文档库 最新最全的文档下载
当前位置:文档库 › 电池寿命影响因素

电池寿命影响因素

电池寿命影响因素
电池寿命影响因素

锂电池的老化速度是由温度和充电状态而决定的。下表说明了两种参数下电池容量的降低。温度充电40% 充电100%

0°C 一年后容量98% 一年后容量94%

25°C 一年后容量96% 一年后容量80%

40°C 一年后容量85% 一年后容量65%

60°C 一年后容量75% 三个月后容量60%

由图可见,高充电状态和增加的温度加快了电池容量的下降。

如果可能的话,尽量将电池充到40%放置于阴凉地方。这样可以在长时间的保存期内使电池自身的保护电路运作。如果充满电后将电池置于高温下,这样会对电池造成极大的损害。(因此当我们使用固定电源的时候,此时电池处于满充状态,温度一般是在25-30°C之间,这样就会损害电池,引起其容量下降)。

捕鱼机锂电池寿命及影响因素

锂电池一般能够充放300-500次。最好对锂电池进行部分放电,而不是完全放电,并且要尽量避免经常的完全放电。一旦电池下了生产线,时钟就开始走动。不管你是否使用,锂电池的使用寿命都只在最初的几年。电池容量的下降是由于氧化引起的内部电阻增加(这是导致电池容量下降的主要原因)。最后,电解槽电阻会达到某个点,尽管这时电池充满电,但电池不能释放已储存的电量。

温度对锂电池寿命也有较大的影响。冰点以下环境有可能使锂电池在电子产品打开的瞬间烧毁,而过热的环境则会缩减电池的容量。因此,如果笔记本长期使用外接电源也不将电池取下来,电池就长期处于笔记本排出的高热当中,很快就会报废。

影响因素4:长时间满电、无电状态

实验数据图

影响因素1:放电深度与可充电次数

由实验得出的左图数据可以知道,可充电次数和放电深度有关,电池放电深度越深,可充电次数就越少。

可充电次数*放电深度=总充电周期完成次数,总充电周期完成次数越高,代表电池的寿命越高,即可充电次数*放电深度= 实际电池寿命(忽略其他因素)

影响因素2:过充、过放、以及大的充电和放电电流

避免对电池产生过充,锂离子电池任何形式的过充都会导致电池性能受到严重破坏,甚至爆炸。

避免低于2V或2.5V的深度放电,因为这会迅速永久性损坏锂离子电池。可能发生内部金属镀敷,这会引起短路,使电池不可用或不安全。

大多数锂离子电池在电池组内部都有电子电路,如果充电或放电时电池电压低于2.5V、超过4.3V或如果电池电流超过预定门限值,该电子电路就会断开电池连接。

避免大的充电和放电电流,因为大电流给电池施加了过大的压力。

影响因素3:过热或过冷环境

过高和过低的电量状态对锂电池的寿命有不利影响。大多数售卖电器或电池上标识的可反复充电次数,都是以放电80%为基准测试得出的。实验表明,对于一些笔记本电脑的锂电池,经常让电池电压超过标准电压0.1伏特,即从4.1伏上升到4.2伏,那么电池的寿命会减半,再提高0.1伏,则寿命减为原来的1/3;给电池充电充得越满,电池的损耗也会越大。长期低电量或者无电量的状态则会使电池内部对电子移动的阻力越来越大,于是导致电池容量变

小。锂电池最好是处于电量的中间状态,那样的话电池寿命最长。

由上可以总结出以下几点可延长锂电池容量和寿命的注意事项。

1.如果长期用外接电源为笔记本电脑供电,或者电池电量已经超过80%,马上取下电池。平时充电不需将电池充满,充至80%左右即可。调整操作系统的电源选项,将电量警报调至20%以上,平时电池电量最低不要低于20%。

