文档库 最新最全的文档下载
当前位置:文档库 › 橡胶工艺原理(四)

橡胶工艺原理(四)

橡胶工艺原理(四)
橡胶工艺原理(四)

第四章橡胶的老化与防护

§4.1概述

各种高分子材料虽然都有着各自优异的特性,但也有着共同的缺点,也就是说都有着一定的使用期限,原因就是它们都会在不同程度上发生老化。

一.橡胶老化的概念

橡胶或橡胶制品在加工、贮存和使用的过程中,由于受内、外因素的综合作用(如热、氧、臭氧、金属离子、电离辐射、光、机械力等)使性能逐渐下降,以至于最后丧失使用价值,这种现象称为橡胶的老化。

橡胶老化的现象多种多样,例如:生胶经久贮存时会变硬,变脆或者发粘;橡胶薄膜制品(如雨衣、雨布等)经过日晒雨淋后会变色,变脆以至破裂;在户外架设的电线、电缆,由于受大气作用会变硬,破裂,以至影响绝缘性;在仓库储存的或其他制品会发生龟裂;在实验室中的胶管会变硬或发粘等。此外,有些制品还会受到水解的作用而发生断裂或受到霉菌作用而导致破坏……所有这些都是橡胶的老化现象。

老化过程是一种不可逆的化学反应,象其他化学反应一样,伴随着外观、结构和性能的变化。

二.橡胶在老化过程中所发生的变化

1.外观变化

橡胶品种不同,使用条件不同,发生的变化也不同。

变软发粘:天然橡胶的热氧化、氯醇橡胶的老化。

变硬变脆:顺丁橡胶的热氧老化,丁腈橡胶、丁苯橡胶的老化。

龟裂:不饱和橡胶的臭氧老化、大部分橡胶的光氧老化、但龟裂形状不一样。

发霉:橡胶的生物微生物老化。

另外还有:出现斑点、裂纹、喷霜、粉化泛白等现象。

2.性能变化(最关键的变化)

物理化学性能的变化:比重、导热系数、玻璃化温度、熔点、折光率、溶解性、熔胀性、流变性、分子量、分子量分布;耐热、耐寒、透气、透水、透光等性能的变化。

物理机械性能的变化:拉伸强度、伸长率、冲击强度、弯曲强度、剪切强度、疲劳强度、弹性、耐磨性都下降。

电性能的变化:绝缘电阻、介电常数、介电损耗、击穿电压等电性能的变化、电绝缘性下降。

外观变化、性能变化产生的原因是结构变化。

3.结构变化

分子间产生交联,分子量增大;外观表现变硬变脆。

分子链降解(断裂),分子量降低,外观表现变软变粘。

分子结构上发生其他变化:主链或侧链的改性,侧基脱落弱键断裂(发生在特种橡胶中)。

三.橡胶老化的原因:

1.内因:

①橡胶的分子结构

化学结构(或链节结构):橡胶的基本结构如天然橡胶的单元异戊二烯,存在双键及活泼氢原子,所以易参与反应。

分子链结构:橡胶大分子链的弱键,薄弱环节越多越易老化。

不饱和碳链橡胶容易发生老化,饱和碳链橡胶的氧化反应能力与其化学结构有关,如支

化的大分子比线型的大分子更容易氧化。就氧化稳定性来说,各种取代基团按下列顺序

排列:CH

硫化胶交联结构:交联键有—S—、—S2—、—S x—、—C—C—,交联键结构不同,硫化胶耐老化性不同,—S x—最差。

②橡胶配合组分及杂质:橡胶中常存在变价金属,如Ca、Fe、Co、Ni等,若超过3ppm

就会大大加快橡胶的老化。

2.外因:

物理因素:热电光机械力高能辐射等。

化学因素:氧臭氧,空气中的水汽酸碱盐等。

生物因素:微生物:细菌真菌

昆虫:白蚁蟑螂会蛀食高分子材料。

海生物:牡蛎石灰虫海藻海草等

在实际中也往往是上述几个因素同时发挥作用。使用条件、地区不同这些因素的作用也不同,因此橡胶的老化是个复杂的过程。

其中最常见的、影响最大、破坏性最强的因素是:热、氧、光氧、机械力、臭氧,归结起来就是热氧老化、光氧老化、臭氧老化、疲劳老化。

四.橡胶老化的防护

橡胶老化和铁生锈,人要衰老一样自然,我们只能通过老化规律的研究利用规律延缓橡胶的老化,但不能做到绝对防止。常用的防护方法有:

物理防护法:尽量避免橡胶与老化因素相互作用的方法。如:在橡胶中加入石蜡,橡塑共混,电镀,涂上涂料等。

化学防护法:通过化学反应延缓橡胶老化反应继续进行。如:加入化学防老剂。五.本章内容与要求

1.掌握橡胶烃及硫化胶的热氧老化机理及防护措施。

2.掌握橡胶的臭氧老化机理及防护方法。

3.掌握橡胶的疲劳老化机理及防护方法。

4.掌握常用橡胶防老剂的作用特性及选用原则。

5.了解光氧老化机理及防护。

六.主要参考书

1.高分子材料的老化与防老化,化工部合成材料老化研究所编(TQ311.乙1)

2.聚合物的稳定化,[美] W.L.霍金斯著,吕世光译。

O631.3.乙2. 轻工业出版社

3.橡胶化学与物理TQ33.乙7 朱敏主编化工出版社

4.橡胶化学

§4.2 橡胶的热氧老化与防护

橡胶老化最主要的因素是氧化作用,它使橡胶分子结构发生裂解或结构化,致使橡胶材料性能变坏,温度对氧化有很大影响。提高温度会加速橡胶氧化反应,特别是橡胶制品在高温下或动态下使用时,生热提高会发生显著的热氧化作用。

一.橡胶烃的热氧化

1.热氧化机理

研究发现,橡胶热氧老化是一种链式的自由基反应。自由基链式反应过程如下:

2.吸氧曲线与自催化氧化

橡胶等高聚物的物理性能的下降,与吸氧量有密切的关系,所以常通过测定橡胶等的吸氧量与时间的关系来判断橡胶老化的程度。

通过吸氧量的测定,了解到高聚物的氧化反应一般有三个明显的阶段。如图中的B、

C、D阶段。个别情况下,如含有填充剂的某些橡胶的吸氧曲线,还会出现A阶段。

A阶段开始时吸氧速度很高,但很快降到一个非常小的恒定值而进入B阶段,A阶段的影响因素很复杂,其吸氧量与全过程的吸氧量相比很小,对橡胶性质的变化来说影响也

不大。

B阶段为恒速阶段,A-B可合称为诱导期,以比较小的恒定速度吸收氧化。

在此期间橡胶的性能虽有所下降,但不显著,是橡胶的使用期。

C阶段:自加速阶段(自催化反应阶段),该阶段吸氧速度激烈增加,比诱导期大几个数量级,如用模拟化合物氧化时,因为氢过氧化物大量分解产生的自动催化过程完全相同,

此时橡胶已深度氧化变质,丧失使用价值。

氢过氧化物量多,发生双分子分解反应。

D阶段:吸氧速度变慢,最后处于稳定期,橡胶反应的活性点没有了,也就是说橡胶深度老化。

由吸氧曲线可见,吸氧的过程是时间的函数,且呈现出自动催化反应的S型曲线特征。所以说元素氧对橡胶等高聚物的氧化,称为自动氧化。它是一个自动催化过程。在其中作为主要反应产物的氢过氧化物分解,产生了游离基而开始了游离基链式反应,因此反应开始缓慢,当产生的氢过氧化物分解引起引发作用时,速度不断增加,直到最大值。然后当橡胶等被深度氧化而变性时,氧化速度缓慢下来。

3.不饱和橡胶烃的热氧化特征

橡胶的自加速作用是不饱和橡胶氧化的特征之一,为了全面把握橡胶的氧化特征,我们首先讨论不饱和橡胶的氧化特征。

①所有的不饱和橡胶在热氧化过程中,因为橡胶品种的不同,都不同程度的产生自催化氧化作用。

②这一特征可分为两类来讨论。

a.以NR、IR为主的橡胶在热氧化过程中,分子链降解,分子量下降,并产生含有醛酮以及水等的低分子化合物;氧化的橡胶表面发粘、变软,氧可继续扩散氧化。

NR的氧化过程如下:

由此可以看出,此过程为一链断裂过程。

b.以丁二烯均聚物或其他共聚的橡胶如:SBR、NBR一般认为在热氧化过程中,分子链的降解与交联两种反应同时存在,无论哪一种含有丁二烯链节的聚合物或共混物,对氧化降

