文档库 最新最全的文档下载
当前位置:文档库 › 基于单片机的数控恒流源设计

基于单片机的数控恒流源设计

基于单片机的数控恒流源设计
基于单片机的数控恒流源设计

摘要

本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并由液晶显示(LCD)显示出实际输出电流值和电流设定值。本系统由单片机程控输出数字信号,经过D/A转换器(TLV5638)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。在通过键盘设定好需要输出电流值后,单片机对设定值按照一定的算法进行处理。经D/A输出电压控制恒流源电路输出相应的电流值。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转变后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数据形式的回馈环节,使电流更加稳定,这样构成稳定的压控电流源。实际测试结果表明,本系统与传统稳压电流源相比,具有操作方便、输出电流稳定度高的特点。

关键词:直流电流源;单片机;压控电流源

ABSTRACT

In this system the DC source is center and 89S52 version single chip microcomputer (SCM) is main controller, output current of DC power can be set by a keyboard which step level reaches 1mA, while the real output current and the set value can be displayed by LCD. In the system, the digitally programmable signal from SCM is converted to analog value by DAC (TLV5638), then the analog value which is isolated and amplified by operational amplifiers, is sent to the base electrode of power transistor, so an adjustable output current can be available with the base electrode voltage of power transistor. Using the keyboard to set the needed output current value, The SCM based on some specific algorithm to deal the certain settings for processing. Corresponding voltage output by the ADC output voltage-controlled current source circuit.On the other hand, The constant current source can be monitored by the SCM system real-timely, its work process is that output current is converted voltage, then its analog value is converted to digital value by ADC, finally the digital value as a feedback loop is processed by SCM so that output current is more stable, so a stable voltage-controlled constant current power is designed. The test results have showed that this system, compared with the traditional regulated current source, has easy to operate and features high output current stability.

KEY WORDS:DC Current Source;single chip microcomputer(SCM);V oltage-controlled -current source

目录

第一章绪论 ........................................................................................ 错误!未定义书签。

1.1恒流源的发展历程 ...................................................................... 错误!未定义书签。

1.1.1 电真空器件恒流源的诞生................................................... 错误!未定义书签。

1.1.2 晶体管横流源的产生和分类............................................... 错误!未定义书签。

1.1.3 集成电路恒流源的出现和种类............................................. 错误!未定义书签。

1.2恒流源意义.................................................................................... 错误!未定义书签。

1.3课题的主要内容............................................................................ 错误!未定义书签。

1.4论文的总体结构............................................................................ 错误!未定义书签。第二章方案论证............................................................................... 错误!未定义书签。

2.1系统简介........................................................................................ 错误!未定义书签。

2.2系统总体设计................................................................................ 错误!未定义书签。

2.3方案论证 ........................................................................................ 错误!未定义书签。

2.3.1 主控器................................................................................................................... - 5 -

2.3.2 供电电源................................................................................. 错误!未定义书签。

2.3.3 恒流源..................................................................................... 错误!未定义书签。

2.3.4 D/A和A/D转换器的选取 ..................................................... 错误!未定义书签。

2.3.5 输出电流检测......................................................................... 错误!未定义书签。

2.3.6 键盘......................................................................................... 错误!未定义书签。

2.3.7 显示......................................................................................... 错误!未定义书签。第三章系统硬件设计 ............................................................................................... - 11 -3.1主控电路设计 ................................................................................ 错误!未定义书签。

3.2供电电源设计 .............................................................................. 错误!未定义书签。

3.2.1 主电源..................................................................................... 错误!未定义书签。

3.2.2 单片机电源............................................................................. 错误!未定义书签。

3.3恒流源电路设计............................................................................ 错误!未定义书签。

3.4D/A转换电路设计 ...................................................................... 错误!未定义书签。

3.5电流检测电路设计 (20)

3.5.1电流检测原理介绍.................................................................. 错误!未定义书签。

3.5.2 采样电阻的计算................................................................... 错误!未定义书签。

3.6键盘电路设计................................................................................ 错误!未定义书签。

3.7显示电路设计................................................................................ 错误!未定义书签。第四章系统软件设计 ..................................................................... 错误!未定义书签。

4.1控制算法 ........................................................................................ 错误!未定义书签。

4.2系统软件的结构 ............................................................................ 错误!未定义书签。

4.2.1 总体流程................................................................................. 错误!未定义书签。

4.2.2 按键部分流程图..................................................................... 错误!未定义书签。

4.2.3 LED显示中断子程序流程图 ................................................. 错误!未定义书签。

第五章总结 ........................................................................................ 错误!未定义书签。参考文献 ............................................................................................... 错误!未定义书签。致谢.................................................................................................... 错误!未定义书签。

第一章绪论

随着电子技术的发展,数字电路应用领域的扩展,现今社会产品智能化、数字化已成为人们追求的一种趋势,设备的性能,价格,发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件越优越,那么设备的寿命更长。基于此,人们对数控恒定电流器件的需求越来越迫切。当今社会,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术才刚刚起步有待发展,高性能的数控恒流器件的开发和应用存在巨大的发展空间。

目前恒流电流源是科研、航天航空、半导体集成电路路生产领域以及计量领域中一种很重要的电子设备。随着技术的发展,对恒流电流源的稳定性、精度等要求越来越高,而传统的模拟恒流源由于模拟电路的复杂性,将越来越难满足高稳定性的应用场合。随着数字电子技术的发展,在计量领域、电量和非电量测量的仪表、工业控制系统中应用数控直流恒流源。数控直流恒流源与传统稳压电流源相比,具有操作方便、输出电流稳定度高的特点。

本数控直流恒流源系统在模拟恒流电流源技术的基础上,以51系列单片机为控制核心,设计操作方便、输出电流稳定度高的数字控制直流恒流源系统。以满足技术发展的实际需要。

1.1 恒流源的发展历程

恒流源,是一种能向负载提供恒定电流之电路.它既可以作为其有源负载,又可以为各种放大电路提供偏流以稳定其静态工作点,以提高放大倍数.并且在脉冲产生电路、差动放大电路中得到了广泛应用.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探讨这些问题.

1.1.1 电真空器件恒流源的诞生

世界上最早的恒流源,大约出现在20世纪50年代早期。当时采用的电真空器件是镇流管,优于镇流管有稳定电流的功能,所以有用于交流电路,常被用来稳定电子管的灯丝电流。

电子管通常不能单独作为横流组件,但可用它来构成各种横流电路。由于电子管是高雅小电流器件,因此用简单的晶体管电路难于获得高雅小电流恒流源,用电子管电路却容易实现,并且性能相当好。

1.1.2 晶体管横流源的产生和分类

进入60年代,随着半导体技术的发展,设计和制造出了各种性能优越的晶体管和恒流源,并在实际中获得可广泛的应用。

晶体管恒流源电路可封装在同一外壳内,成为一个具有横流功能的独立器件,用它

可构成直接调整型恒流源。用晶体管做调整组件的各种开环和死循环的恒流源,在许多电子电路中得到了应用。但晶体管恒流源的恒流源的电流稳定度一般不高,且最大输出电流也不活几安培。它适用于那些对稳定度要求不太高的场合。

1.1.3 集成电路恒流源的出现和种类

到了70年代,半导体集成技术的发展,使得恒流源的研制进入了一个新的阶段。长期以来采用分离组件组装的各种恒流源,现在可以集成在一块很小的硅片上面仅需外接少量的组件,集成电路恒流源不仅减小了体积和重量,简化了设计和调试步骤,而且提高了稳定性和可靠性。在各种恒流源电路中,集成电路恒流源的性能堪称最佳。