2.手机等小型电子设备,充好电就应立刻断开电源线(包括充电功能的USB接口),一直连接会损害电池。要经常充电,但不必非得把电池充满。

3.无论是对笔记本还是手机等,都一定不要让电池耗尽(自动关机)。

4.如果要外出旅行,可把电池充满,但在条件允许的情况下随时为电器充电。

5.使用更为智能省电的操作系统。

参考资料:https://www.wendangku.net/doc/ae15780118.html,

锂纽扣电池可靠性预测和应用寿命估算

锂纽扣电池可靠性预测和应用寿命估算 工业设备尤其是便携式设备均离不开嵌入的锂纽扣电池--系统的“源动力”。据此,锂纽扣电池的制造厂商及产品又是层出无穷、品种繁多,从而导致使许多最终用户在对其锂纽扣电池的使用寿命和选用上不是茫茫然就是束手无策。为此,如何解决这致关系统可靠安全的重要问题及如何寻找出新方案、新产品等新途径就成为其重中之重。目前国际上有不少著名制造厂商, 能提供有备用锂纽扣电池的非易失存储器(NVM—Non volatile MEMORY)或实时时钟(RTC)的应用产品,以确保当系统(微控制器、嵌入式等系统)掉电时保存数据或信息。这些产品的典型规格是在没有系统电源的条件下提供10年的使用寿命。因为最终应用是不确定的,所以对使用寿命的预测还是比较保守的。最终用户针对锂纽扣电池的具体应用, 应评估(电池结构/特征、电池测试/筛选、容量等)或预期出使用寿命,特别是对那些工作环境超出了典型范围或所需应用时间超过10年的用户来说。必须了解这电池可靠性模型,这将有助于用户单独选购电池控制器, 从而又将电池控制器与电池组装在一起构成性能价格比较高的锂纽扣电池,也就解决了不必购买包含电池控制器和电池在内的高成本模块问题。本文论述了备用锂纽扣电池应用寿命估算及寿命对IC集成电路(指SRAM--静态随机存取存储器或RTC)影响的有关问题。这儿指IC均属于是由系统电源供电或锂备用电池供电。为此,首先要说明为何选用备用电池?为何选用备用电池众所周知,系统断电时,有多种保存数据的方案,当对读写速度或周期数要求比较严格时,有备用电池的SRAM是一种较为可靠的替代方案。闪存或EEPROM同样提供NV(非易失)数据存储,但在简易性和速度指标上存在不足。而有备用电池的SRAM, 其主要缺陷是电池是一个消耗品,产品选择必须慎重考虑电池容量并确定其产品最终的使用寿命。对于没有系统电源供电同时要保持信息或计时功能,并需要提供一定的电能才能维持晶振工作,则用电池提供电流是非常适合的.IC集成电路所需电流如果IC(SRAM或RTC)将由电池供电,则需要在IC工作时的电流、使用寿命与电池容量之间加以匹配。购买电池和IC时,其数据手册将提供与IC负载相对应的有关估算电池寿命的信息,如果购买集IC和电池于一体的模块,则最终用户应依靠模块厂商对模块产品的适当筛选来保证系统使用寿命的要求。半导体制造厂商为其所有电池供电产品制订了测试条件,以保证在电池容量的允许范围内为最终器件提供10年的使用时间。而Dallas Semiconductor公司对这种应用的IC进行优化设计并利用先进的处理工艺满足低电流的需求。对于其它供货商提供的高密度SRAM需作特殊的筛选才能满足模块使用寿命的要求。图1来自于由锂纽扣电池供货商-松下公司提供的电池容量报告,图中四条线代表最常用的电池尺寸(BRl225、BRl632、BR2330和BR3032)。电池供应商提供的额定电池容量(单位为mAH-毫安时)与电池尺寸相对应。电池结构/特征在其需要有备用电池的模块内选用一次性锂钮扣电池,这些电池的额定电压为3V,对系统典型工作电压为2.7V来说,则该锂钮扣电池作为备用电源非常合适。电池电压在放电状态下保持稳定平坦(见图2所示),电池放电接近终止时仍能提供与新电池几乎相同的电压。平坦的放电曲线对于备用电池而言是极为理想的特性,但它为估算电池的剩余电量增添了难度。一次性锂钮扣电池具有较好的可预测性,它的开路电压或内部阻抗等关键参数的离散性极小,极小的离散性使电池厂商筛选电池时很容易设置电池检测的条件,从而便于剔除有缺陷的电池,同时也有助于电池用户鉴别有故障的IC/电池系统。例如,电池电压离散性或电压与电池负载的对应关系是已知的,则电池加载后的电池电压可用以指示其电池的负载情况。如果电池负载与IC所需要的电流一致,则负载电压的离散性极小。根据从外部测得的负载电压可以检测异常IC或电池,从而排除潜在的可靠性风险。电池测试/筛选电池制造商经过100%的测试使产品性能极其一致,但是,任何用户为其系统选用电池时还需对电池作进一步测试,以确保最终产品选用工作正常的电池。经过适当的筛选可以检测出三种类型的缺陷:首先是那些被电池制造商的测试系统所遗漏的电池,这类电池最易检测;第二类缺陷是低水平的内部泄漏,这些电池可能经过一段时间后才能显现出它的内部故障,对于这类电池的检测不仅要了解其合适的测试电平,还要预先了解其测试结果的离散性;第三类缺陷是电池用户在处理或系统制造过程中产生的,由于电池容量是有限的,如果有意想不

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

无线鼠标功率计算及电池寿命测试

无线鼠标的能耗及电池寿命测试 试一试,你的鼠标有多节能? 计算公式1: 计算公式2: 具体测试操作如下: 基本概念: 功率的计量单位——瓦特W,对于小功率的电器,一般以mW计量;1W=1000mW,1mW=1mA * 1V; 1度电(千瓦时) = 1,000,000mWh(毫瓦时); 例如:40W的白炽灯是8W的节能灯耗电量的5倍 无线鼠标的电池连接方式: 电池容量: 举例对比:

续航时间与续航功率 要掌握无线鼠标的能耗与电池寿命关系,首先要了解续航时间与续航功率两个基本概念。续航时间,是指无线鼠标在连续移动的状态下的电池寿命,一般以小时来计量。而续航功率则是指鼠标在连续移动情况下,鼠标耗电的大小,通常以毫瓦来计量。因此,对于相同容量的电池而言,鼠标的续航功率越大,则电池的续航时间就越短。 无线鼠标功耗测试 需要设备: ⑴、直流电源供应器一台 ⑵、数字万用表一只 ⑶、双头夹导线一根 ⑷、白色A4纸一张。 操作步骤

无线功耗发展历程 续航时间与实际电池寿命 与手机连续通话时间和待机时间相似,无线鼠标的实际电池寿命与续航时间上也有概念上的区别。在实际使用中,鼠标是不可能一直在移动的。当鼠标静止时,鼠标就会进入不同的休眠模式,以节省电能。休眠模式下的耗电一般是续航模式下的10%-1%,而且续航时耗电较小的鼠标,休眠时的耗电一般也会较小。 电池在不同的负载下,表现出来的容量也是略有差别的。碱性电池在<15mA的负载下,平均能提供2400mAh的电能,由于电池生命周期内的平均电压是1.3V,折算成功率,就是相当于3100mWh(即0.0031度电)。以一个续航功率为30mW 的鼠标为例,假如使用一块容量为2400mAh的电池,它的续航时间大约为103小时。 归根结底,续航功耗基本上能反映一款无线鼠标的综合能耗及节能技术的先进与否。然而,电池实际的使用寿命,除了与电池的质量、鼠标的续航功率有关外,还与使用者的个人习惯差异存在很大的关系。 无线鼠标的电池寿命测算 由于每个人的使用需求及习惯都不同,所以电池的使用天数很难估计。所以,业界所说的电池寿命,是指无线鼠标在标准工况下,测算出的电池能使用时间,一般以年或月表示。标准工况是指:使用者每周工作5天,每天使用电脑工作8小时,这8小时中,有1/8的时间鼠标是在移动的,另外,7/8的时间,鼠标没有移动。如果以这种使用情况计算,一个使用一节AA电池(3100mWh),续航功率为30mW的鼠标,实际电池寿命约为4个月。但对于一些发烧玩家或特殊用户来说,比如每天打8个小时植物大战僵尸的游戏用户,在这8个小时中,可能有7.5个小时都在移动鼠标,那么,它的实际电池寿命可能只有2周了。 目前市面上的无线鼠标均会提供匹配的电池,无线鼠标续航功率的参差不齐导致实际电池寿命长短各异。从目前的情况看,实际电池寿命一般均为3-5个月左右,好一些的可以达到6个月以上的使用寿命,稍差一些的大约在1-3个月之间。当然,对同一用户的同一使用习惯而言,无线鼠标的续航功率越小,则鼠标电池使用寿命越长。 标准工况下的预期电池寿命(月)计算公式:

电池寿命验证测试手册

电池寿命验证测试手册INEEL/EXT-04-01986 Advanced Technology Development Program For Lithium-Ion Batteries Battery Technology Life Verification Test Manual February 2005 Idaho National Laboratory Idaho Falls, ID 83415 Operated by Battelle Energy Alliance, LLC FreedomCAR & Vehicle Technologies Program Li-ion电池寿命验证测试手册 INEEL/EXT-04-01986 先进技术发展计划 Lithium-Ion 电池 电池寿命验证测试手册 Harold Haskins (USABC) Vince Battaglia (LBNL) Jon Christophersen (INEEL) Ira Bloom (ANL) Gary Hunt (INEEL) Ed Thomas (SNL)

February 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office Contract DE-AC07-99ID13727 2 Li-ion电池寿命验证测试手册 目录 寿命测试条款的术语 缩略语 1.前言 1.1 FreedomCAR电池寿命目标 1.2 电池技术寿命验证目标 1.3 电池寿命测试矩阵设计方法 1.4 参考性能测试方法 1.5 寿命测试数据分析方法 1.6 手册的组织 2. 寿命测试实验要求 2.1 技术特性要求 2.2核心寿命测试矩阵设计要求 2.3 核心寿命测试矩阵设计和验证 2. 3.1初始设计阶段 2.3.2 最终设计阶段 2.3.3 最终验证阶段

