,计算出M 1移动的距离和干涉条纹变动的数目,便可算出光波的波长。 2d N λ?= 本次实验每组测量N 取50个条纹的“涌出”或“陷入”,并在迈氏干涉仪上读出12 ,d d ,便 可知d ?的值,则 2 2410 50 d d λ-= ?=???mm 4 410d =???nm 【注意事项】 ①该仪器很精密,各镜面必须保持清洁,切忌用手触摸光学面,精密丝杆和导轨的精度也是很高的,操作时要轻调慢拧。 ②为了使测量结果正确,必须消除螺距差(回程误差),也就是说,在测量前,应将微动手轮按某一方向(例如顺时针方向)旋转几圈,直到干涉条纹开始移动以后,才可开始读数测量(测量时仍按原方向转动)。 ③做完实验后,要把各微动螺丝恢复到放松状态。

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉仪试验课教案

《迈克尔逊干涉仪》教案 教学方式: 讲述和演示(30分钟),学生实验(100-120分钟) 时间:30分钟 一、背景知识介绍: 1883年美国物理学家迈克尔逊和莫雷合作,为证明“以太”的存在而设计制造了世界上第一台用于精密测量的干涉仪--迈克尔逊干涉仪,它是在平板或薄膜干涉现象的基础上发展起来的。迈克尔逊干涉仪在科学发展史上起了很大的作用,著名的迈克尔逊干涉实验否定了“以太”的存在。发现了真空中的光速为恒定值,为爱因斯坦的相对论的建立奠定了基础。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 二、实验目的: 熟悉迈克尔逊干涉仪的结构和工作原理 掌握迈克尔逊干涉仪的调节方法,观察等倾干涉条纹 测量钠黄光波长以及双谱线的波长差 了解光源的时间相干性 测量薄膜介质折射率 三、实验仪器: 迈克尔逊干涉仪、钠光灯 四、讲述及演示主要内容 1. 介绍迈克尔逊干涉仪结构原理 如迈克尔逊干涉仪光路图所示,点光源S发出的光射在分光镜G1,G1右表面镀有半透半反射膜,使入射光分成强度相等的两束。反射光和透射光分别垂直入射到全反射镜M1和M2,它们经反射后再回到G1的半透半反射膜处,再分别经过透射和反射后,来到观察区域E。如到达E处的两束光满足相干条件,可发生干涉现象。 G2为补偿扳,它与G1为相同材料,有相同的厚度,且平行安装,目的是要使参加干涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 M2为可动全反射镜,背部有三个粗调螺丝。 (迈克尔逊干涉仪光路图见实验展板) 2. 可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△(mm) (1)××在mm刻度尺上读出。

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

迈克尔逊干涉仪的使用实验报告

学生物理实验报告 实验名称迈克尔逊干涉仪的使用 学院专业班级报告人学号 同组人学号 同组人学号 同组人学号 理论课任课教师 实验课指导教师 实验日期 报告日期 实验成绩 批改日期

实验仪器 迈克尔逊干涉仪、He-Ne激光器。 G 处的观察者就能

光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。 当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。 2.单色光波长的测定 用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M2和M1反射的两列相干光波的光程差为 Δ=2dcos i (1) 其中i为反射光⑴在平面镜M2上的入射角。对于第k条纹,则有 2dcos ik=k λ (2) 当M2和M1′的间距d逐渐增大时,对任一级干涉条纹,例如k级,必定是以减少cosik的值来满足式(2)的,故该干涉条纹间距向ik变大(cos ik值变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d增加λ/2时,就有一个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为λ/2。 因此,当M2镜移动时,若有N个条纹陷入中心,则表明M2相对于M1移近了 Δd=N (3) 反之,若有N个条纹从中心涌出来时,则表明M2相对于M1移远了同样的距离。 如果精确地测出M2移动的距离Δd,则可由式(3)计算出入射光波的波长。 3.测量钠光的双线波长差Δλ 钠光2条强谱线的波长分别为λ1=589.0 nm和λ2=589.6 nm,移动M2,当光程差满足两列光波⑴和⑵的光程差恰为λ1的整数倍,而同时又为λ2的半整数倍,即 Δk1λ1=(k2+)λ2 这时λ1光波生成亮环的地方,恰好是λ2光波生成暗环的地方。如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失)。那么干涉场中相邻的2次视见度为零时,光程差的变化应为 ΔL=kλ1=(k+1)λ2(k为一较大整数) 由此得 λ1-λ2== 于是 Δλ=λ1-λ2== 式中λ为λ1、λ2的平均波长。 对于视场中心来说,设M2镜在相继2次视见度为零时移动距离为Δd,则光程差的变化ΔL应等于2Δd,所以 Δλ=(4) 对钠光=589.3 nm,如果测出在相继2次视见度最小时,M2镜移动的距离Δd ,就可以由式(4)求得钠光D双线的波长差。 4.点光源的非定域干涉现象 激光器发出的光,经凸透镜L后会聚S点。S点可看做一点光源,经G1(G1未画)、M1、M2′

迈克尔逊干涉仪的调整与应用实验要点

实验要点 实验前请认真阅读本要点: (1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。 测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。 注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。 仿真实验位于: 桌面\大学物理仿真实验\大学物理仿真实验v2.0(第二部分),其中 大学物理仿真实验v2.0(第二部分).exe为正式版,大学物理仿真实验示教版v2.0(第二部分).exe为示教版,同学们在使用之前可先看示教版。 (2)实验内容 1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。 2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。 3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。 4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。 (3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。

(4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。(一些问题详见附录4 疑难解答) 测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。 测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。 (5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次 M镜 1 的位置,至少连续测8组,将数据填入表格,并观察其实验现象。 测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。 注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。 (6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。 (7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录 2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据); (8)在预习报告后根据实际实验加上实验内容、实验步骤; (9)重新对仪器进行调节,熟悉调节要点,并观察相应的实验现象,掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用; (10)掌握迈克尔逊干涉仪仿真实验的使用,并利用其进行复习及进行实验,

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

相关文档
相关文档 最新文档