1.2 恒流源意义

按照恒流源电路主要组成器件的有所不同, 一般而言可分为三类:晶体管恒流源、场效应管恒流源、集成运放恒流源。

恒流源、交流恒流源、直流恒流源、电流发生器、大电流发生器又叫电流源、稳流源,是一种宽带谱,高精度交流稳流电源,具有响应速度快,恒流精度高、能长期稳定工作,适合各种性质负载(阻性、感性、容性)等优点。

恒流源的应用范围非常广泛,恒流源能够向负载提供恒定电流的电源,在许多情况下是必不可少的。如在通用的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电源就会相应的减少,为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整期输出电压,从而使劳动强度降低,生产效率得到提高。恒流源还被广泛应用于测量电路中,它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数,并且在差动放大电路、脉冲产生电路中得到广泛应用。例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。

除此之外,现行扫描锯齿波的获得,有线通信工电源,电泳、点解、电镀等化学加工装置电源,电子束加工机、离子注入机等电子光化学设备中的供电电源也都必须用用恒流源!也用于检测热继电器、塑壳断路器、小型短路器及需要设定额定电流、动作电流、短路保护电流等生产场合。

恒流源是一种能够向负载提供恒定电流的电源。恒流源的应用范围非常广泛,并且在许多情况下必不可少的。它既可以为各种放大电路提供偏置电流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数。并且在差动放大电路、脉冲产生电路中得到了广泛应用。

目前,我国电源产业与发达国家相比,存在着很大的差距和不足:在电源产品的质量、可靠性、开发投入、生产规模、工艺水平、先进检测设备、智能化、网络化、持续创新能力等方面的差距为10-15年,尤其是实现直流恒流源的智能化、网络化方面的研究不是很多。我国恒流源设备长期处于量限小、精度低的状态,国产仪器多为“稳压型”

而非“恒流型”使得其应用场合受到一些限制。目前国内所能见到的恒流源大豆只有一个源,而无较高准确度输出指示,给使用带来不便,特别是用于计量领域,比如校验电流表,较理想的方案是能带有标准显示的恒流源。市售产品最大电流为30A,稳定度为0.01%,准确度0.05级即算最好,但往往一个产品不能同时具备着几项指标。20年来未有突破性进展,如现在仍使用的YJ27,YJ10等YJ系列恒流源,属70年代产品,甚至硬件上是“分立器件”而无集成电路器件,近年来一些国内产家开发的新产品其性能指针也无实质性突破。所以,对数控直流恒流源的研究非常重要。

本文正是应社会发展的需求,研制出一种基于单片机的高性能的数控直流恒流源。本数控直流恒流源系统输出电流稳定,输出电流可在1000mA范围内设定,因而可实际应用于需要高稳定度小功率直流恒流源的领域。

1.3 课题的主要内容

该系统以直流稳压电源和稳流电源为核心,结合单片机最小控制系统实现对输出电流在量程范围内步进可调,精度要求高。实现途径很多,可以用DAC的模拟输出控制电源的基准电压或取样电阻,或者用其它更有效的方法,因此如何选择简单有效的方法是本课题需要解决的首要问题。

数控恒流源实现以下功能:

(1)可手动设定输入电流值(范围为20mA~2A)。

(2)有输出电流值数字显示,输出电流范围为20mA~2A。

(3)输出电流恒定,改变负载电阻,输出电压在24V以内变化时,输出电流变化的绝对值≤输出电流值的0.1%=1mA。

(4)直接用220V市电供电。

(5)纹波小,纹波电流≤0.2A。

(6)步进电流值,步进的分辨率高,步进1mA。

(7)输出电压范围为0~24V。

1.4 论文的总体结构

第一部分简要介绍课题的背景、意义、国内外研究现状,介绍本文的主要研究内容,包括实现的目标以及主要性能指针。

第二部分提出了数控直流恒流源的总体设计思路和几种实现方案论证,以及相关系统实现的功能,对这些方案的可行性进行比较分析,选择了一种基于51单片机系统的数控直流恒流源的方案,并对该方案运用的基础知识和使用的器件作出扼要的介绍。

第三部分模块化详细阐述了基于51单片机数控直流恒流源的系统整体结构和设计图,包括主控器部分、恒流控制部分、显示部分、键盘部分、电源部分、测电流部分。

第四部分主要阐述了数控直流恒流源的软件系统的设计思路和软件设计流程,以及

显示部分、键盘部分软件设计流程设计。

第五部分对本数控直流恒流源给出了本课题的结论。

第二章方案论证

2.1 系统简介

本系统包括电源交换处理及分配模块、恒流源模板、单片机主控模板、键盘输入模块、LCD显示模块、模数转换(A/D)模块、数模转换(D/A)模块、语音模块和实时时钟模块9个部分。在通过键盘设定好需要输出电流值后,单片机对设定值按照一定的算法进行处理。经D/A输出电压控制恒流源电路输出相应的电流值。单片机通过采样恒流源电路上串接的采样电阻的电压,计算出此时恒流源电路的输出电流值并与设定值进行比较,以控制D/A的输出从而实现对恒流源的输出电流进行调节,使输出电流能实时跟随设定值。

2.2 系统总体设计

数控直流恒流源的总体原理框图如图1.1所示。

图1.1 数控直流恒流源的总体原理框图

包括主控器、供电电源、恒流源、键盘、显示、模数转换(A/D)模块、数模转换(D/A)模块7个部分。下面将介绍各个部分的总体设计与选型方案论证。

2.3方案论证

2.3.1 主控器

本题要求制作的直流电流源是数控式的,可以显示输出电流的给定值以及实际测量值,因此必然要结合微处理器,并且通过微处理器的控制作用对输出电流进行精确校正。本文主控器采用51系列单片机,负责控制与协调其它各个模块工作,并进行简单的数

字信号处理。在整个数控直流恒流源系统中,主控器是系统的控制中心,其工作效率的高低关系到系统效率的高低以及系统运行的稳定性。而51系列单片机具有成本低,稳定性好,且运行速度基本能满足该系统的要求。在本系统中,将采用Atmel公司的

AT89S52。此单片机的运算能力强,软件编程灵活,自由度大,能够实现对外围电路的智能控制。

2.3.2 供电电源

通常有俩中方案

方案一:采用线性恒流电路,该方案具有噪声干扰小,电路简单,工作稳定的特点,但是由于功率器件工作于线性状态功率损耗大,发热较大,在满足设计要求时在极限下功率管的消耗功率接近20W。

方案二:采用开关恒流方式进行电流控制,由于功率管只工作于打开或者关闭状态,功率管损耗较低。发热量很小,但是由于开关管对强电流进行开关操作,干扰大大高于线性恒流源。

在数控直流恒源源中,对供电电源的要求很高,需要大功率的电源来供电。而单纯采用一般的线性稳压器件很难完成该部分的功能。随着开关电源技术的飞速发展,开关电源的工作效率越来越高,同时能提供高功率大电流的输出。在本系统中,首先设计一个基于支持大电压输入输出,大电流输出的开关稳压器的主电流,然后利用普通开关稳压器来降压为单片机系统提供电源。

在系统中,主电源采用凌特(Linear)公司的LT3724,第二级开关稳压器采用LM2576-5来实现为单片机系统的供电。

2.3.3 恒流源

恒流源的实现方式有多种,有运算放大器组成的恒流源,三极管组成的镜像电流源、运算放大器加达林顿管组成的恒流源等。

(1)运算放大器组成的恒流源

运算放大器组成的恒流源主要是利用了运算放大器两个基本特性:虚短和虚断,其典型原理图如图1.2所示。

图1.2 运算放大器组成的恒流源典型原理图

(2)三极管组成的镜像电流源

由三极管组成的镜像电流源的典型电路图如图1.3。

图1.3 三极管组成的镜像电流源典型电路

(3)运算放大器加达林顿管组成的恒流源

运算放大器加达林顿管组成的恒流源的典型电路如图1.4所示。

图1.4 运算放大器加达林顿管组成的恒流源的典型电路

在本数控直流恒流源中,采用了运算放大器加达林顿管组成的恒流源电路,采用运算放大器OP07,加达林顿管采用TIP127,TIP122。同时利用D/A转换器TLV5638作为电压输入控制。