锂电池循环充放电寿命问题

锂电池循环充放电寿命问题 锂电池寿命问题:循环充放电一次就是少一次寿命吗?回答这个问题前,我们先来说说锂电池循环寿命的测试条件。 循环就是使用,我们是在使用电池,关心的是使用的时间,为了衡量充电电池到底可以使用多长时间这样一个性能,就规定了循环次数的定义。实际的用户使用千变万化,因为条件不同的试验是没有可比性的,要有比较就必须规范循环寿命的定义。 锂电池充电器 1国标规定的锂电池循环寿命测试条件及要求:在环境温度20℃±5℃的条件下,以1C充电,当电池端电压达到充电限制电压4.2V时,改为恒压充电,直到充电电流小于或等于1/20C,停止充电,搁置0.5h~1h,然后以1C电流放电至终止电压2.75V,放电结束后,搁置0.5h~1h,再进行下一个充放电循环,直至连续两次放电时间小于36min,则认为寿命终止,循环次数必须大于300次。 2国标规定的解释: A.这个定义规定了循环寿命的测试是以深充深放方式进行的 B.规定了锂电池的循环寿命按照这个模式,经过≥300次循环后容量仍然有60%以上 然而,不同的循环制度得到的循环次数是截然不同的,比如以上其它的条件不变,仅仅把4.2V的恒压电压改为4.1V的恒压电压对同一个型号的电池进行循环寿命测试,这样这个电池就已经不是深充方式了,最后测试得到循环寿命次数可以提高近60%。那么如果把截止电压提高到3.9V进行测试,其循环次数应该可以增加数倍。3这个关于循环充放电一次就少一次寿命的说法,我们要注意的是,锂电池的充电周期的定义:

一个充电周期指的是锂电池的所有电量由满用到空,再由空充电到满的过程。而这并不等同于充电一次。另外大家在谈论循环次数的时候不能忽视循环的条件,抛开规则谈论循环次数是没有任何意义的,因为循环次数是检测电池寿命的手段,而不是目的!4▲误区:许多人喜欢把手机锂离子电池用到自动关机再充电,这个完全没有必要。 实际上,用户不可能按照国标测试模式对电池进行使用,没有一个手机会在2.75V 才关机,而其放电模式也不是大电流恒流放电,而是GSM的脉冲放电和平时的小电流放电混合的方式。 有另外一种关于循环寿命的衡量方法,就是时间。有专家提出一般民用的锂离子电池的寿命是2~3年,结合实际的情况,比如以60%的容量为寿命的终止,加上锂离子电池的时效作用,用时间来表述循环寿命我认为更为合理。 注意事项 对于锂离子电池,没有必要用到关机再充电,锂离子电池本来就适合用随时充电的方式进行使用,这也是他针对镍氢电池的最大优势之一,请大家善加利用这个特性。锂电池完全充放电一次(完全充放电并不等同于一次充放电),循环寿命才减少一次。 电池保养常识: 1 记忆效应镍氢充电电池上常见的现象。具体表现就是:如果长期不充满电就开始使用电池的话,电池的电量就会明显下降,就算以后想充满也充不满了。所以保养镍氢电池的重要方式就是:电必须用完了才能开始充电,充满了电了才允许投入使用。现在常用的锂电池的记忆效应是可以小到忽略不计的。2 完全充电,完全放电