解都是敏感的,这是因为各种丁二烯链节结构中都有不饱和键的存在。老化的初期降解占优势,到达反应后期,交联反应占优势。

总起来说,以丁二烯均聚或其他单体共聚的橡胶,如:SBR、NBR在热氧老化时以交联反应为主,使橡胶表面层的交联密度显著增大,外观表现为变硬、变脆。

1,2结构氧化降解机理不同

其中烷氧基可以以下列方式断裂:

4.饱和碳链橡胶和杂链橡胶的热氧老化特征

①饱和碳链橡胶

因吸氧速度慢,有较好的耐氧化作用。其特征如下

a. 没有明显自催化作用(原因:饱和碳链橡胶的热氧化反应必须在较高的温度下才能

进行,但这时产生的氢化过氧化物很快分解,不能发挥催化氧化作用)

b. 常常分子量下降,但由于化学结构不同,也常产生其他的异构化反应,或生成低分

子挥发物(如:乙丙橡胶氧化后产生羟基,羧基或酮基基团)

②杂链橡胶的氧化特征

杂链橡胶的热氧化反应较慢,并且研究也较少,但其热氧化过程仍具有链反应的特征,且自催化作用也很不明显。

它除了具有链反应特征的裂解交联等一般规律外,还具有其他类型的反应。它的氧化反应温度比一般橡胶要高得多,在280℃以上开始有低分子挥发物产生,裂解产物经分析证明是一氧化碳、甲醛、甲醇等。

聚有机硅氧烷热氧化反应机理表述如下:

(ⅰ)氧与接在硅原子上的甲基作用生成过氧化物

(ii)过氧化物迅速裂解生成甲醛和.OH基

(iii).OH基与大分子链上具有子电荷的硅原子结合,进而产生交联

二.影响橡胶热氧老化的因素

1.橡胶种类的影响

橡胶的品种不同,耐热氧老化的程度不同,这主要是由于过氧自由基从橡胶分子链上夺取H的速度不同所造成的。活泼H的电子性质受分子链中的双键及取代基影响。

(1)双键的影响

橡胶分子链上存在着双键时,由于双键很活泼,容易发生加成或其它反应,同时由于双键的存在,影响到与双键相邻的α-亚甲基上的氢原子特别活泼,容易被其它物质夺去,引起取代反应或形成大分子的游离基。因此,含有大量双键的橡胶(即不饱和橡胶)如:NR、SBR、BR等都易于受氧的袭击而不耐老化。但是双键所在位置不同,它们的活泼性也很大差别,如:SBR中分布在乙烯基侧链上的不饱和端(即1,2-结构)常称为外双键,又比分布在主链上的双键(即1,4-结构,称为内双键)要稳定得多。从上图中可以看出,不饱和度很小的IIR要比高不饱和度的橡胶稳定得多。

(2)双键取代基的影响

橡胶在氧化过程中,无论是受热光氧等的引发,还是链增长阶段的传递反应

()都牵涉到RH 的脱氢反应。RH是电子给予体,脱氢难易受电子效应的影响,因之也影响到橡胶老化的难易和速度。常见的极性和非极性橡胶中,这种电子效应的影响是较明显的。

a.吸电子效应

CR的分子在它的双键处有一极性基团,即带负电的氯原子,,因为氯原子分布在双键邻近,它吸引着双键的活泼的∏电子,这就降低了双键的活性,降低了双键的反应能力,同时也降低了α—氢原子的活性,所以CR在温度不太高时氧化作用进行得较为缓慢,比较耐氧老化。

NBR虽然在分子结构中也含有负电性基(—CN),但因为它不是直接分布在双键的碳原子上,所以它对双键的反应能力不能起到多大影响。

b.推电子效应

NR分子结构中双键的碳原子上有—CH3基团,它是推电子的基团,由于—CH3的存在及所处位置,就使得NR分子中的双键和α-氢原子更加活泼,使NR更易与氧起作用,不耐氧老化。

(3)位阻效应

无论是RH的脱氢还是活泼双键受到袭击,也还要受到它们在分子结构中所处位置的影响。如:聚乙烯基甲基醚和聚氧化丙烯是一对异构体,它们的叔氢原子有着相同的电子环境,但是聚氧化丙烯的氧化速度却比聚乙烯基甲基醚快3.5倍。

聚苯乙烯有着庞大的侧基—苯环,且又是刚性的,所以它能起到屏蔽主链,阻碍氧扩散的作用,即起到位阻效应,防碍氧袭击主链上的薄弱点,这也是PS较耐热养老化的主要原因之一,而SBR由于侧基苯环较少,分布稀疏,不能起到有影响的为阻效应。

CR的侧基氯原子,也屏蔽着主链上的双键,加上氯原子的吸电子作用,使双键和a-亚甲基上的氢都较稳静,这也使得CR在不饱和橡胶中比较耐劳化。

(4)橡胶的结晶性的影响

聚集态结构对热氧老化性也有影响,如在常温下古塔波胶的氧化反应性比NR低,因为前者在室温下是结晶的,后者是非结晶的。

当聚合物产生结晶时,分子链在晶区内产生有序排列,使其活动性降低,聚合物的密度增大,氧在聚合物中的渗透率降低。因此聚合物的耐热氧老化性能随着结晶度及密度的提高而增大。

2。温度

在橡胶的热氧化中,热起了促进氧化的作用,因此温度越高越易热氧老化。

3。氧的浓度

橡胶发生氧化,必须有足够的氧供给反应,研究表明:氧压高于100mmHg时,氧的浓度与热氧老化性无关。氧压低于100mmHg,或者橡胶的碳氢链非常活泼,或者在较高的温度下,氧化反应都与氧的浓度有关。

4。金属离子(也称变价金属离子)

在橡胶的合成及加工过程中,往往残留或混入一些变价金属离子,它们对橡胶的氧化反应具有强烈的催化作用,能迅速使橡胶氧化破坏,尽管它们在橡胶中的含量很微小,但其破坏作用很惊人的,这些重金属离子包括Cu、Co、Mn、Fe、Ni和Al等。它们对合成橡胶的催化氧化作用较NR稳定,对合成侧乙烯基较多的聚丁二烯橡胶来说,重金属催化氧化作用较为稳定,而含有极性基团的NBR,CR对重金属催化氧化作用的稳定性更大。

重金属离子的催化氧化作用如下:

从上述反应看出,重金属离子有两个作用:它既加速了氧化的引发反应,又催化氢化过氧化物分解成自由基。

三.橡胶热氧老化的防护

前面已讲过,防止橡胶的老化具有重要的经济价值和使用价值。而有前面的讨论我们知道,橡胶的热氧老化是一种自由基链式反应,并且是一种由ROOH引起的自动催化氧化反应或由重金属离子引起的催化氧化反应。如果能设法阻止这种链反应的进行,或阻止催化氧化作用,就能延缓橡胶的老化。为此,人们研制出了链终止型防老剂、破坏氢过氧化物型防老剂、重金属离子钝化剂等。下面就它们的作用机理分别进行讨论。

1。链终止型防老剂

这类防老剂的作用主要是与链增长自由基R·或RO2·反应,以终止链增长过程来减缓氧化反应,该防老剂为主要防老剂。

能够终止链增长过程的链终止型防老剂可与RO2·(过氧自由基)反应,这类抗氧自由基与链增长自由基反应的方式有加成或偶合,有电子转移或最常见的氢转移。根据它们与自由基的作用方式不同又分为三类:自由基捕捉体、电子给予体和氢给予体。

①自由基捕捉体型

凡是能够与自由基反应,所生成的产物不再引发氧化反应的物质称为自由基捕捉体(或自由基阱)如:醌类化合物。

稳定的二烷基氮氧化物自由基[(R2,NO·)]如:二特丁基氮氧化物自由基(1)和2,2,6,6-四甲基-4-吡啶酮氮氧化物自由基(2)]将这类物质加入到橡胶中,在橡胶中进行热氧化时,能够与R·和RO2·反应,生成稳定的分子产物,终止链增长。

另外需说明的是:炭黑的表面上有醌基和多核芳烃结构存在,它们能捕捉活性自由基,使动力学链终止。

②电子给予体型

这一类主要是指不含反应性N-H官能团的叔胺,它也能使动力学链终止,具有抗氧化能力,这是因为叔胺作为电子给予体,当它与游离基RO2·相遇时,由于电子的转移而使活性游离基反应终止。

③氢给予体型

在聚合物热氧稳定中,最常见的抗氧剂是仲芳胺和受阻酚,它们分别含有反应性的N-H 或O-H官能团,能与聚合物争夺过氧自由基,通过氢转移使链增长反应终止,如防老剂用AH表示。

氢给予体防老剂应具备的条件:

A.具有活泼的氢原子,而且比橡胶主链的氢原子更易脱出。

B.防老剂本身应较难被氧化。

C.防老剂的游离基活性要较小,以减少它对橡胶引发的可能性。又要有可能参与终止反应。

2.破坏氢化过氧化物性防老剂

从橡胶的自动氧化机理可以看到,大分子的氢过氧化物是引发氧化的游离基的主要来源。所以只要能够破坏氢过氧化物,使它们不生成活性游离基,也能延缓自动催化的引发过程,能起到这种作用的化合物又称为氢过氧化物分解剂。又因为这类防老剂要等到氢过氧化物生成后才能发挥作用,所以一般不单独使用,而是与酚类等抗氧剂并用,因此称为辅助防老剂。

常见的破坏氢化过氧化物型防老剂有:长链脂肪族含硫脂和亚磷酸酯,此外还有硫醇和二烷基二硫代氨基甲酸盐等,它们的作用机理分别叙述如下:

①二烷基硫化物

如:常用的DLIP(硫代二丙酸二月桂酯)H25C12OOC-CH2CH2-S-CH2-CH2-COOC12H25的作用为:

该化合物在氧化过程中既破坏了氢过氧化物的积累,也破坏了其分解产物的引发作用,是引发氧化反应的活性中心大大减少,因此消弱了自催化过程。

②亚磷酸酯类

如:TNP(三壬基苯基亚磷酸酯)和TPP(三苯基亚磷酸酯)等。

③二硫代有机酸盐和二硫代磷酸盐类

它们也是非常有效的氢过氧化物分解剂。

这类化合物之所以效果显著是因为这些反应产物可以分别连续与多量的氢过氧化物再反应。一克分子的二硫代氨基甲酸盐就能分解七克分子的氢过氧化物。

④硫醇类化合物

这类化合物也可以促使ROOH分解。

2R′―SH+ROOH→ROH+R′―S―S―R′+H2O

3.金属离子钝化剂(辅助防老剂)

微量的二价或三价以上的重金属离子如Cu、Mn、Fe、Co等对橡胶的氧化具有强烈的催化作用。这些变价金属离子常常加速破坏生胶和硫化胶。但他们的危害性在很达程度上取决于这些金属存在于什么样的化合物中。如硫酸盐中甚至很微量的Mn也是有害的,而Mn 在碳酸盐中则危害较小。显然这是与这些物在橡胶中溶解与否有关。

这类钝化剂常是酰胺类、醛胺缩合物等,他们能与酚类和胺类防老剂有效地并用。主要是铜抑制剂和铁抑制剂。最早使用的铜抑制剂是水杨醛和乙二胺缩合物—水杨叉乙二胺,其它如己二胺和水杨醛、糠醛或肉桂醛的缩合物。酰胺类有苯甲酰肼等。

这些金属离子钝化剂的作用特点是:

①能以最大配位数强烈地络合重金属离子

②能降低重金属离子的氧化还原电位

③所生成的新络合物必须难溶于橡胶

④有大的位阻效应

4.防老剂并用的加和效应、对抗效应和协同效应

两种或两种以上防老剂并用,往往可以产生加和效应、协同效应或对抗效应。

①对抗效应

设防老剂a单独使用时防护效果为A,防老剂b单独使用时防护效果为B,防老剂a与b并用时的效果为C,C

两种防老剂并用时的防护效果小于单独使用时防护效果之和,即对抗效应,也就是一种防老剂对另外的防老剂产生有害影响的现象,又称为“反协同效应”

②加和效应

两种防老剂并用时的防护效果等于单独使用时防护效果之和,即C=A+B称为加和效应。

如:将链断裂型抗氧剂芳胺或酚类化合物与金属离子钝化剂;氧化过氧化物分解剂和紫外线吸收剂等预防型抗氧剂并用时,它能对聚合物起抗热氧和防止其光氧化的作用;如果再加入一种抗臭氧剂,则还应当提高聚合物的耐臭氧性。这里,这几种防老剂发挥了各自的加和特性;又如采用不同挥发度或不同空间位阻程度的两种酚类化合物并用时,可以在很宽广的范围内,发挥它们抗氧化的加和效果。有时在配方中使用一种高浓度抗氧剂时,会引起氧化强化效应(助氧化效应),而当采用几种低浓度的抗氧剂并用时,即可以避免氧化强化效应,又可以发挥加和的抗氧作用。

③协同效应

当抗氧剂并用时,它们的总效能超过它们各自单独使用的加和效能时,称为协同效应或超加和效应,协同效应又分为均匀性协同效应和非均匀性协同效应(杂协同效应)。

A.均协同效应

指几种稳定机理相同,但活性不同的抗氧剂并用时所产生的协同效应。如:两种活性不同的防老剂并用时,其中高活性防老剂给出氢原子,捕捉自由基终止活性链,而低活性的防老剂可以供给高活性的防老剂氢原子使之再生,结果也提高了并用效果。

下列反应式表示不同取代酚并用时的协同机理:

B.杂协同效应

指几种稳定机理不同的抗氧剂并用时产生的协同效应,如终止链反应型防老剂与破坏氢化过氧化物型防老剂的并用。由于破坏氢化过氧化物型防老剂在反应过程中破坏了氢化过氧化物,使体系中难于生成引发反应的自由基,以至于减缓了链增长反应,因此减少了终止链反应型防老剂的消耗。同时,终止链反应型防老剂能够减少反应过程氢化过氧化物的生成量,从而又减少了破坏氢化过氧化物型防老剂的消耗,实现两者的相互保存。

另外,有些化合物在单独使用时没有抗氧效能,但它是一个再生体,可以和其它抗氧剂配合使用,发挥协同作用,如阻碍酚和磷酸酯的协同效应:

C.自协同效应

对于同一分子具有两种或两种以上的稳定机理者,常称自协同效应。如某些胺类抗氧剂还具有金属离子钝化剂的作用;二烷基二硫代氨基甲酸盐生物,即使过氧化物分解剂,又是金属离子钝化剂;炭黑即是游离基抑制剂,也是光屏蔽剂。

此外,抗氧剂和紫外光吸收剂,炭黑和含硫抗氧剂并用时,都可以产生协同效应。四.硫化胶的热氧老化

1.硫化胶的热氧化与其橡胶烃热氧化的比较

①硫化胶比其橡胶烃耐热氧化

原因:a.橡胶硫化后,由于硫化反应是橡胶网构中能与氧反应的部位(双键或一次甲基氢)越来越少

由于硫化胶呈网状结构,随网构密度增大,分子运动性降低,氧扩散困难,热氧化性小。

②橡胶烃所发生的热氧化反应及其特征,在其硫化胶中同样发生。

③交联结构及其硫化网外物对其热氧化要产生影响

2.不同交联键对热氧化的影响

从图中可以看出,单硫和双硫交联结构的硫化胶具有较好的耐氧化作用,而多硫交联的耐氧化作用最差。

交联硫键是在氢过氧化物或过氧化物游离基存在下被氧化的,不同的交联键作用如下:a.单硫键的作用:

在无氧化情况下,次磺酸的两个分子合并,可部分的恢复被破坏的交联键。

b.双硫交联键

双硫交联键在相同条件下也与氢过氧化物作用生成硫代次磺酸盐,在过氧化物存在下将继续进行游离基的再分配,以及产生交联键的交换,这种情况若是在应力作用下,就将导致硫化胶的蠕变和永久变形。

c.多硫交联键

多硫交联键的氧化作用认为多硫交联键分裂出自由基,然后引发自动氧化的过程。

多硫交联键的研究早已受到各方面的注意,但还不能完全了解多硫交联键在氧化时的变化规律,特别是氧化机理。

3.硫化胶网外物对热氧化的影响

网外硫化物比硫键更易与氢过氧化物反应,从而防护了硫化胶。好的耐老化性与环状硫化物有关。

未经抽提的TMTD无硫硫化胶的耐老化性能较好,是由于促进剂秋兰姆与氧化锌相作用生成四甲基二硫代氨基氨基甲酸锌(ZDNC),它起着强烈的钝化氢过氧化物的抗氧剂作用,未经抽提的TMTD硫化胶中有相当数量的ZNDC存在,所以很耐老化。TMTD无硫硫化胶经过热丙酮抽提8小时后,胶中所含ZMDC被抽提出来,这种硫化胶就不是耐老化的硫化胶。不仅ZNDC是良好的氢过氧化物分解剂,其它许多金属的二烷基二硫代氨基甲酸盐,如镉盐、铅盐、铜盐、铋盐等也都有良好的抗氧性能,甚至比锌盐的抗氧效果还要好许多。

根据以上所述,在理论上可引出借助网外物质防护硫化胶的实用体系如:借助交联键外的硫化物除去过氧化物,在这一反应中,过氧化氢与网外硫化物的反应较之于硫键反应更快,从而防护了硫化胶。