2.3.4 D/A和A/D转换器的选取

数模转换和模数转换一般有串口和并口。如并口芯片ADC0809和DAC0832,但并口芯片所占的端口资源较多,对埠的利用率低,其优点是转换速度快。串口芯片由于接口简单,控制方便,系统稳定性好,得到广泛的应用。

D/A转换芯片DAC0832:典型的D/A转换芯片DAC0832,是采用CMOS工艺制造的8位单片D/A转换器。8位D/A,分辨率为1/256,不能够满足本设计的要求。

A/D转换芯片:ADC0809是采样频率为8位的、以逐次逼近原理进行模—数转换的器件。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,

只选通8个单断模拟输入信号中的一个进行A/D转换。由于本设计只有输出电流的采集,8路输入通道,但不能够满足本系统的设计精度要求。

本文采用TLV5638和AD977A都是采用串口的ADC和DAC芯片,在设计中利用上两种芯片不仅节约单片机端口资源,而且分辨率较高,能满足设计要求。所以本系统采用。

下面详细的介绍下TLV5638和AD977A串口芯片。

D/A转换芯片TLV5638:TLV5638是TI公司的12位D/A转换器,具有两个输出信道,数据传输接口为3线的串行接口,该接口能够与常用的微控制器或者微处理器直接相连。每次传输数据由16位的数据组成一帧,其中4位控制命令字,12位输出数据。TLV5638输出经过两个缓冲器,DAC的可编程建立时间使得设计人员能够优化速度与功耗分配的关系。同时内置片上电压参考源,该参考源最大能达到1mA的电流,因此也可以将其作为整个系统的参考源,减少了系统设计的复杂性,完全能够满足本设计的要求。

1 2 3 4

5

6

7

8 DIN

SCLK

/CS

OUTA AGND

REF

OUTB

VDD

图1.5 tlv5638引脚配置图

(1)DIN:串行数据输入

(2)SCLK:串行接口时钟输入

(3)/CS:片选信号输入,低电平效

(4)OUTA:A信道模拟电压输出

(5)AGND:模拟地

(6)REF:模拟电压参考输入/输出

(7)OUTB:B信道模拟电压输出

(8)VDD:供电电源(2.7V~5.5V)

A/D转换芯片AD977A:AD977A是一款逐次逼近型A/D转换器,AD977A具有以下主要特点:单电源5V供电;最高采样速率为200Ks/s;内部2.5V参数电源可选;高速串行数据接口;内部时钟可选;低功耗,最大功率100MW,省电模式下50Uw ;熟人电压范围:单极性0~4V,0~5V和0~10V;双极性-3.3~+3.3V,-5~+5V和-10~+10V;采用20针DIP或者SOIC封装。AD977A内部功能框图如图下;

CAP

R1

R2 R3SYNC BUSY

DATA

AD977A的控制引脚的功能描述如下:

(1)R1IN、R2IN、R3IN为模拟信号输入端;

(2)AGND1、AGND2为模拟地;

(3)DGND为数字地:

(4)CAP为缓冲输出参考端;

(5)REF为基准电压;

(6)SB/BTC用于选择输出数据格式,高电平为二进制代码,低电平为二进制补码;

(7)EXT/INT用于选择DATACLK时钟模式,高电平选择外部时钟,低电平选择内部时钟;

(8)SYNC是外部时钟模式下帧同步信号输出:DATACLK为串行数据时钟端;

(9)DATA用于输出转换结果;

(10)TAG为级联输入端;

(11)R/C用于读取/转换控制信号,低电平时启动A/D转换,高电平时读取A/D转换结果;

(12)CS是片选信号;

(13)BUSY是工作状态输出,当AD977A进行模数转换时为低电平,转换结束后恢复高电平;

(14)PWRD为低电平输入端;

(15)V ANA为模拟电压输出端;

(16)VDIC为数字电压输出端;

2.3.5 输出电流检测

产生电流可以采用在电阻两端加电压的方法,测量电流一般采用的方法是测量电流

流经电阻两端的电压进行间接计算得到的。因此在产生电流或者测量电流值时,取样电阻的选择非常重要。

方案一:采用普通电阻。

在电流比较小的情况下,普通的1/4W或者1/8W的电阻可以被用作电流测量,但是本题需要测量的是电流源的输出电流,最大需要达到2A。因此即使是比较小的电阻,如1Ω电阻,通过2A电流时功率也已经达到4W,大大超过普通电阻的额定功率,电阻将被烧断。因此在本系统中,测量电流的取样电阻不能使用普通电阻。

方案二:采用大功率电阻。

为了满足流过大电流的要求,可以采用大功率电阻,如1Ω/10W的电阻,通过2A 电流时一定不会被烧断。但是此时流过的大电流将会使电阻大量发热,导致电阻温度急剧上升。一般的大功率电阻在温度很高时,将产生比较严重的阻值温度漂移。在产生电流的情况下,由于电压值与实际的电流值并非一一对应,将产生错误的电流;在测量电流的情况下,测量电流也会随着阻值的温度漂移而产生严重的变化,将产生很大的测量误差。因此用于这些情况下的取样电阻也不能使用温度漂移严重的普通大功率电阻。

方案三:采用康锰铜电阻丝。

康锰铜电阻丝是电流测量中很常用取样电阻,其特点在于温度漂移量非常小。经过测试,在1Ω的康锰铜电阻丝上通过约2A电流,由于产生的热量引起的升温,只会引起0.02Ω左右的阻值变化,对电流的稳定起了很重要的作用。另一方面,1Ω的康锰铜电阻丝约长1m,由于和外界接触面积大,即使通过大电流也能很快的散热,进一步的减小温度漂移带来的影响。

在本数控直流恒流源系统中,鉴于上面分析,本设计采用方案三。采用ADI公司生产的AD977A对恒流源的采样电阻两端的电压进行采样来实现,采样电阻采用阻值收温度影响很小的康铜丝电阻。

2.3.6 键盘

比较常用的键盘有两种,一种是矩阵式键盘,另一种是采用专用的按键扫面控制芯片实现的键盘。下面将分别介绍矩阵式键盘和专用按键扫描控制芯片键盘。

(1)矩阵式键盘

矩阵式键盘,其将键盘排列成矩阵形式,需要通过软件对按键进行判断和定义,且接口电路由单片机系统直接访问和控制,键盘的扫描、去抖动、判断和编码等操作都需要单片机完成,这样会使得单片机的工作量非常大,使单片机的效率降低。

(2)专用按键扫描控制芯片键盘

专用的按键扫描控制芯片能够独立的完成对键盘中按键的扫描与管理,并且通过简单接口与微控制器进行连接。使用按键扫描控制芯片来完成微控制器的键盘管理,可以大大的提高微控制器的工作效率。

在本数控直流恒流源中,采用周立功公司生产的ZLG7289键盘扫描控制集成芯片。

2.3.7 显示

一般情况下,显示单元可以采用一般的数码管显示,因为数码管具有接线简单,成本低廉,配置简单灵活,编程容易,对外界环境要求较低,易于维护等特点。但是,考虑到普通数码管能够显示的信息量有限,并且一般情况下要显示较多的信息所占用的系统I/O资源较多。