电动车电池循环寿命快速等效测试方法

电动车电池循环寿命快速等效测试方法 王传庆 钱学海 (南京震寰金辉胶体蓄电池科技有限公司,江苏南京210006) 摘要:经过大量试验对比,找到一个能等效于DB311202 1997和JB/10262(机械部行业标准)的快速寿命试验方法,文中给出测试方法及等效系数。 关键词:电动车;循环寿命:测试方法 中图分类号:TM912 1 文献标识码:B 文章编号:1006-0847(2002)01-0027-02 A fast equivalent testing method for evaluating cycle life of EV batteries W ANG Chuan qing and QIAN Xue hai (Nanjing Zhenghuan&Jinhui Gelled Electrolyte Sci-Tech Co.,Ltd.,Nanjing,Jiangsu210001,China) Abstract:Based on a great many experiments and comparisons we found a fast testing method for evaluating cycle life of EV batteries,which is corresponding to the require ment prescribed in domestic standards DB31/ 202-1997and JB/10262.The testing method and equivalent coefficient are also presented. Keywords:E V battery;cycle life;testing method 容量和循环寿命是电动车蓄电池的两个最主要的指标。测电池的容量比较简单、快捷,而循环寿命测试则很麻烦,最快也要3~4个月。我们请教了国内知名专家,他们回答目前尚无模拟的带破坏性的快速测试办法,要了解比较准确的循环寿命只有一次次的实做。据悉,南京大陆鸽、苏州小羚羊等全国上规模的电动车公司都采用这种长时间实做的办法。他们为了对自己的产品负责,不敢掉以轻心,要求在试验室里用5A放电,再以小电流充电,或模拟实际骑行的放电状况,一天做2~3次循环,同时专派电动自行车试车员天天骑行。选择一种电池至少要半年。至于中选后的电池批次间的质量波动,特别是循环寿命的波动,只有在电动车售出去让用户鉴别了,待发现问题已经造成很恶劣的影响。 我们是专门生产胶体铅酸蓄电池的,由于市场的需要,公司在小型密封免维护电池方面,以动力型的6 DZ M 10、6 DZM 14为主。南京大陆鸽电动自行车目前60%~70%的电池是用我公司金辉牌胶体蓄电池6 DZMJ 10型。我公司对电池 收稿日期:2001-08-15的循环寿命清楚、超前掌握、尤显重要。因为每研制一种新的电池配方,或者新的胶体电解质配方,要测循环寿命;选择合作厂的半成品电池(未加胶体电解质的)需要了解它加硫酸和胶体电解质各自的循环寿命;确定配方大批量生产时,必须掌握每个批量产品的随机质量,特别是循环寿命。因此,电动车厂需要掌握快速测试所购电池的循环寿命,我们电池生产厂家更需要掌握运用快速循环寿命的方法。这些情况,迫使我们寻求到一种类似一次次实做的、快速带破坏性的试验,能在7~10d测出该种电池的循环寿命的方法。 我们在对比试验的基础上,经过大量试验,寻找到一个能等效于DB31/202 1997和JB/10262 2001(机械部行业标准)的快速寿命试验方法。该方法简单、快速、等效。现将该方法介绍如下。 1 测试方法 1 1 试验电池 应符合DB31/20 2 1997或机械部行业标准的有关规定。电池其他指标符合标准要求。试验电池2只或1只,置于室温水浴中。 1 2 试验电池的额定容量按2小时率计。如6-DZM 10(市场上通称为12V 12Ah)。6 DZ M 电动车电池循环寿命快速等效测试方法交流与探讨 蓄电池!2002年 第1期27

电池测试

二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 电池的可靠性测试项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 电池的安全性测试项目有哪些?

影响锂电池组容量的因素

我们常说电动车锂电池组能跑多远,是衡量一个电动车质量及价格的重要因素,关系着电动车销量及客户的观感,那么锂电池组的性能与哪些因素有关。东莞捷凯贝安新能源为你解答,锂电池组的容量是衡量锂电池性能的一项重要指标,一般用安时(AH)来表示,放电时间(小时)与放电电流(安培)的总称,即容量=放电时间×放电电流。电池的实际容量,取决于电池中活性物质的多少和活性物质的利用率。活性物质的量越多,活性物质利用率就越高,电池的容量也就越大,反之容量越小,一般锂电池的电芯质量就是由此来进行区别,影响电池容量的因素很多,常见的有以下几种: (1) 放电率对电池容量的影响 铅蓄电池容量随放电倍率的增大而降低,也就是说放电电流越大,计算出电池的容量就越小。比如一只5Ah的电池,用2.5A放电可以放2小时,即2.5×2=5 ; 那么用5A放电只能放出47分钟的电,合0.78小时。其容量仅为5×0.78=3.9安时,所以对于给定电池在不同时率下放电,会有不同的容量。我们在说容量时必须知道放电的时率或倍率,简单的讲就是用多大的电流放电。放电率对锂电池组的影响和铅蓄电池的影响是同样的,所以电动车锂电池组在相同的时间下,在相对低速的情况下,跑动的距离越远。 (2)极板的几何尺寸对电池容量的影响 在活性物质的量一定时,与电解液直接接触极板的几何面积增加,电池容量增加,所以极板的几何尺寸,对电池容量的影响不可忽视。 (3) 温度对电池容量的影响

温度对锂电池组及铅酸蓄电池的都有较大的影响,一般对铅酸电池的影响更大,一般随着温度降底,容量下降; 在锂电池生产标准中,一般要规定一个温度为额定标准温度,锂电池的技术参数,都是在标准温度下进行测试的(一般为25摄氏度) ,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即锂聚合物电池输出功率会上升。温度也影响电解液的传送速度,温度上升则加快,温度下降,传送减慢,电池充放电性能也会受到影响。 (3)终止电压对电池容量的影响 当电池放电至某一个电压值以后,产生电压急剧下降,实际上所获得的能量非常小,如果长期深放电,对电池的损害相当大,所以必须在某一电压值终止放电,该截止放电电压叫放电终止电压,设定放电终止电压,对延长锂电池组使用寿命意义重大。