§4.3橡胶的光氧老化与防护

日光有很高的能量,橡胶吸收光子后被激发,生成游离基,且橡胶的氢过氧化物吸收光子生成过氧化自由基,由光子所引发的反应如下:

以后即开始链的增长与终止反应,若在无氧状态下进行光化学反应,称为光老化。一般只限于表面层,表面开始发粘,后来变脆、变色或增厚,并生成无规则裂纹。

太阳光对聚合物材料的危害作用是紫外光和氧参与下的一系列复杂反应所造成的。高分子材料受紫外光照射会发生光降解,波长290-400mμ的紫外光具有很高的能量,如

290-350mμ波长的紫外光,能量达97-82kcal/g分子,它足以切断有机物的化学键,所以这一过程被称为光氧化降解。

一.光氧化降解的影响

聚合物在含氧环境中受紫外光照射后会发生各种物理变化。虽然在早期阶段人们很难察觉出这种光氧化作用,但实际上,聚合物的细微化学变化确实一直不停的缓慢积累着,以致最后产生明显的物理效应,如变色、表面龟裂、机械性能和电气性能的恶化等。

1.机械性能和光学性能

PS的氧化降解能引起颜色变黄,而PVC光降能的颜色变化则由黄—红—棕色。

伴随着光化学变化的发生,常有表面龟裂和脆化现象出现,致使韧性和拉伸强度剧烈下降,以致最后机械性能破坏。

2.化学变化

光氧老化经常引起聚合物的断裂或交联,并伴随着形成一些含氧官能团,如酮、羧酸、过氧化物和醇。

3.电气性能

聚烯烃及其它许多聚合物都具有良好的电气性能,被广泛用作绝缘材料。但是由于光氧化能导致极性基团的的积累,聚合物的介电常数和表面电阻率会产生剧烈变化,最后造成电气性能的破坏。

二.光氧化机理

橡胶在紫外线照射下,引起光活化作用,使大分子发生光引发的氧化链反应:

三.光氧老化的防护

在实践中,通常是采用添加稳定剂的方法来阻止聚合物的光氧化。常用的光稳定剂有三大类:光屏蔽剂、紫外线吸收剂和猝灭剂。

1.光屏蔽剂:能在聚合物与光辐射源之间起到屏蔽作用的物质。

功能:在有害的光辐射源到达聚合物表面之前将其吸收,限制其穿透到聚合物体内。

光屏蔽剂包括外部涂层如油漆,聚合物内渗出的防护性膜,以及各种助剂,主要是颜料,它分散于整个聚合物之中。

炭黑和其它一些颜料虽然通过分在光屏蔽剂类,但它们也能吸收有害的光辐射。严格地说,只有颜料的外部涂层才能算是光屏蔽剂,而在聚合物内部的颜料主要是靠吸收光发挥防护作用。

2.紫外光吸收剂

功能:在于吸收并消散能引发聚合物降解的紫外线辐射。

它能有选择地强烈吸收紫外线,并把被吸收的能量转变成热能或次级辐射(萤光)消散出去,它本身不会因吸收紫外线而发生化学变化。因而使材料避免与紫外线直接作用,从而免于遭受紫外线的破坏,起了保护材料的作用。紫外光吸收剂按其结构不同可分为如下几种:邻羟基二苯甲酮类、水杨酸酯类、邻羟基苯并三唑类

a.邻羟基二苯甲酮类

在羰基的邻位必须含有一个羟基,羰基和羟基之间形成羟基螯合环,这类化合物具有羟类吸收紫外线的特征。化合物当受光照吸收能量后就发生螯合环开环,当它将所吸收的能量以其它无害能量转移时,如转化为热能,螯合环又闭环。所以如果形成的氢键越稳定,则开环所需的能量越多,因此传递给高分子材料的能量就越少,光稳定效果越佳。

如果在羰基邻位不含羟基,该化合物虽然也有吸收紫外线的能力,但它受光照后会引起自身分解,故不适宜作紫外线吸收剂。

这类紫外线吸收剂常用的品种有:UV-9、UV-24、UV-531、DOBP等。

b.水杨酸酯类

常称为先驱型紫外线吸收剂。这类化合物含有酚基芳酯的结构,它本身起初并不能吸收紫外线,但经光照后其分子内部发生重排,生成二苯甲酮结构,从而强烈的吸收紫外线。

这类紫外线吸收剂的生产工艺比二苯酮类简单,且原料易得,价廉,与高分子材料的相容性好,无味低毒。适合用于PVC、聚烯烃、聚氨酯、聚酯、纤维素酯和合成橡胶及油漆中。

这类紫外线吸收剂常用品种有:TBS、OPS、BAD、Salol等。

c.邻羟基苯并三唑类

在这类化合物中,羟基和三唑环之间形成氢键,可将激发能量转移。

这类紫外光吸收剂用量少(添加量0.01-0.1phr),而效果非常优良,有宽广的吸收范围,能强烈地吸收300-385mμ的紫外光,几乎不吸收可见光,而且它们热稳定性高,挥发性小,常用的品种有:UV-P,UV-327,UV-326等。其中UV-327和UV-326是最主要的品种,它们广泛用于聚烯烃、聚碳酸酯、聚酯、ABS以及涂料中,但目前价格较贵。

3.紫外光猝灭剂

这类化合物的稳定作用主要不在于吸收紫外线,而是通过分子间的作用把能量转移掉。即能够在瞬间把受到紫外光照射后处于激发态分子的激发能转移,使分子再回到稳定的基态,因而避免了高聚物的光氧老化。这种猝灭作用可有两种形式进行。

a.激发态分子将能量转移给一个非反应性的猝灭剂分子。

b.激发态分子与猝灭剂形成激发态的络合物,该络合物再经过其他光物理过程如发射萤光、内部转变等将能量消散。

目前用得最广泛的猝灭剂是二价镍的络合物或盐,如硫代烷基酚镍络合物、二硫代氨基甲酸镍盐、磷酸单酯镍络合物、硫代酚氧基肟的镍络合物等。这些镍络合物多是带有绿色或浅绿色,常用的品种有:AM-101,2002,NBC,UV-1084等。这类光稳定剂特别适用于纤维和薄膜制品,很少用于厚制品。

[橡胶工艺原理]橡胶材料与配方

《橡胶工艺原理》讲稿 绪论 一.橡胶材料的特点 高弹性弹性模量低,伸长变形大,有可恢复的变形,并能在很宽的温度(-50~150℃)范围内 保持弹性。 粘弹性橡胶材料在产生形变和恢复形变时受温度和时间的影响,表现有明显的应力松弛和 蠕变现象,在震动或交变应力作用下,产生滞后损失。 电绝缘性橡胶和塑料一样是电绝缘材料。 4.有老化现象如金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因为环境条件的变化而产生 老化现象,使性能变坏,寿命下降。

必须进行硫化才能使用,热塑性弹性体除外。 必须加入配合剂。 其它如比重小、硬度低、柔软性好、气密性好等特点,都属于橡胶的宝贵性能。 表征橡胶物理机械性能的指标 1.拉伸强度又称扯断强度、抗张强度,指试片拉伸至断裂时单位断面上所承受的负荷,单 位为兆帕(MPa),以往为公斤力/平方厘米(kgf/cm2)。 2.定伸应力旧称定伸强度,指试样被拉伸到一定长度时单位面积所承受的负荷。计量单位 同拉伸强度。常用的有100%、300%和500%定伸应力。它反映的是橡胶抵抗 外力变形能力的高低。

3.撕裂强度将特殊试片(带有割口或直角形)撕裂时单位厚度所承受的负荷,表示材料的 抗撕裂性,单位为kN/m。 4.伸长率试片拉断时,伸长部分与原长度之比叫作伸长率;用百分比表示。 5.永久变形试样拉伸至断裂后,标距伸长变形不可恢复部分占原始长度的百分比。在解除 了外力作用并放置一定时间(一般为3分钟),以%表示。 6.回弹性又称冲击弹性,指橡胶受冲击之后恢复原状的能力,以%表示。 7.硬度表示橡胶抵抗外力压入的能力,常用邵尔硬度计测定。橡胶的硬度范围一般在20~100 之间,单位为邵氏A。 二.关于橡胶的几个概念