在本系统中,考虑到显示的内容以及系统的实用性,采用液晶显示(LCD)。液晶显示具有功耗低、体积小、质量轻、无辐射危害、平面直角显示以及影响稳定不闪烁、画面效果好、分辨率高、抗干扰能力强等优点。点阵式LCD不仅可以显示字符、数字,还可以显示各种图形、曲线及汉字,并且可以实现屏幕上下左右滚动、动画、闪烁、文本特征显示等功能。

本系统采用的点阵式LCD型号为FYD12864。

综合上述,数控直流恒流源的设备选型如表1.1所示。

如表1.1数控直流恒流源的设备选型

器件编号器件名称型号

1 单片机AT89S52

2 稳压器LT3724,LM2576-5

3 运算放大器OP07

4 达林顿管TIP127,TIP122

5 D/A转换器TLV5638

器件编号器件名称型号

6 康铜丝0.25

7 A/D转换器AD977A

8 按键扫描控制芯片ZLG7289

9 点阵LCD FYD12864

第三章系统硬件设计

根据数控直流电流源的要求,由于要求有较大的输出电流范围和较精确的步进要求以及较小的纹波电流,所以不适合采用简单的恒流源电路FET和恒流二极管,亦不适合采用开关电源的开关恒流源,否则难以达到输出范围和精度以及纹波的要求。根据系统要求采用D/A转换后接运算放大器构成的功率放大,控制D/A的输入从而控制电流值的方法。

系统的总体硬件框图如图1.6所示,主要有A T89S52单片机系统、OP07与TIP127,TIP122组成的恒流源电路、D/A转换器TLV5638电路、采样电阻与A/D转换器AD977A 组成的电流检测电路、ZLG7289键盘、FYD12864组成的显示电路等。

图1.6 系统的总体硬件框图

3.1主控电路设计

AT89S52是一个低功耗、高性能CMOS 8位单片机,引脚图如图1.7所示。

图1.7 AT89S52 引脚图

主要功能特性;

(1)兼容MCS-51指令系统

(2)2个外部中断源

(3)3个16位可编程定时/计数器

(4)32个双向I/O口

(5)灵活的ISP字节和分页编程

(6)看门狗(WDT)电路

(7)中断唤醒省电模式

(8)全双工UART串行中断口线

(9)时钟频率0-33MHz

(10)4.5-5.5V工作电压

(11)256×8bit内部RAM

(12)3级加密位

(13)低功耗空闲和省电模式

(14)双数据寄存器指针

(15)软件设置空闲和省电功能

单片机各功能部件的运行都是以时钟频率为基准的,有条不紊地进行工作。因而时

钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。常用的时钟电路方式有两种:一种是内部时钟方式,一种是外部时钟方式,这里采用的是内部时钟方式,外接晶振。时钟电路由片外晶体、微调电容和单片机的内部电路组成。选取频率为11.0592MHz的晶振,微调电容是瓷片电容。

主控电路即为一个51系列单片机的最小系统,单片机选择了Atmel公司的AT89S52,主控电路如图1.8所示。

图1.8 主控电路

3.2 供电电源设计

3.2.1 主电源

主电源需要为系统提供30V,3A以上的电源,系统中,采用了LT3724开关稳压器。LT3724是凌特(Linear)公司生产的一款面向中等功率、低组件数目、低成本和高效电源的DC/CD控制器。它提供了一个4V~6V的输入电压范围,其中,最小启动电压为7.5V,能够实现降压、升压、反相的SEPIC拓扑结构。LT3724具有突发模式操作功能,能将静态电流降至100μA以下,并可以在轻负担的条件下维持搞的效率。一个内部的高电压偏置稳压器为进行简单的偏置创造条件,并可以被反向驱动以提高效率。

(1)LT3724的基本特性

LT3724的基本特性参数如下: (1)宽输入范围:4V 至 60V (2)输出电压高达 36V (降压)

(3)突发模式 (Burst Mode) 操作:电源电流 <100μA (4)10μA 停机电源电流 (5)基准精度达 ±1.3% (6)200kHz 固定频率 (7)驱动 N 沟道 MOSFET (8)可编程软起动 (9)可编程欠压闭锁

(10)用于栅极驱动的内部高电压稳压器 (11)热停机

(12)电流限值不受占空比的影响 (2) LT3724的引脚配置 LT3724的引脚配置如图1.9所示

1234678

9

10

11

12131415165VIN NC CSS BURST_EN VFB VC SGND

BOOST

TG SW NC VCC PGND

SENSE+SENSE-/SHDN

图1.9 LT3724的引脚配置

LT3724的引脚说明

(1)VIN :电压输入端,需要一个低ESR 的电容器接至SGND (2)NC :悬空

(3)/SHDN :该引脚有一个1.35V 的精准IC 使能门限和120mV 迟滞,用来实现欠压闭锁电路

(4)CSS: 软启动引脚,设置电源软启动功能

(5)BURST_EN: 控制突发模式操作的使能与否,为低时,使能;为高时,无效 (6)VFB: 输出电压回馈引脚,需要通过一个电阻分压器从外连至电源输出电压

(7)VC: 误差放大器的输出端

(8)SGND: 低噪声的基准

(9)SENSE-: 电流检测放大器的负输入端

(10)SENSE+: 电流检测放大器的正输入端

(11)PGND: 内部低压侧开关和VCC稳压器电路的高电流的基准

(12)VCC: 内部偏置电源去耦节点

(13)NC: 悬空

(14)SW: 降压中被连接到外部肖特基二极管的负极、MOSFET的漏极和电感器(15)TG: 该引脚用于上端N沟道MOSFET的自举栅级驱动器

(16)BOOST: 该引脚用于自举栅级驱动器的电源

(3)LT3724电路设计

基于LT3724的主电源电路如图表2.1所示。其中,采用220V、50Hz的市电来提供电源,经过变压器降压,然后经过全桥整流成直流,最后经过LT3724稳压输出。

uF

图 2.1 基于LT3724的主电源电路

3.2.2 单片机电源

单片机系统的供电电源采用了LM2576-5对主电源的输出进行再一次的降压。LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压器件,内

置固定频率的振荡器和1.23V 基准稳压器,并具有完善的保护电路,具有电流限制及热关断电路。使用时,只需少量的外围器件就可以实现高效的稳压电路。LM2576系列具有两个最大电压输入等级的器件,包括LM2576(最高输入电压为40V )和LM2576HV(最高输入电压为60V ),具有多个输出电压等级的器件。

(1)LM2576的基本特性 LM2576的基本特性参数如下: (1)最大输出电流:3A 。

(2)最高输入电压:LM2576为40V ,LM2576HV 为60V 。 (3)输出电压:3.3V 、5V 、12V 、15V 和ADJ(可调)等可选。 (4)震动频率:52kHz 。

(5)转换效率:75%-88%(不同电压输出时的效率不同)。 (6)控制方式:PWM 。

(7)工作模式:低功耗/正常两种模式可外部控制。 (8)工作模式控制:TTL 电平相容。

(9)所需外部组件:仅4个(不可调)或6个(可调)。 (10)器件保护:热关断及电流限制。 (1)LM2576的引脚配置 LM2576的引脚配置如图2.2所示。

1

23

45

U1VIN

VOUT GND

FB

/ON_OFF

图2.2 LM2576的引脚配置

LM2576的引脚说明 (1)VIN: 电压输入端 (2)VOUT: 稳压输出端 (3)GND: 地 (4)FB: 回馈端

(5)/ON_OFF: 模式控制器 (3)LM2576电路设计

基于LM2576的单片机系统供电电源电路设计如图2.3所示。其输入即为主电源的输出,选择了LM2576-5器件,其输出为+5V .