动力电池剩余寿命预测

动力电池剩余寿命预测 锂离子动力电池的内部机理十分复杂,导致其性能衰退的原因众多,而且多种因素相互耦合,最终形成了极具挑战性的工程问题。动力电池的性能衰退问题贯穿于使用和维护的全过程,随着动力电池充放电循环次数的增加,动力电池内部往往会发生一些不可逆转的化学反应,导致内阻增大,最大可用容量、能量以及峰值功率能力衰减,从而大大地削减了电动汽车的续驶里程,甚至带来了一些安全隐患。可靠的RUL预测可以充分解决用户对剩余续驶里程不明的焦虑以及对安全问题的担忧,保障动力电池组安全高效运行,还能在很大程度上确保电动汽车在运行过程中的安全性和可靠性,降低故障率和运行成本,提升用户体验,避免事故发生。因此,动力电池RUL预测是动力电池管理的核心内容之一。本章首先将介绍动力电池RUL 预测的相关概念,再对当前主流的RUL预测方法进行总结与分类,最后从原理和实践层面详细介绍两种具有代表性的动力电池RUL预测方法,指导动力电池系统RUL的精确预测。

6.1 剩余寿命预测的概述 6.1.1 问题描述 动力电池的RUL是指在一定的充放电制度下,动力电池的最大可用容量衰减退化到某一规定的失效阈值所需要经历的循环周期数量。RUL预测是一个基于动力电池历史数据运用一定的数学手段对其残值寿命进行预测计算的过程。随着动力电池在各领域上的广泛应用,动力电池RUL预测技术得到了广泛的关注和研究。 目前,数据驱动是动力电池RUL预测的主要手段,其核心在于对容量衰减轨迹和历史数据的挖掘、提炼和推广。应用数据驱动的手段进行动力电池的RUL预测,首先需要获取动力电池老化实验的容量数据或容量衰减轨迹,从中挖掘和提炼动力电池寿命衰减的内在规律,进而对容量数据进行推广和延伸,最终实现动力电池未来寿命轨迹的预测。一般来说,基于数据驱动的动力电池RUL预测方法具有过程简单、计算量少且无须考虑动力电池复杂机理等优势,能够有效减轻BMS的运行负担,适用于实车的运行环境。 6.1.2 方法分类

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

华为锂离子电池测试规范

锂离子电池测试规范 目录 1范围: (3) 2简介: (3) 3关键词: (3) 锂离子电芯、电池 (3) 4规范性引用文件: (3) 5定义和术语: (4) 5.1电芯 (4) 5.2电池 (4) 5.3标称电压 (4) 5.4充电限制电压 (4) 5.5终止电压 (4) 5.6额定电压: (5) 5.7标准充电: (5) 5.8快速充电: (5) 5.9基准电流 (5) 5.10截止电流 (5) 5.11额定容量 (5) 5.12剩余容量 (5) 5.13恢复容量 (5) 5.14鼓胀 (6) 5.15泄漏 (6)

5.16泄压 (6) 5.17发热 (6) 5.18起火、燃烧 (6) 5.19破裂 (6) 5.20爆炸 (6) 6测试条件及设备 (6) 6.1测试条件: (6) 6.2测试设备: (7) 6.2.1测试仪表及设备的精度要求 (7) 6.2.2测试设备 (7) 7锂离子电芯电池测试原则: (8) 7.1抽样数量及规则 (8) 7.2判定规则 (8) 7.3验证原则 (8) 7.4协商原则 (9) 8电芯样品信息,测试项目和要求: (9) 8.1电芯样品信息: (9) 8.2电芯测试项目和要求: (9) 8.2.1外观: (9) 8.2.2外形尺寸: (9) 8.2.3电芯电性能: (9) 8.2.4电芯安全性能: (10) 8.2.5用X-Ray观察: (12) 8.2.6SEM和EDS分析: (13) 9电池样品信息,测试项目和要求: (13) 9.1电池样品信息: (13) 9.2封装形式: (13) 9.3标签: (13) 9.4外观及尺寸: (14) 9.4.1外观: (14) 9.4.2尺寸: (14) 9.4.3FPC弯折测试 (14) 9.5电池电性能: (14) 9.5.1电压: (14) 9.5.2内阻: (15) 9.5.3额定容量: (15) 9.5.4高倍率放电容量: (15) 9.5.5平台: (15) 9.5.6高温性能: (15) 9.5.7低温性能: (15) 9.6安全性能: (16) 9.6.1保护板要求 (16) 9.6.2BREAK要求:要求过LPS测试8A60S (17)