橡胶硫化原理

橡胶硫化原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

橡胶硫化原理 橡胶受热变软,遇冷变硬、发脆,不易成型,容易磨损,易溶于汽油等有机溶剂,分子内具有双键,易起 加成反应,容易老化。 为改善橡胶制品的性能,生产上要对生橡胶进行一系列加工过程,在一定条件下,使胶料中的生胶与硫化剂发生化学反应,使其由线型结构的大分子交联成为立体网状结构的大分子,使从而使胶料具备高强度、高弹性、高耐磨、抗腐蚀等等优良性能。这个过程称为橡胶硫化。 一般将硫化过程分为四个阶段,诱导-预硫-正硫化-过硫。为实现这一反应,必须外加能量使之达到一定的硫化温度,然后让橡胶保温在该硫化温度范围内完成全部硫化反应。 橡胶硫化的来历 硫化是胶料通过生胶分子间交联,形成三维网络结构,制备硫化胶的基本过程。不同的硫化体系适用于不同的生胶。以橡胶(生胶)为主体,加以多种辅助材料而成的合成体、(辅助材料有几大体系、填充补强、硫化、防护、增塑、特殊物质加入剂、)而硫化是包覆绝缘层或护套层以后的一种处理方法、其目的就是让辅助体系里的硫化体系发生作用,使橡胶永久交联、增加弹性、减少塑性。硫化的名词是因最早时 间是用硫磺使橡胶交联的故称硫化,沿用至今. 橡胶硫化体系 不饱和橡胶通常使用如下几类硫化体系: 以硫黄,有机二硫化物及多硫化物、噻唑类、二苯胍类,氧化锌及硬脂酸为主的硫化剂。这是最通用的硫 化体系。但所制得的硫化胶的耐热氧老化性能不高。 烷基酚醛树脂。 多卤化物(如用于聚丁二烯橡胶、丁苯橡胶及丁腈橡胶的六氯乙烷)、六氯-对二甲苯。 双官能试剂[如醌类、二胺类、偶氮及苯基偶氮衍生物(用于丁基橡胶及乙丙橡胶)等]。 双马来酰亚胺,双丙烯酸酯。两价金属的丙烯酸酯(甲基丙烯酸酯)、预聚醚丙烯酸酯。 用于硫化饱和橡胶的有机过氧化物。 饱和橡胶硫化不同种类的饱和橡胶时,可使用不同的硫化体系。 硫化三元乙丙橡胶时,使用有机过氧化物与不饱和交联试剂,如三烯丙基异氰脲酸酯(硫化剂TAIC)。硫化硅橡胶时也可使用有机过氧化物。乙烯基硅橡胶硫化时可在催化剂(Pt)参与条件下进行。 上一篇: 橡胶硫化工艺方法一、传统橡胶硫化工艺

最新橡胶工艺原理14

最新橡胶工艺原理(十四) 王作龄 编译 中图分类号:TQ330.1 文献标识码:E 文章编号:167128232(2004)0520047208 第7章 填充剂 7.1 引言 填充剂是混入橡胶中以赋与橡胶补强、增容和特殊功能为目的使用的配合剂。作为填充剂代表的炭黑不仅可以提高橡胶的定伸应力和拉伸强度等力学性能,而且还可赋与橡胶导电等性能,是橡胶材料不可缺少的配合剂 。 一般,填充剂按不同材质、有无补强性和功能性进行分类。按材质分类,有白炭黑、陶土、碳酸钙等无机填充剂和树脂、木粉、软木粉等有机填充剂。按有无补强性分类有炭黑、白炭黑等补强性填充剂和陶土、滑石粉、碳酸钙等非补强性填充剂。 通常将用于提高橡胶物理机械强度的配合剂称为补强剂。补强剂除了上述的补强填充剂外,还有高苯乙烯树脂等补强性树脂和补强性短纤维。 本章节以补强性高的炭黑、白炭黑和短纤维的基本性能、基本性能与橡胶复合体物理性能之间的关系及这些补强剂的补强机理为主进行叙述。 7.2 补强性填充剂 补强性填充剂和非补强性填充剂的区别可用填充剂粒子的大小(粒子表面积)加以说明。此外,粒子的形态和表面特性对橡胶的补强效果也有很大影响。 SBR中配入不同填充剂时的各比表面积与拉伸强的关系如图7-1所示。若仅在白色填充剂范围内考虑,那么拉伸强度与比表面之间有相关性。相同比表面积的炭黑的拉伸强度比白色填充剂的大,这是因为炭黑和橡胶分子的相互作用强。为提高白炭黑等填充剂的补强性,大多还同时使用偶联剂。 图7-1 不同填充剂的比表面积与拉伸 强度的关系(SBR1500) 1—碳酸钙(55vo l%);2—硅酸盐(25vo l%); 3—湿法白炭黑(25vo l%);4—炭黑(27vo l%); 5—陶土(30vo l%) 7.2.1 炭黑 炭黑是由约95%以上无定形的炭组成的毫微米级的微粒,是在燃烧木材和煤时产生的所谓“煤烟子”(含有以多量灰分和焦油为主要成分的溶剂抽出分,炭含量在50%以下)的不同物质。 自1910年发现炭黑对橡胶具有显著的补强效果以来,炭黑成为支持橡胶工业发展的重要材料。炭黑的用途除了用作以汽车轮胎为主的橡胶制品的补强剂外,还可用作印刷油墨、涂料、塑料等的黑色颜料,以及赋与电池活性物质以导电性的填充剂等。但是,从数量上看,炭黑在像胶工业中的需求量占绝对多数,1996年日本橡胶工业的炭黑需求量占日本总需求量约95%,其中约75%用于汽车轮胎。 a.炭黑的种类 炭黑按制造方法的分类如表7-1所示。表7-2为A STM D1765-98的炭黑分类表。现在,橡胶和染料工业使用的炭黑几乎都是用油炉法生产的。

橡胶工艺原理_复习思考题_ 答案

《橡胶工艺原理》复习思考题 0.1 名词解释 碳链橡胶、硬质橡胶、杂链橡胶、混炼胶、硫化胶、冷冻结晶、拉伸结晶、极性橡胶 杂链橡胶:碳-杂链橡胶: 主链由碳原子和其它原子组成 全杂链橡胶:主链中完全排除了碳原子的存在,又称为“无机橡胶”,硅橡胶的主链由硅、氧原子交替构成。混炼胶:所谓混炼胶是指将配合剂混合于块状、粒状和粉末状生胶中的未交联状态,且具有流动性的胶料 硫化胶 : 配合胶料在一定条件下(如加硫化剂、一定温度和压力、辐射线照射等)经硫化所得网状结构橡胶谓硫化胶,硫化胶是具有弹性而不再具有可塑性的橡胶,这种橡胶具有一系列宝贵使用性能。 硬质橡胶:玻璃化温度在室温以上、简直不能拉伸的橡胶称为硬质橡胶 0.2 一般来说,塑料、橡胶、纤维的分子结构各有什么特点? 0.3 影响橡胶材料性能的主要因素有哪些? 橡胶性能主要取决于它的结构,此外还受到添加剂的种类和用量、外界条件的影响。 (1) 化学组成:单体,具有何种官能团 (2) 分子量及分子量分布 (3) 大分子聚集状况:空间结构和结晶 (4) 添加剂的种类和用量 (5) 外部条件:力学条件、温度条件、介质 0.4简述橡胶分子的组成和分子链结构对橡胶的物理机械性能和加工性能的影响。 答: 各种生胶的MWD曲线的特征不同,如NR一般宽峰所对应的分子量值为30~40万,有较多的低分子部分。低分子部分可以起内润滑的作用,提供较好的流动性、可塑性及加工性,具体表现为混炼速率快、收缩率小、挤出膨胀率小。分子量高部分则有利于机械强度、耐磨、弹性等性能。 0.5 简述橡胶的分类方法。 答:按照来源用途分为天然胶和合成胶,合成胶又分为通用橡胶和特种橡胶; 按照化学结构分为碳链橡胶、杂链橡胶和元素有机橡胶; 按照交联方式分为传统热硫化橡胶和热塑性弹性体。 0.6 简述橡胶的分子量和分子量分布对其物理机械性能和加工性能的影响。 答: 分子量与橡胶的性能(如强度、加工性能、流变性等)密切相关。随着分子量上升,橡胶粘度逐步增大,流动性变小,在溶剂中的溶解度降低,力学性能逐步提高。 橡胶的大部分物理机械性能随着分子量而上升,但是分子量上升达到一定值(一般是600000)后,这种关系不复存在;分子量超过一定值后,由于分子链过长,纠缠明显,对加工性能不利,具体反映为门尼粘度增加,混炼加工困难,功率消耗增大等。 0.7 简述橡胶配方中各种配合体系的作用。