数控恒流源

数控恒流源 1.任务 设计并制作数控直流电流源。输入交流200~240V,50Hz;输出直流电压≤10V。其原理示意图如下所示。 、要求

基本要求 (1)输出电流范围:200mA~2000mA; (2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的 1%+10 mA; (3)具有“+”、“-”步进调整功能,步进≤10mA; (4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA; (5)纹波电流≤2mA; (6)自制电源。 发挥部分 (1)输出电流范围为20mA~2000mA,步进1mA; (2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的%+3个字; (3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的%+1 mA; (4)纹波电流≤; (5)其他。 总体设计方案 经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,控制模块(包括AD、DA转换)恒流源模块,键盘模块,显示模块。以下就各电路模块给出设计方案。 控制部分方案 方案一:采用FPGA作为系统的控制模块。FPGA可以实现复杂的逻辑功能,规模大,稳定性强,易于调试和进行功能扩展。FPGA采用并行输入输出方式,处理速度高,适合作为大规模实时系统的核心。但由于FPGA集成度高,成本偏高,且由于其引脚较多,加大了硬件设计和实物制作的难度。 方案二:采用单片机作为控制模块核心。单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活、可以通过ISP方式将程序快速下载到芯片,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。 基于以上分析,选择方案二,利用STC89C52单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。在器件的选取中,D/A转换器选用12位优质D/A转换芯片 TLV5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度12数转换芯片AD7896。. 恒流源模块设计方案 方案一:由三端可调式集成稳压器构成的恒流源。

全国电子设计大赛_F题_数控恒流源(个人整理比较详细资料,附加程序)

数控直流电流源,测量误差的绝对值≤测 量值的0.1%+3个字; <3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1mA; <4)纹波电流≤0.2mA; <5)其他。

三、评分标准 四、说明 1、需留出输出电流和电压测量端子; 2、输出电流可用高精度电流表测量;如果没有高精度电流表,可在采样 电阻上测量电压换算成电流; 3、纹波电流的测量可用低频毫伏表测量输出纹波电压,换算成纹波电流。

数控直流恒流源的设计与制作 发表日期:2006年5月1日出处:本站原创【编辑录入:zouwenkun】 指导老师:王贵恩博士制作人:彭浦能、梁星燎、林小涛 《数控直流恒流源》《数控恒流源获奖证书》 摘要:本系统以直流电流源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由数码管显示电流设定值和实际输出电流值。本系统由单片机程控设定数字信号,经过D/A转换器 is main controller, output current of DC power can be set by a keyboard which step level reaches 1mA, while the set value and the real output current can be displayed by LED. In the system, the digitally programmable signal from SCM is converted to analog value by DAC (AD7543>, then the analog value which is isolated and amplified by operational amplifiers, is sent to the base electrode of power transistor, so an adjustable output current can be available with the base electrode voltage of power transistor. On the other hand, The constant current source can be monitored by the SCM system real-timely, its work process is that output current is converted voltage, then its analog value is converted to digital value by ADC, finally the digital value as a feedback loop is processed by SCM so that output current is more stable, so a stable voltage-controlled constant current power is designed. The test results have showed that it can be applied in need areas of constant current source with high stability and low power. Keywords: voltage-controlled constant current source, intelligent power,closed loop control 前言 随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件越优越,那么设备的寿命更长。基于此,人们对数控恒定电流器件的需求越来越迫切.当今社会,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术才刚刚起步且有待发展,高性能的数控恒流器件的开发和应用存在巨大的发展空间。本文正是应社会发展的需求,研制出一种基于单片机的高性能的数控直流恒流源。本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。 1 系统原理及理论分析 1.1单片机最小系统组成 单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与 74LS138等器件。 1.2系统性能 本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值<系统内部测量值)的关系。内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。 在没有采用数字闭环之前,设定值与内部测量值的关系只能通过反复测量来得出它们的关系<要送多大的数才能使D/A输出与设定电流值相对应的电压值),再通过单片机乘除法再实现这个关系,基本实现设定值与内部测量值相一致。但由于周围环境等因素的影响,使设定值与内部测量值的关系改变,使得设定值与内部测量值不一致,有时会相差上百毫安,只能重新测量设定值与A/D采样显示值的关系改变D/A入口数值的大小才能重新达到设定值与内部测量值相一致,也就是说还不稳定。 在采用数字闭环后。通过比较设定值与A/D采样显示值,得出它们的差值,再调整D/A的入口数值,从而使A/D采样显示值逐步逼近设定值最终达到一致。而我们无须关心D/A入口数值的大小,从而省去了原程序中双字节乘除的部分,使程序简单而不受周围环境等因素的影响。 内部测量值与实际测量值的误差是由于取样电阻与负载电阻和晶体管的放大倍数受温度的影响和测量仪表的误差所造成的,为了减少这种误差,一定要选用温度系数低的电阻来作采样电阻,因此本系统选用锰铜电阻丝来做采样电阻。 1.3恒流原理 数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。电流的输出级别可这样计算 DX=

基于单片机的恒流源设计论文

基于单片机的恒流源设计 摘要 恒流源在日常生活中扮演着重要的角色,很多电子设备需要工作时候的电流处于稳定状态。我们把可以保证给工作中负载供给恒定电流的电源叫做恒流源。恒流源的用途很丰富,它能够在脉冲或者差动放大电路中产生作用,同样也能够作为它的有源负载,又可以提供给放大电路偏流用来使它的静态功能工作点处于稳定。 本文介绍了一种基于AT89C52单片机的数控恒流源的研制,该系统主要是由单片机系统电路、DAC转换电路﹑恒流电路。设计的恒流系统具有精度高、稳定性高的特点。在数字输入信号部分主要是利用单片机输出的数字量同时配有按键数字键控功能。DAC转换模块将单片机输出的数字量转换为模拟量,以作为恒流电路的基准电压。恒流电路部分以集成运放和达林管组成的电流负反馈电路来实现电流的恒定输出。 本设计为了增加人机交互采用数码管显示,可以使得数控恒流的效果更加直观。本文阐述了精确实现恒流源的原理设计、完整的硬件原理图和软件流程图,并对部分软件模块的设计思想进行分析。与此同时,也对生活中的可实现性进行仔细测试和仿真。 关键词:AT89C51;单片机;DA转换;恒流源。

Abstract Constant current source in everyday life plays an important role in many electronic devices need to work in a stable state when the current. We can guarantee that the work load to a constant current power supply is called the constant current source.Constant current source uses a very rich,it can in the differential amplifier circuit in the pulse or an effect, it also can be used as an active load, and can be used to provide bias current to the amplification circuit of the static function of the operating point so that it is stable. This paper introduces a numerical constant current source AT89C51 microcontroller development, the system is dominated by single-chip system circuit, DAC converter circuit﹑constant current circuit. Designed constant current system with high precision,high stability characteristics.In the main part of the digital input signal is digital output using the same chip with digital keying function keys. DAC conversion module microcontroller digital output is converted to analog,as the reference voltage constant current circuit. Part of an integrated constant current circuit op amp tubes and Darling current negative feedback circuit to achieve a constant current output. The design of human-computer interaction in order to increase the use of digital tube display, you can make the effect more intuitive numerical constant. This paper describes the precise design principles to achieve a constant current source, a complete hardware schematics and software flow chart, and part of the software module design ideas for analysis.At the same time, but also the life of the realization careful testing and simulation. Key words:AT89C51;SCM; DA conversion; constant current source