影响使用寿命的主要因素和注意事项

影响使用寿命的主要因素和注意事项 ⑴环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右, UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。 ⑵放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然UPS都有电池低电位保护功能,一般单节电池放电至10.5V左右时,UPS就会自动关机。但是,如果UPS 处于轻载放电或空载放电的情况下,也会造成电池的深度放电。 ⑶电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开路电压高于12.5V,则表示电池储能还有80%以上,若开路电压低于12.5V,则应该立刻进行补充充电。若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。 ⑷电池充放电电流一般以C来表示,C的实际值与电池容量有关。例如,100AH的电池,C=100A。松下铅酸免维护电池的最佳充电电流为0.1C左右,充电电流不能大于0.3C。充电电流过大或过小都会影响电池的使用寿命。放电电流一般要求在0.05C~3C之间,UPS在正常使用中都能满足此要求,但也要防止意外情况的发生,如电池短路等。 ⑸充电电压。由于UPS电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长电池的使用寿命, UPS的充电器一般采用恒压限流的方式控制,电池充满后即转为浮充状态,每节浮充电压设置为13.6V 左右。如果充电电压过高就会使电池过充电,反之会使电池充电不足。充电电压异常可能是由电池配置错误引起,或因充电器故障造成。因此,在安装电池时,一定要注意电池的规格和数量的正确性,不同规格、不同批号的电池不要混用。外加充电器不要使用劣质充电器,而且安装时要考虑散热问题。目前,为进一步提高电池寿命,先进的UPS都采用一种ABM(Advanced Battery Management)三阶段智能化电池管理方案,即充电分成初始化充电、浮充电和休息三个阶段:第一阶段是恒流均衡充电,将电池容量充到90%;第二阶段是浮充充电,将电池容量充到100%,然后停止充电;第三阶段是自然放电,在这个阶段里,电池利用自身的漏电流放电,一直到规定的电压下限,然后再重复上述的三个阶段。这种方式改变了以前那种充满电后,仍使电池处于一天24h的浮充状态,因此延长了电池的寿命。 ⑹免维护电池由于采用吸收式电解液系统,在正常使用时不会产生任何气体,但是如果用户使用不当,造成电池过充电,就会产生气体,此时电池内压就会增大,将电池上的压力阀顶开,严重的会使电池爆裂。

动力电池剩余寿命测试

剩余寿命测试 动力电池的耐久性与其剩余寿命息息相关,它体现了动力电池系统在不同工作条件下,特别是在极限工况条件下的耐受能力。当前对于动力电池耐久性管理研究侧重于对单一应力或复合多应力作用下的动力电池寿命预测与健康状态评估,从而对可预见的电池故障和失效进行预警或干预。 一方面,在电动汽车的实际应用中,动力电池的寿命通常要求达到10~15年的时间,但相关测试必须满足成本和时间最小化要求。另一方面,考虑到动力电池在实际应用中外界因素复杂多变,且不同应力水平下电池的寿命衰减轨迹也不同,动力电池的剩余寿命测试还应实现对混合应力的解耦,其中混合应力包括充放电倍率、截止电压、SOC区间、温度等。研究表明,借助剩余寿命测试获取动力电池的寿命衰退规律和不同老化状态下的特性,是实现动力电池及系统剩余寿命预测与耐久性快速评价的可行方案。 综上,本书介绍了一套包括不同倍率、不同温度、不同SOC区间和不同下截止电压放电测试在内的剩余寿命测

试方案,该实验的部分测试结果将用于支撑第6章的剩余寿命预测研究。测试步骤具体如下: 方案1:不同倍率的剩余寿命测试(见图2-24) 图2-24 不同倍率的剩余寿命测试 ①以0.5C恒流充电至上截止电压,再恒压充电至截止电流0.05C。 ②静置5min。

③分别以1C、2C、3.5C放电至下截止电压,再以0.5C 放电至截止电压。 ④静置5min,返回步骤①。 ⑤每100个循环进行一次常规电性能测试和交流阻抗测试。 方案2:不同温度的剩余寿命测试 将环境模拟设备温度分别设为10℃、25℃和40℃,重复方案1。 方案3:不同SOC区间的剩余寿命测试(见图2-25) ①以0.5C恒流充电至SOC区间上截止点,若是100%SOC情况,则需再恒压充电至截止电流0.05C。 ②静置5min。 ③分别在0~100%、10%~90%、50%~100%、25%~75%、0~50%、80%~100%、40%~60%、0~20%、90%~100%、20%~30%10个SOC区间和5个不同ΔSOC放电;放电电流均为1C。 ④静置5min,返回步骤①。 ⑤每100个循环进行一次常规电性能测试和交流阻抗测试。