橡胶制品生产工艺

橡胶制品生产工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

橡胶制品生产工艺简要介绍 一、基本工艺流程 橡胶制品种类繁多,但生产工艺过程,却基本相同。以一般固体橡胶(生胶)为原料的橡胶制品的基本工艺过程包括:塑炼、混炼、压延、压出、成型、硫化6个基本工序。当然,原材料准备、成品整理、检验包装等基本工序也少不了。 橡胶的加工工艺过程主要是解决塑性和弹性性能这个矛盾的过程,通过各种工艺手段,使得弹性的橡胶变成具有塑性的塑炼胶,再加入各种配合剂制成半成品,然后通过硫化使具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 二、原材料准备: 1.橡胶制品的主要原料是以生胶为基本材料,而生胶就是生长在热带,亚热带的橡胶树上通过人工割开树皮收集而来。 2.各种配合剂:是为了改善橡胶制品的某些性能而加入的辅助材料。 3.纤维材料有(棉、麻、毛及各种人造纤维、合成纤维)和金属材料(钢丝、铜丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。 在原材料准备过程中,配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对材料进行加工: 生胶要在60--70℃烘房内烘软后,再切胶、破胶成小块; 配合剂有:块状的,如石蜡、硬脂酸、松香等要粉碎; 粉状的若含有机械杂质或粗粒时需要筛选除去;

液态的,如(松焦油、古马隆)需要加热、熔化、蒸发水分、过滤杂质; 配合剂要进行干燥,不然容易结块、混炼时若不能分散均匀,硫化时产生气泡,会影响产品质量; 三、塑炼 生胶富有弹性,缺乏加工时必需的可塑性性能,因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼;这样,在混炼时配合剂就容易均匀分散在生胶中;同时,在压延、成型过程中也有助于提高胶料的渗透性(渗入纤维织品内)和成型流动性。 将生胶的长链分子降解,形成可塑性的过程叫做塑炼。 生胶塑炼的方法有机械塑炼和热塑炼两种。机械塑炼是在不太高的温度下,通过塑炼机的机械挤压和摩擦力的作用,使长链橡胶分子降解变短,由高弹性状态转变为可塑状态。热塑炼是向生胶中通入灼热的压缩空气,在热和氧的作用下,使长链分子降解变短,从而获得可塑性。 四、混炼 为了适应各种不同的使用条件、获得各种不同的性能,也为了提高橡胶制品的性能和降低成本,必须在生胶中加入不同的配合剂。 混炼就是将塑炼后的生胶与配合剂混合、放在炼胶机中,通过机械拌合作用,使配合剂完全、均匀地分散在生胶中的一种过程。 混炼是橡胶制品生产过程中的一道重要工序,如果混合不均匀,就不能充分发挥橡胶和配合剂的作用,影响产品的使用性能。混炼后得到的胶料,人们称为混炼胶,它是制造各种橡胶制品的半成品材料,俗称胶料,通常均作为商品出

青岛科技大学橡胶工艺原理讲稿

青岛科技大学橡胶工艺原理讲稿(5) 青岛科技大学, 橡胶, 讲稿, 工艺, 原理 §3-6炭黑对橡胶的补强机理 炭黑补强作用使橡胶的力学性能提高,同时也使橡胶在粘弹变形中由粘性作用而产生的损耗因素提高。例如tanδ、生热、损耗模量、应力软化效应提高。因应力软化效应能够比较形象地说明大分子滑动补强机理,因此将两者结合一起讨论。 一.应力软化效应 (一)应力软化效应的含义 硫化胶试片在一定的试验条件下拉伸至给定的伸长比λ1时,去掉应力,恢复。第二次拉伸至同样的λ1时所需应力比第一次低,如图3-18所示,第二次拉伸的应力-应变曲线在第一次的下面。若将第二次拉伸比增大超过第一次拉伸比λ1时,则第二次拉伸曲线在λ1 处急骤上撇与第一次曲线衔接。若将第二次拉伸应力去掉,恢复。第三次拉伸,则第三次的应力应变曲线又会在第二次曲线下面。随次数增加,下降减少,大约4~5次后达到平衡。上述现象叫应力软化效应,也称为Mullins效应。 应力软化效应用拉伸至给定应变所造成的应变能下降百分率ΔW表示。 (3-10) 式中 W1 —第一次拉伸至给定应变时所需要的应变能; W2 —第一次拉伸恢复后,第二次(或更多次数)再拉伸至同样应变时所需的应变能。 (二)应力软化效应的影响因素 应力软化效应代表一种粘性的损耗因素,所以凡是影响粘弹行为的因素对它均有影响。填料及其性质对应力软化效应有决定性作用。1.填充的影响 2.填料品种对应力软化效应的影响 3.炭黑品种对应力软化效应的影响 总的趋势是补强性高的炭黑应力软化效应比较高,反之亦然。 (三)应力软化的恢复 应力软化有恢复性,但在室温下停放几天,损失的应力恢复很少,而在100℃×24h真空中能恢复大部分损失的应力。因为炭黑的吸附是动态的,在恢复条件下,橡胶大分子会在炭黑表面重新分布,断的分子链可被新链代替。剩下的不能恢复的部分称为永久性应力软化作用。 二.炭黑的补强机理 近半个世纪以来,人们对炭黑补强机理曾进行了广泛的探讨。各个作者提出的机理虽然能说明一定的问题,但有局限性。随着时间进展,橡胶补强机理也在不断地深化和完善。橡胶大分子滑动学说的炭黑补强机理是一个比较完善的理论。现将各种论点简述如下。 (一)容积效应 (二)弱键和强键学说 (三)Bueche的炭黑粒子与橡胶链的有限伸长学说 (四)壳层模型理论 核磁共振研究已证实,在炭黑表面有一层由两种运动状态橡胶大分子构成的吸附层。在紧邻着炭黑表面的大约0.5nm(相当于大分子直径)的内层,呈玻璃态;离开炭黑表面大约0.5~5.0nm范围内的橡胶有点运动性,呈亚玻璃态,这层叫外层。这两层构成了炭黑表面上的双壳层。关于双壳层的厚度Δγc,报道不一,不过基本上是上述范围。这个双壳的界面层内中的结合能必定从里向外连续下降,即炭黑表

顺丁橡胶工艺流程

一、产品及原材料简介 1.1产品简介 产品为丁二烯橡胶(BR)9000,规格BR9O00. 丁二烯橡胶(BR)9000全名顺式-1,4-聚丁二烯橡胶(Cis 1,4Polybutadiene Rubber). 丁二烯橡胶(BR)9000为白色或浅黄色弹性体,性能和天然橡胶相近,是一种优良的通用橡胶,其结构式为: 顺式-1,4结构在聚合链中含量在90%以上的聚丁二烯才具有良好的弹性. 丁二烯橡胶(BR)9000与天然橡胶和丁苯橡胶相比,具有弹性高,耐磨性好,耐寒性好,生热低,耐屈挠性和动态性能好等特性,它与油类、补强剂、填充剂、天然橡胶以及丁苯橡胶等均有良好的相容性.丁二烯橡胶(BR)9000的主要缺点是抗湿滑性,撕裂强度和拉伸强度较低,冷流性大,加工性能较差。 表1-1 丁二烯橡胶(BR)9000产品质量指标(GB/T8659-2001)

1.2 原材料规格及性能 1.2.1 原料 1.2.1.1 丁二烯 纯度≥ 99.2% 水值≤ 25mg/kg 乙腈≤ 3mg/kg TBC ≤ 20mg/kg 二聚物≤ 300mg/kg 总炔烃≤ 20mg/kg(其中乙烯基乙炔< =5mg/kg) 含氧化合物≤ 10mg/kg 1.2.1.1 粗溶剂油 沸程: 60~90℃ 碘指: <0.1G/100g 水值:无游离水 硫化物:无 水溶物酸碱性:中性 1.2.1.3 环烷酸镍 含镍量:≥6%(m/m) 含水量: <0.5%(m/m) 机械杂质: < 0.2%(m/m) 苯不溶物:微量 不皂化物:无 外观:绿色透明粘稠物 1.2.1.4 三氟化硼乙醚络合物

BF含量: 46.8~47.8%(m/m)3 比重: 1.120~1.127 沸点: 124.5~126℃ 油溶性:在250倍油中全溶,三小时后无沉淀含水量: <=0.5%(m/m) 外观;无色透明,无沉淀物 1.2.1.5 三异丁基铝 溶度: 2.0 ± 0.2g/l 悬浮铝;无 外观;无色透明液体 活性铝含量: >= 80%(m/m) 二异丁基氢化铝:≤15%(m/m) 1.2.1.6 2,6-二叔丁基-4-甲基苯酚(防老剂)溶点; 68.5~70.0℃ 游离甲酚:≤0.03% 灰分:≤0.03% 外观:白色或浅黄色晶体 1.2.1.7 5A分子筛 吸水量: ≥200mg/ml 堆积密度: >0.6~0.7t/m3 1.2.1.8 活性氧化铝 粒径: 4~6mm 吸水率:≥100% 强度:≥13kg/个球 堆积密度: 0.63~0.78t/m3 外观:白色或微红色粒状固体 1.2.1.9 液碱 氢氧化钠含量:≥30% 水不溶物含量: <0.1% 1.2.1.10 聚乙烯薄膜 规格:宽700cm ,厚0.04~0.06mm 熔点: <100℃ 1.2.1.11 牛皮纸袋质量标准: 规格: 900×370×160mm