基于数控直流电流源系统的设计

基于数控直流电流源系统的设计 摘要:随着电子技术的发展、数字电路应用领域的扩展,人们对数控恒定电流器件的需求越来越高。应社会发展的需求,对基于单片机控制的“数控直流电流源的设计”进行研究论证,并运用Proteus 软件进行仿真。以直流稳压电源和稳流电源为核心,结合单片机最小系统实现对输出电流的控制。首先采用了单片集成稳压芯片实现直流稳压,然后采用了分立元件实现稳流。为实现对输出电流的精确控制:一方面,通过D/A输出实现电流的预置,再通过运算放大器控制晶体管的输出电流;另一方面,运用A/D转换器件将输出电流的采样值送入单片机,与预置值进行比较,将误差值通过D/A转换芯片添加到调整电路,从而进一步降低了输出电流的纹波。 Abstract:The requiements of numerical controlling constant current devices is increasing as development of electronic technology and expanding of digital circuit applicational field. As to satisfy society development, do a study based on " Numerical control dc current source design " of SCM controlling and apply Proteus to simulating software.DC(digital current )V oltage regulator and DC current regulator is the key part of the design,its output current is controlled by single chip microprocessor,Firstly,single chip IC(integrated circuit)V oltage regulator LM338K is used to generate stable voltage, and then desperate devices is used to generate stabilize current . Tocontrol the output current ,on one hand ,system sets output current by D/A(digital/analogue converter and controls current of transistor by operational amplifier ;on the other hand ,with the help of A/D(analogue/digital)converter,system samples the output current and convert it into digital data ,compares it with preset value ,converts the error value into analogy and puts it on adjusting circuit ,and decreases the ripple of the system output current .

(数控加工)数控恒流源系统设计

(数控加工)数控恒流源系统 设计

毕业设计 题目: 学院名称:班级:学生姓名:学号:指导教师:教师职称:

20 年06月13

一:概述 1.1选题背景和意义 电源为保障系统的安全性与稳定性都起到有至关重要的作用,本篇我们主要研究恒流源。而恒流电源由于它体积特别小、损耗相对低、而效率较高、还有它简洁的电路都比较受欢迎,在我们平时用的计算机设备、通信设备,仪器仪表上面,还有航空航天上面通信设备等都需要恒流源系统。近年来电子信息的产业是发展相当快的,恒流电源也更多的被运用到我们生活中,因此,对恒流电源的研究就显得更有意义以及价值。 数控恒流源技术是一种对实践性要求很高的工程技术,它存在与各个行业中,我们在日常会经常看到。电源技术还和电气电子、控制理论等一些其它科学领域相互交叉融合,促进了现在信息技术和电源技术的发展。这也预示着在系统上面对电源技术的要求更高。普通的电源系统在工作时候容易产生误差,这样会对整个系统的精确度产生影响,更严重的是会带来很多严重的后果。世界各国为了解决这个问题便对电源产品制定了不同要求和一系列产品精度标准,只要达到要求达到标准后才可以进入市场。经济全球化的发展让电源产品流通更加方便,但是必须满足国际标准才可以有通行证。数控电源发展的比较晚,从八十年代才开始,那个时候电力电子的理论就开始建立。电力电子理论为今后的电源产品的发展奠定了很好的理论基础,随之,数控电流源技术得到了快速蓬勃的发展。但是市场上的很多产品还是输出精度低,带负载能力较差,体积相对大等缺点。当然这也给了数控电流源的发展指明方向就是不断完善上面的缺点不足。数控直流电流源对精度的要求会越来越高。单片机,新的控制理论,这些都为精确数控电源的发展提供基础。从组成上,数控电流源分为器件、主电路和控制电路三部分。

数控恒流源的设计与制作最终版

编号 毕业设计 (2013 届本科) 题目:数控恒流源的设计与制作 学院:物理与机电工程学院 专业:电子信息科学与技术 作者姓名: 指导教师:职称: 完成日期:2013 年月日 二〇一三年六月

目录 河西学院本科生毕业论文(设计)诚信声明 (1) 河西学院本科生毕业论文(设计)开题报告 (2) 摘要 (5) Abstract (5) 1 绪论 (6) 1.1恒流源的意义及研究价值 (6) 1.2恒流源的发展历程 (6) 1.2.1 电真空器件恒流源的诞生 (6) 1.2.2 晶体管恒流源的产生和分类 (6) 1.2.3 集成电路恒流源的出现和种类 (6) 1.3数控恒流源的研究现状和发展趋势 (7) 2 系统设计 (8) 2.1设计要求 (8) 2.1.1 题目要求 (8) 2.2 总体设计方案 (8) 2.2.1 设计思路 (8) 2.2.2 方案论证与比较 (8) 2.2.3 系统组成 (11) 3 单元电路设计 (11) 3.1 单片机控制电路 (11) 3.2 A/D接口电路 (12) 3.3 D/A接口电路 (13) 3.4 恒流源电路 (13) 3.5 LCD显示电路 (14) 3.6 系统电源电路 (15) 4 软件设计 (16) 4.1主程序 (16) 4.2时基中断服务子程序 (17) 4.3 A/D转换程序 (18) 5 系统的抗干扰设计 (18) 5.1 硬件抗干扰设计 (18) 5.2 软件抗干扰设计 (18) 6 系统测试 (19) 6.1 数控恒流源实物图 (19) 6.2 测试使用的仪器 (19) 6.3 测试方法 (19) 6.4 测试数据及结果分析 (19) 7 结束语 (22) 参考文献 (23) 致谢 (24) 附录 (25) 河西学院本科生毕业论文(设计)题目审批表 (32)

基于单片机的恒流源.doc

随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。基于此,人们对数控恒定电流器件的需要越来越迫切。 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出 了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、

功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三部分。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。 当今社会,数控恒压技术已经很成熟,但是恒流源方面特别是数控恒流源的技术菜刚刚起步有待发展,高性能的数控横流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境变化,并且有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要稳定度小功率横流源的领域。

数控直流恒流源设计报告

数控直流恒流源设计报告 本系统以直流电流源为核心,AT89s52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由液晶显示电流设定值和实际输出电流值。本系统由单片机程控设定数字信号,经过D/A转换器(tlv5618)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。实际测试结果表明,本系统能有效应用于需要高稳定度的小功率恒流源的领域 关键字 压控恒流源智能化电源闭环控制 设计任务与要求 1.1设计任务 设计并制作一个数控直流电流源。输入的交流电压220~240V,50Hz;输出的直流电压≤10V。其原理示意图1如下所示。 图1 设计任务示意图 1.2技术指标 基本要求: (1)要求电压输出范围:200~2000mA; (2)可设置并输出电流给定值,要求输出电流和给定电流的偏差的绝对值≤给定值的1%+10mA;

(3)具有“+”、“-”步进调整功能,步进≤10mA; (4)改变负载电阻,输出电压在10V以内变化时,要求输出电流的变化的绝对值≤ 输出电流的1%+10mA; (5)纹波电流≤ 2mA; (6)自制电源。 发挥部分: (1)输出电流范围为20~2000mA,步进为1mA; (2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值或实测值),测量误差的绝对值≤测量值的0.1%+3个字; (3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤ 输出电流的0.1%+1mA; (4)纹波电流≤0.2mA; (5)其他。 2.方案比较与论证 2.1.1各种方案比较与选择 方案一:采用中小规模集成电路构成的控制电路。由三段可调式集成稳压器构成的恒流源。 以W350为例,其最大的输出电流为3A,输出电压Uo′为1.2~33V。其典型的恒流源电路如图2所示。