电池性能及测试

锂电池性能与测试 1. 二次电池性能主要包括哪些方面? 主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。 2. 手机电池块有哪些电性能指标怎么测量? 电池块的电性能指标很多这里只介绍最主要的几项电特性: A.电池块容量 该指标反映电池块所能储存的电能的多少是以毫安小时计,例如:1600mAH是意昧着电池以1600mA放电可以持续放电一小时. B.电池块寿命 该指标反映电池块反复充放电循环次数 C.电池块内阻 上面已提到电池块的内阻越小越好但不能是零 D.电池块充电上限保护性能 锂电池充电时,其电压上限有一额定值,在任何情况下,锂电池的电压不允许超过此额定值该额定值。由PCB板上所选用的IC来决定和保证。 E.电池块放电下限保护性能 锂电池块放电时,在任何情况下锂电池的电压不允许低于某一额定值该额定值,由PCB板上所选用的IC来决定和保证。 需要说明的是,在手机中一般锂电池块放电时,尚未到达下限保护值,手机就因电池电量不足而关机。 F.电池块短路保护特性 锂电池块外露的正负极片在被短路时,PCB板上的IC应立即加以判断,并作出反应关断MOSFET。当短路故障排除后,电池块又能立即输出电能,这些均有PCB上的IC来识别判断和执行。 3. 电池的可靠性项目有哪些? 1. 循环寿命 2. 不同倍率放电特性 3. 不同温度放电特性 4. 充电特性 5. 自放电特性 6. 不同温度自放电特性 7. 存贮特性 8. 过放电特性 9. 不同温度内阻特性 10. 高温测试 11. 温度循环测试 12. 跌落测试 13. 振动测试 14. 容量分布测试 15. 内阻分布测试 16. 静态放电测试ESD 4. 电池的安全性测试项目有哪些? 1. 内部短路测试 2. 持续充电测试 3. 过充电 4. 大电流充电 5. 强迫放电 6. 坠落测试 7. 从高处坠落测试 8. 穿透实验 9. 平面压碎实验 10. 切割实验 11. 低气压内搁置测试 12. 热虐实验 13. 浸水实验 14. 灼烧实验 15. 高压实验 16. 烘烤实验 17. 电子炉实验 5. 什么是电池的额定容量? 指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20+ 5。c环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示而对于锂离子电池,则规定在常温,恒流(1C)恒压(4.2V)控制的充电条件下,充电3 h再以0.2C放电至2.75V时,所放出的电量为其额定容量电池容量,电池容量的单位有Ah,mAh(1Ah=1000mAh). 6. 什么是电池的放电残余容量? 对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量 7. 什么是电池的标称电压;开路电压;中点电压;终止电压? 电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V。 开路电压指在外电路断开时,电池两个极端间的电位差; 终点电压指电池放电实验中,规定的结束放电的截止电压; 中点电压指放到50%容量时,电池的电压主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标 8. 电池常见的充电方式有哪几种? 镍镉和镍氢电池的充电方式: 1. 恒流充电:整个充电过程个中充电电流为一定值,这种方法最常见。 2. 恒压充电:充电过程中充电电源两端保持一恒定值,电路中的电流随电池电压升高而逐渐减小。

影响UPS电源蓄电池寿命的因素及UPS电源维修检测方法

市场上UPS电源的类型有很多,除了我们常见的山特、维谛、华为等知名品牌之外还有众多的中小UPS 电源厂家,那么影响UPS电源蓄电池寿命的因素及如何进行UPS电源维修检测哪,小编带您走进这个问题。 UPS电源蓄电池有哪些分类 在UPS电源应用中常用的UPS电源电池共有三种:包括开放型液体铅酸电池,免维护电池,镍铬电池,影响电池寿命的因素,不同种类UPS电源电池也有各自的优点和缺点。现UPS电源厂家所配的电池一般为免维护电池,下面以免维护蓄电池为主介绍三种电池的特点: 1、开放型液体铅酸电池 此类电池按结构可分为8-10年,15-20年寿命两种。由于此电池硫酸电解会产生腐蚀性气体,此类电池必须安装在通风并远离精密电子设备的房间,且电池房应铺设防腐蚀瓷砖。由于蒸发的原因,开放电池需定期测量比重,加酸加水。此电池可忍受高温高压和深放电。电池房应禁烟并用开放型电池架。此电池充电后不能运输,因而必须在现场安装后充电初充电一般需55-90小时。正常每节电压为2V,初充电电压为2.6-2.7v。 2、镍铬电池 此类电池不同于铅酸电池,电解时产生氢和氧而不产生腐蚀性气体,因而可安装在电子设备的旁边。且水的消耗很少,一般不需维护。正常寿命为20-25年。远比前面提到的电池昂贵。初始安装的费用约为铅酸电池的三倍。并不会因环境温度高而影响电池寿命,也不会因环境温度低而影响电池容量。一般每节电压为1.2V,UPS因应用此类电池需设计较高的充电器电压。 3、免维护蓄电池 免维护蓄电池由于自身结构上的优势,电解液的消耗量非常小,在使用寿命内基本不需要补充蒸馏水。它还具有耐震、耐高温、体积小、自放电小的特点。使用寿命一般为普通蓄电池的两倍。市场上的免维护蓄电池也有两种:第一种在购买时一次性加电解液以后使用中不需要维护;另一种是电池本身出厂时就已经加好电解液并封死,用户根本就不能加补充液。 由于免维护蓄电池采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。 UPS蓄电池寿命受什么因素影响? 1、温度影响 温度对UPS电池的自然老化过程有很大影响。详细的实验数据表明温度每上升摄氏5度,电池寿命就下降10%,所以UPS的设计应让电池保持尽可能的温度。 2、充电影响

相关文档