橡胶工艺原理讲稿 第五章 橡胶的增塑体系

第五章橡胶的增塑体系1 §5.1 橡胶增塑剂及分类1 一.橡胶增塑剂的概念1 二.增塑剂的作用1 三.增塑剂的分类1 四.对增塑剂的要求1 §5.2 橡胶增塑原理及增塑效果表征2 一.橡胶增塑的方法2 二.增塑剂与橡胶的相容性2 三.增塑剂作用机理2 四.增塑剂增塑效果的表征3 §5.3 橡胶增塑剂3 一.石油系增塑剂3 二.煤焦油增塑剂5 三.松焦油系增塑剂5 四.脂肪油系增塑剂5 五.合成增塑剂5 §5.4 新型增塑剂7

第五章橡胶的增塑体系 §5.1 橡胶增塑剂及分类 一.橡胶增塑剂的概念 增塑剂又称为软化剂,是指能够降低橡胶分子链间的作用力,改善加工工艺性能,并能提高胶料的物理机械性能,降低成本的一类低分子量化合物。 过去习惯上根据应用X围不同分为软化剂和增塑剂。软化剂多来源于天然物质,常用于非极性橡胶;增塑剂多为合成产品,多用于极性合成橡胶和塑料中。目前由于所起的作用相同,统称为增塑剂。 二.增塑剂的作用 1.改善橡胶的加工工艺性能:通过降低分子间作用力,使粉末状配合剂更好地与生胶浸润并分散均匀,改善混炼工艺;通过增加胶料的可塑性、流动性、粘着性改善压延、压出、成型工艺。 2.改善橡胶的某些物理机械性能:降低制品的硬度、定伸应力、提高硫化胶的弹性、耐寒性、降低生热等。 3.降低成本:价格低、耗能省。 三.增塑剂的分类 1.根据作用机理分: 物理增塑剂:增塑分子进入橡胶分子内,增大分子间距、减弱分子间作用力,分子链易滑动。 化学增塑剂:又称塑解剂,通过力化学作用,使橡胶大分子断链,增加可塑性。 大部分为芳香族硫酚的衍生物如2-萘硫酚、二甲苯基硫酚、五氯硫酚等。 2.按来源分: ①石油系增塑剂 ②煤焦油系增塑剂 ③松油系增塑剂 ④脂肪油系增塑剂 ⑤合成增塑剂 四.对增塑剂的要求 增塑效果好,用量少,吸收速度快; 与橡胶的相容性好,挥发性小、不迁移、耐寒性好,耐水、耐油、溶剂; 电绝缘性好,耐燃性好,无色、无毒、无臭,价廉易得。

【精品】橡胶工艺原理(五)

第五章橡胶的增塑体系 §5。1橡胶增塑剂及分类 一.橡胶增塑剂的概念 增塑剂又称为软化剂,是指能够降低橡胶分子链间的作用力,改善加工工艺性能,并能提高胶料的物理机械性能,降低成本的一类低分子量化合物。 过去习惯上根据应用范围不同分为软化剂和增塑剂。软化剂多来源于天然物质,常用于非极性橡胶;增塑剂多为合成产品,多用于极性合成橡胶和塑料中。目前由于所起的作用相同,统称为增塑剂. 二.增塑剂的作用 1.改善橡胶的加工工艺性能:通过降低分子间作用力,使粉末状配合剂更好地与生胶浸润并分散均匀,改善混炼工艺;通过增加胶料的可塑性、流动性、粘着性改善压延、压出、成型工艺。 2.改善橡胶的某些物理机械性能:降低制品的硬度、定伸应力、提高硫化胶的弹性、耐寒性、降低生热等。 3.降低成本:价格低、耗能省。

三.增塑剂的分类 1.根据作用机理分: 物理增塑剂:增塑分子进入橡胶分子内,增大分子间距、减弱分子间作用力,分子链易滑动. 化学增塑剂:又称塑解剂,通过力化学作用,使橡胶大分子断链,增加可塑性。 大部分为芳香族硫酚的衍生物如2-萘硫酚、二甲苯基硫酚、五氯硫酚等. 2.按来源分: ①石油系增塑剂 ②煤焦油系增塑剂 ③松油系增塑剂 ④脂肪油系增塑剂 ⑤合成增塑剂 四.对增塑剂的要求

增塑效果好,用量少,吸收速度快;

与橡胶的相容性好,挥发性小、不迁移、耐寒性好,耐水、耐油、溶剂; 电绝缘性好,耐燃性好,无色、无毒、无臭,价廉易得。 §5。2橡胶增塑原理及增塑效果表征 一.橡胶增塑的方法 提高橡胶可塑性的方法主要有以下三种: 1.物理增塑法:加入物理增塑剂 2.化学增塑法:化学塑解剂 3.机械增塑法:通过机械剪切作用,提高可塑性. 可单独应用,与前两种方法一起使用时,效果更好。 二.增塑剂与橡胶的相容性 1.增塑剂与橡胶的相容性 相容性是指两种不同的物质混合时形成均相体系的能力。相容性好,两种物质形成均相体系的能力强。橡胶与增塑剂的相容性很重要,若相容性差,增塑剂则会从橡胶中喷出,甚至难于混合、加工。橡胶与增塑剂的相容性的预测方法是采

最新橡胶生产工艺流程

1.基本工艺流程 伴随现代工业尤其是化学工业的迅猛发展,橡胶制品种类繁多,但其生产工艺过程,却基本相同。以一般固体橡胶(生胶)为原料的制品,它的生产工艺过程主要包括: 原材料准备→塑炼→混炼→成型→硫化→修整→检验 2.原材料准备 橡胶制品的主要材料有生胶、配合剂、纤维材料和金属材料。其中生胶为基本材料;配合剂是为了改善橡胶制品的某些性能而加入的辅助材料;纤维材料(棉、麻、毛及各种人造纤维、合成纤维)和金属材料(钢丝、铜丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。 在原材料准备过程中,配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对某些材料进行加工: 1.基本工艺流程 伴随现代工业尤其是化学工业的迅猛发展,橡胶制品种类繁多,但其生产工艺过程,却基本相同。以一般固体橡胶(生胶)为原料的制品,它的生产工艺过程主要包括: 原材料准备→塑炼→混炼→成型→硫化→休整→检验

2.原材料准备 橡胶制品的主要材料有生胶、配合剂、纤维材料和金属材料。其中生胶为基本材料;配合剂是为了改善橡胶制品的某些性能而加入的辅助材料;纤维材料(棉、麻、毛及各种人造纤维、合成纤维)和金属材料(钢丝、铜丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。 在原材料准备过程中,配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对某些材料进行加工: 生胶要在60--70℃烘房内烘软后,再切胶、破胶成小块; 块状配合剂如石蜡、硬脂酸、松香等要粉碎; 粉状配合剂若含有机械杂质或粗粒时需要筛选除去; 液态配合剂(松焦油、古马隆)需要加热、熔化、蒸发水分、过滤杂质; 配合剂要进行干燥,不然容易结块、混炼时旧不能分散均匀,硫化时产生气泡,从而影响产品质量; 3.塑炼 生胶富有弹性,缺乏加工时的必需性能(可塑性),因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼;这样,在混炼时配合剂就容易均匀分散在生胶中;同时,在压延、成型过程中也有助于提高胶料的渗透性(渗入纤维织品内)和成型流动性。将生胶的长链分子降解,形成可塑性的过程叫做塑炼。生胶塑炼的方法有机械塑炼和热塑炼两种。机械塑炼是在不太高的温度下,通过塑炼机的机械挤压和摩擦力的作用,使长链橡胶分子降解变短,由高弹性状态转变

【精品】橡胶工艺原理讲稿_第三章_补强与填充体系

第三章补强与填充体系 §3-1绪论 填料是橡胶工业的主要原料之一,它能赋予橡胶许多优异的性能。例如,大幅度提高橡胶的力学性能,使橡胶具有磁性、导电性、阻燃性、彩色等特殊的性能,赋予橡胶良好的加工性能,降低成本等。 一.何谓补强与填充? 补强:在橡胶中加入一种物质后,使硫化胶的耐磨性、抗撕裂强度、拉伸强度、模量、抗溶胀性等性能获得较大提高的行为。凡具有这种作用的物质称为补强剂。 填充:在橡胶中加入一种物质后,能够提高橡胶的体积,降低橡胶制品的成本,改善加工工艺性能,而又不明显影响橡胶制品性能的行为。凡具有这种能力的物质称之为填充剂。 二.填料的分类 填料的品种繁多,分类方法不一.填料按不同方法分类如下: (1)按作用分 补强剂:炭黑、白炭黑、某些超细无机填料等。