数控恒流源电路图

数控恒流源 ?基于8051单片机的数控电源设计方案 ?2010年12月18日9:52:07 来源:《半导体器件应用》2009年12月刊作者:李好,陈晓利

Html文件格式可能无法显示特殊符号及公式,阅读全文,请点击下面按钮以Pdf文件格式浏览阅读 1 引言 目前所使用的直流可调电源中,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。 利用数控电源,可以达到每步0.1V的精度,输出电压范围0V~15V,电流可以达到2A。其系统结构如图1所示。 2 芯片选用 DAC0832是一款常用的数摸转换器,它有两种连接模式,一种是电压输出模式,另外一种是电流输出模式。为了设计的方便,选用电压输出模式,引脚如图2所示,Iout1和Iout2之间接一参考电压,VREF 输出可控制电压信号。它有三种工作方式:不带缓冲工作方式,单缓冲工作方式,双缓冲工作方式。该电路采用单缓冲模式,由图2可知,由于/WR2 =/XFER=0,DAC寄存处于直通状态。又由于ILE=1,故只要在选中该片(/CS=0)的地址时,写入(/WR=0)数字量,则该数字信号立即传送到输入寄存器,并直通至DAC寄存器。经过短暂的建立时间,即可以获得相应的模拟电压。一旦写入操作结束,/WR1和/CS 立即变为高电平,则写入的数据被输入寄存器锁存,直到再次写入刷新。 AT24C02是一款常用的可掉电保存数据的ROM,2K比特容量,采用I2C总线操作,关于它的具体操作方法参考相关资料。 3 硬件电路设计 采用常用的AT89C51芯片作为控制器,P0口和DAC0832的数据口直接相连,DA的/CS和/WR1连接后接P2.0,/WR2和/XEFR接地,让DA工作在单缓冲方式下。DA的11脚接参考电压,参考电压电路如图2所示,通过调节可调电阻调节LM336的输出电压为5.12V,所以在DAC的8脚输出电压的分辨率为5.12V/256=0.02V,也就是说DA输入数据端每增加1,电压增加0.02V。 DA的电压输出端接放大器OP07的输入端,放大器的放大倍数为R8/(R8+R9)=1K/(1K+4K)=5,输出到电压模块LM350的电压分辨率=0.02V×5=0.1V。所以,当MCU输出数据增加1的时候,最终输出电压增加0.1V,当调节电压的时候,可以以每次0.1V的梯度增加或者降低电压。 本电路设计三个按键,KEY1为翻页按键,最近设置的电压大小保存在EEROM里面。比如10个电压,按一下KEY1,电压变为下一个,省去了反复设置电压的麻烦。KEY2为电压+,KEY3为电压-,按一下KEY2,当前电压增加0.1V,按一下KEY3,当前电压减小0.1V。 限于篇幅原因,未画出数码管显示电路。该系统使用3个数码管,可以显示三位数,一个小数位,比如可以显示12.5V,采用动态扫描驱动方式。本主电路的原理是通过MCU控制DA的输出电压大小,通过放大器放大,给电压模块作为最终输出的参考电压,真正的电压,电流还是由电压模块LM350输出。 为了达到2A的输出电流,LM350必须选用金属外壳封装,并且带稍大面积的散热片。 4 软件系统 软件的设计主要完成三方面的功能: (1)设置电压并且保存,主要是对EEROM的操作; (2)把设置的电压送到DA,主要是对DA的操作; (3)中断显示,把设置的电压显示到LED数码管上。 该数控电压源实现保存最近10个电压功能,当打开电源的时候,它显示和输出的必须是上次使用电压大小,所以在EEROM中使用11个地址保存数据,第一个地址保存当前电压编号,大小为1~10。第2个地址~第11个地址连续保存10个电压大小数据。电压编号的大小分别对应到相应地址电压大小。 软件流程如图4所示:当电源打开的时候,MCU进行复位,寄存器清零。接着电源应该显示和输出上次关机前的电压大小,这时候MCU先读取EEPROM中保存的电压编号,根据电压编号读出对应电压,把该数据送到DA,再转换成BCD码送到显示部分。这时候程序循环检测是否有按键信号,如果KEY1按下,电压编号指向下一个,保存该电压编号,读对应电压,把他送到DA并且显示。如果KEY2按下,当前电

数控直流恒流源的设计与制作

数控直流恒流源的设计与制作 本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。 1 系统原理及理论分析 1.1单片机最小系统组成 单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。 1.2系统性能 本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值(系统内部测量值)的关系。内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。 1.3恒流原理 数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管 值下降,从而导致电流不能维持恒定。为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。经测试表明,采用常用的大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。电路反馈原理如下图所示。 2 总体方案论证与比较 方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。本方案电路复杂,灵活性不高,效率低,

数控恒流源

摘要:本方案采用AT89S52单片机作为系统控制核心,实现数控恒流源方案。设计采用大功率双极型三极管2SC3997以及仪表放大器等构成闭环恒流源控制电路,配以8位A/D,D/A 芯片完成单片机对输出电流的实时检测与实时控制,实现了0mA~1500mA 范围内步进20mA 恒定电流输出的功能,保证了纹波电流小于1mA,达到了较高的稳定度。人机接口采用4*4键盘以及LCD1602液晶显示器,控制界面直观简洁,具有良好的人机交互性。 一 作品完成功能 1.输出电流范围:0mA ~1500mA ; 2.可设置并显示输出电流给定值,输出电流与给定值偏差的绝对值≤给定值1%+10 mA ; 3.具有“+”、“-”步进调整功能,步进≤20mA ; 4.纹波电流≤2mA ; 5.自制电源 二 系统方案论证 1.系统总设计模块 2.方案论证 本系统设计关键在于恒流源模块方案,关于恒流源模块方案 电压控制的电流源模块,可采用的方案有以下三种: ① 功率集成运放,如OPA501、OPA541、PA05等; ② 运放+晶体三极管放大; ③ 可调集成稳压模块,如LM317。 方案一:直接使用功率集成运放。特点:使用容易、性能稳定可靠。常用 的功率集成运放一般能够输出±40V ,10~15A 的功率,性能指标也较高,完全能够满足本题要求。功率集成运放还可以双极性输出,但本题只需单极性输出,却需要为功率集 DA 转换模块

成运放配置正负双电源。 方案二:利用三端可调直流稳压集成芯片,通过调整其输出电压来实现负载的恒流特性。特点:直接利用稳压片提供所需功率,只需要添加相应控制电路即可实现本题的大部分要求,但是,其电流调整率指标只能达到0.5%~0.15%,不满足题目要求, 方案三:采用“运放+功率三极管”的结构构成恒流源。特点:性能满足本题要求,同时可以通过选用功率三极管的不同容量来满足不同的应用要求。 鉴于上述原因,我们选用方案三。 另外,本方案中涉及AD,DA芯片。AD,DA芯片的选择直接关系到系统的精度以及方案的成本。综合考虑精度与成本,我们选择了常用的8位DA芯片DAC0832与8位AD芯片ADC0832. 三硬件结构设计及实现 1.压控恒流源电路及电路分析 电压控制的电流源电路如图所示。压控电流源模块主要由给定与比较放大单元、功率放大单元和电流反馈单元组成。给定与比较放大单元由U1(OP07)及其外围阻容器件组成,起着计算给定电流与实际输出电流偏差并进行放大的作用。与R2并联的电容器C9起加速反馈的作用,与运放反馈电阻并联的电容器C10起滤波作用,二极管D1起电压钳位作用,用以保护运算放大器;功率放大单元由Q1、Q2和Q3及其配套阻容器件组成,为满足最大输出容量(10V,2000mA)的要求,选取最严重工况(负载端短路且输出2000mA)计算Q3的功率损耗:(10+5)V×2A=30W式中,5V是考虑电流源输出10V 电压,输出2A电流时,为Q3留出的ce极间电压。为可靠起见,留有足够的功率裕量和安全系数,选择Q3的型号为2SC3997.其主要技术参数如下:800V,20A,允许管耗250W。 C14起纹波抑制作用,二极管D3用以保护功率三极管Q3,防止其承受反压而损坏;电流反馈单元由仪用放大器AD620和低噪声运放OP07构成,前者对串联在负载回路的康铜丝两端电压进行取样,康铜丝是一种温度特性佳的阻性元件,其两端电压正比于流过的电流,因此该电压的反馈就是负载电流的反馈。仪用放大器具有极强的抗共模干扰的能力,特别适合对小信号进行放大。OP07作为二级放大且其输入端设置一个反馈系数调节用的精密电位器,起着输出电流校正之功用。

数控直流恒流源设计方案与制作

数控直流恒流源地设计与制作 本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000m/范围内任意设定,不随负载和环境温度变化,并具有很高地精度,输出电流误差 范围土4mA,因而可实际应用于需要高稳定度小功率直流恒流源地领域 1系统原理及理论分析 1.1单片机最小系统组成 单片机系统是整个数控系统地核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整?主要包括AT89S52单片机、模数转换芯片ADC0809 12位数模转换芯片AD7543数码管显示译码芯片74LS47与74LS138等器件.b5E2RGbCAP 1.2系统性能 本系统地性能指标主要由两大关系所决定,设定值与A / D采样显示值(系统内部测量值)地关系.内部测量值与实际测量值地关系,而后者是所有仪表所存在地误差? 1.3恒流原理 数模转换芯片AD7543是12位电流输出型,其中0UT1和OUT2是电流地输出端?为了实现数控地目地,可以通过微处理器控制AD7543地模拟量输出,从而间接改变电流源地输出电流?从理论上来说,通过控制AD7543地输出等级,可以达到1mA地输出精度.但是本系统恒流源要求输出电流范围是 20mA~2000mA而当器件处于2000mA地工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管“值下降,从而导致电流不能维持恒定.为了克服大电流工作时电流地波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流地波动,此反馈回路采用数 字形式反馈,通过微处理器地实时采样分析后,根据实际输出对电流源进行实时调节.经测试表明,采用常用地大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善.电路反馈原理如下图所示.p1EanqFDPw 2总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件.本方案电路复杂,灵活性不

数控恒流源

摘要:本方案采用AT89S52单片机作为系统控制核心,实现数控恒流源方案。设计采用大功率双极型三极管2SC3997以及仪表放大器等构成闭环恒流源控制电路,配以8位A/D,D/A芯片完成单片机对输出电流的实时检测与实时控制,实现了0mA~1500mA范围内步进20mA恒定电流输出的功能,保证了纹波电流小于1mA,达到了较高的稳定度。人机接口采用4*4键盘以及LCD1602液晶显示器,控制界面直观简洁,具有良好的人机交互性。 一作品完成功能 输出电流范围:0mA~1500mA; 可设置并显示输出电流给定值,输出电流与给定值偏差的绝对值≤给定值1%+10 mA; 具有“+”、“-”步进调整功能,步进≤20mA; 纹波电流≤2mA; 自制电源 二系统方案论证 系统总设计模块 人机界面

方案论证 本系统设计关键在于恒流源模块方案,关于恒流源模块方案 电压控制的电流源模块,可采用的方案有以下三种: ① 功率集成运放,如OPA501、OPA541、PA05等; ② 运放+晶体三极管放大; ③ 可调集成稳压模块,如LM317。 方案一:直接使用功率集成运放。特点:使用容易、性能稳定可靠。常用的功率集成运放一般能够输出±40V ,10~15A 的功率,性能指标也较高,完全能够满足本题要求。功率集 DA 转换模块 恒流源模块

成运放还可以双极性输出,但本题只需单极性输出,却需要为功率集成运放配置正负双电源。 方案二:利用三端可调直流稳压集成芯片,通过调整其输出电压来实现负载的恒流特性。特点:直接利用稳压片提供所需功率,只需要添加相应控制电路即可实现本题的大部分要求,但是,其电流调整率指标只能达到0.5%~0.15%,不满足题目要求, 方案三:采用“运放+功率三极管”的结构构成恒流源。特点:性能满足本题要求,同时可以通过选用功率三极管的不同容量来满足不同的应用要求。 鉴于上述原因,我们选用方案三。 另外,本方案中涉及AD,DA芯片。AD,DA芯片的选择直接关系到系统的精度以及方案的成本。综合考虑精度与成本,我们选择了常用的8位DA芯片DAC0832与8位AD芯片ADC0832. 三硬件结构设计及实现 压控恒流源电路及电路分析 电压控制的电流源电路如图所示。压控电流源模块主要由给定与比较放大单元、功率放大单元和电流反馈单元组成。给定与比较放大单元由U1(OP07)及其外围阻容器件组成,起着计算给定电流与实际输出电流偏差并进行放大的作用。与R2并联的电容器C9起加速反馈的作用,与运放反馈电阻并

基于PID控制的数字恒流源报告

天津工业大学 测控仪器设计报告 组号 2 组 组员吴东航1110340108 章一林1110340114 郭伍昌1110340109 学院机械工程学院 专业测控技术与仪器指导教师隋修武 2015 年1 月16 日

目录 1 课程设计的目的和意义 (3) 2 设计任务 (3) 3 设计背景 (3) 4 总体设计方案 (4) 5 硬件电路设计 (4) 5.1 采样模块 (4) 5.2 滤波模块...................................................................................... 错误!未定义书签。 5.3 运算放大模块 (6) 5.4 A/D转换模块 (7) 5.5 显示模块 (9) 6 软件电路设计 (10) 6.1流程图 (10) 6.2 PID控制算法 (13) 6.3 PWM输出 (13) 6.4 A/D转换 (14) 7 调试与仿真结果分析 (14) 8 心得体会 (14) 9参考文献 (15) 附录一电路图 (16) 附录二程序 (17)

摘要:针对各种低压电器校验及性能测试过程中需要高稳定、高精度的恒流源要求, 在对现有主要恒流源产品设计仔细分析的基础上, 设计了一种以AT89C51为核心的高稳定数控 恒流源。整个系统采用闭环PID控制, 输出PWM波控制恒流源的电流。经实际应用测试, 该恒流源输出电流可在10 mA 左右恒定, 当电源电压变化、负载电路变化时,恒流源的精度在±1mA以内。 1 课程设计的目的和意义 测控系统设计是测控技术与仪器专业实践教学环节的重要组成部分,是“测控系统原理与设计”课程理论教学的有益补充,“测控系统原理与设计”是测控技术与仪器专业的一门综合性专业课,在理论教学的同时,要求学生掌握传感器的选型,测控电路的分析、设计、调试,微处理器的电路与程序设计、控制算法设计、计算机的综合应用等,以便对测控系统形成完整的认识。 通过本课程设计,完成基于PID控制的数字恒流源的设计,熟悉和掌握工业生产和科学研究中的测量和控制系统的组成原理及设计方法,学会运用所学的单片机、测控电路、控制算法等方面的知识,进行综合应用,设计出完整的测控系统,实现预期功能,培养自学能力、动手能力、分析问题能力和应用理论知识解决实际问题的能力。 2 设计任务 设计基于PID控制的数字恒流源,设计要求如下 1、采用8051系列单片机输出PWM波控制恒流源的电流。 2、采用PID控制算法,实现对恒流源的闭环控制。 3、恒流源的电压为5V,恒流输出10mA。 4、采用LCD液晶1602显示电流值。 5、当电源电压变化、负载电路变化时,恒流源的精度在±1mA以内。 3 设计背景 相对于电压源, 电流源具有抗干扰能力强, 信号传输不受距离影响等。电流源是一种能向负载提供恒定电流的电路。它既可以为各种放大电路提供偏流以稳定其静态工作点, 又可以作为其有源负载以提高放大倍数, 在差动放大电路、脉冲产生电路中得到了广泛应用。一般的恒流电流源往往是固定的一种输出电流值,

相关文档
相关文档 最新文档