填充剂:陶土、碳酸钙、胶粉、木粉等。 (2)按来源分 有机填充剂:炭黑、果壳粉、软木粉、木质素、煤粉、树脂等。 无机填充剂:陶土、碳酸钙、硅铝炭黑等. (3)按形状分 粒状:炭黑及绝大多数无机填料。 纤维状:石棉、短纤维、碳纤维、金属晶须等. 三.橡胶补强与填充的历史与发展 橡胶工业中填料的历史几乎和橡胶的历史一样长。在Spanish时代亚马逊河流域的印第安人就懂得在胶乳中加入黑粉,当时可能是为了防止光老化。后来制作胶丝时曾用滑石粉作隔离剂。 在Hancock发明混炼机后,常在橡胶中加入陶土、碳酸钙等填料。 1904年,S.C.Mote用炭黑使橡胶的强度提高到28.7MPa,但当时并未引起足够的重视。在炭黑尚未成为有效补强剂前,人们用氧化锌作补强剂。一段时间后,人们才重视

炭黑的补强作用。 我国是世界上生产炭黑最早的国家。1864年美国开始研制炭黑。1872年世界才实现工业规模的炭黑生产。炭黑的补强性不仅使它得到广泛的应用,而且也促进了汽车工业的发展。二战前槽黑占统治地位,50年代后用炉黑代替槽黑、灯烟炭黑,炉黑生产满足了轮胎工业发展的要求。70年代在炉黑生产工艺基础上进行改进,又出现了新工艺炭黑.这种炭黑的特点是在比表面积和传统炭黑相同的条件下,耐磨性提高了5%~20%,进一步满足了子午线轮胎的要求。 美国大陆碳公司在八十年代末开发生产出低滚动阻力炭黑,即LH10、LH20、LH30等,其拉伸和耐磨性能相当于N110、N220、N330的水平,但生热低、弹性高。 德国德固萨公司也开发出新一代低滚动阻力炭黑,称之为“转化炭黑”

橡胶的工艺流程

橡胶的工艺流程(精品) 2014-10-22橡胶技术网 橡胶工艺流程开始 1 综述 橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。 橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 2 橡胶加工工艺 2.1塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。 生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。

掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。 在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。 开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。 生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。 几种胶的塑炼特性: 天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为 15-20min;采用密炼机塑炼当温度达到120℃以上时,时间约为 3-5min。 丁苯橡胶的门尼粘度多在35-60之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。 氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40℃。 乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。

橡胶工艺原理).

《〈橡胶工艺原理〉》 《橡胶工艺原理》讲稿 《橡胶工艺原理》讲稿 绪论 一.橡胶材料的特点 1.高弹性:弹性模量低,伸长变形大,有可恢复的变形,并能在很宽的温度(-50~150℃)范围内保持弹性。 2.粘弹性:橡胶材料在产生形变和恢复形变时受温度和时间的影响,表现有明显的应力松弛和蠕变现象,在震动或交变应力作用下,产生滞后损失。 3.电绝缘性:橡胶和塑料一样是电绝缘材料。 4.有老化现象:如金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因为环境条件的变化而产生老化现象,使性能变坏,寿命下降。 5.必须进行硫化才能使用,热塑性弹性体除外。 6.必须加入配合剂。 其它如比重小、硬度低、柔软性好、气密性好等特点,都属于橡胶的宝贵性能。 表征橡胶物理机械性能的指标: 1.拉伸强度:又称扯断强度、抗张强度,指试片拉伸至断裂时单位断面上所承受的负荷,单位为兆帕(MPa),以往为公斤力/平方厘米(kgf/cm2)。 2.定伸应力:旧称定伸强度,指试样被拉伸到一定长度时单位面积所承受的负荷。计量单位同拉伸强度。常用的有100%、300%和500%定伸应力。它反映的是橡胶抵抗外力变形能力的高低。 3.撕裂强度:将特殊试片(带有割口或直角形)撕裂时单位厚度所承受的负荷,表示材料的抗撕裂性,单位为kN/m。 4.伸长率:试片拉断时,伸长部分与原长度之比叫作伸长率;用百分比表示。 5.永久变形:试样拉伸至断裂后,标距伸长变形不可恢复部分占原始长度的百分比。在解除了外力作用并放置一定时间(一般为3分钟),以%表示。 6.回弹性:又称冲击弹性,指橡胶受冲击之后恢复原状的能力,以%表示。 7.硬度:表示橡胶抵抗外力压入的能力,常用邵尔硬度计测定。橡胶的硬度范围一般在2 0~100之间,单位为邵氏A。 二.关于橡胶的几个概念 1.橡胶:世界上通用的橡胶的定义引自美国的国家标准ASTM-D1566(America Society of Test and Material)。定义如下: 橡胶是一种材料,它在大的变形下能迅速而有力地恢复其变形,能够被改性(硫化)。改性的橡胶实质上不溶于(但能溶脹于)沸腾的苯、甲乙酮、乙醇—甲苯混合物等溶剂中。改性的橡胶室温下(18~29℃)被拉伸到原来长度的两倍并保持一分钟后除掉外力,它能在一分钟内恢复到原来长度的1.5倍以下,具有上述特征的材料称为橡胶。 注:1)橡胶是一种材料,具有特定的使用性能和加工性能,属有机高分子材料。 2)橡胶在室温下具有高弹性。 3)橡胶能够被改性是指它能够硫化。 4)改性的橡胶即硫化胶不溶解但能溶胀。 2.生胶:没有加入配合剂且尚未交联的橡胶。 一般由线型大分子或带有支链的线型大分子构成,可以溶于有机溶剂。 3.混炼胶:生胶与配合剂经加工混合均匀且未被交联的橡胶。

橡胶工艺原理讲稿 第五章 橡胶的增塑体系

第五章橡胶的增塑体系 (1) §5.1 橡胶增塑剂及分类 (1) 一.橡胶增塑剂的概念 (1) 二.增塑剂的作用 (1) 三.增塑剂的分类 (1) 四.对增塑剂的要求 (1) §5.2 橡胶增塑原理及增塑效果表征 (2) 一.橡胶增塑的方法 (2) 二.增塑剂与橡胶的相容性 (2) 三.增塑剂作用机理 (2) 四.增塑剂增塑效果的表征 (3) §5.3 橡胶增塑剂 (3) 一.石油系增塑剂 (3) 二.煤焦油增塑剂 (5) 三.松焦油系增塑剂 (5) 四.脂肪油系增塑剂 (5) 五.合成增塑剂 (5) §5.4 新型增塑剂 (7)

第五章橡胶的增塑体系 §5.1 橡胶增塑剂及分类 一.橡胶增塑剂的概念 增塑剂又称为软化剂,是指能够降低橡胶分子链间的作用力,改善加工工艺性能,并能提高胶料的物理机械性能,降低成本的一类低分子量化合物。 过去习惯上根据应用范围不同分为软化剂和增塑剂。软化剂多来源于天然物质,常用于非极性橡胶;增塑剂多为合成产品,多用于极性合成橡胶和塑料中。目前由于所起的作用相同,统称为增塑剂。 二.增塑剂的作用 1.改善橡胶的加工工艺性能:通过降低分子间作用力,使粉末状配合剂更好地与生胶浸润并分散均匀,改善混炼工艺;通过增加胶料的可塑性、流动性、粘着性改善压延、压出、成型工艺。 2.改善橡胶的某些物理机械性能:降低制品的硬度、定伸应力、提高硫化胶的弹性、耐寒性、降低生热等。 3.降低成本:价格低、耗能省。 三.增塑剂的分类 1.根据作用机理分: 物理增塑剂:增塑分子进入橡胶分子内,增大分子间距、减弱分子间作用力,分子链易滑动。 化学增塑剂:又称塑解剂,通过力化学作用,使橡胶大分子断链,增加可塑性。 大部分为芳香族硫酚的衍生物如2-萘硫酚、二甲苯基硫酚、五氯硫酚等。 2.按来源分: ①石油系增塑剂 ②煤焦油系增塑剂 ③松油系增塑剂 ④脂肪油系增塑剂 ⑤合成增塑剂 四.对增塑剂的要求 增塑效果好,用量少,吸收速度快; 与橡胶的相容性好,挥发性小、不迁移、耐寒性好,耐水、耐油、溶剂; 电绝缘性好,耐燃性好,无色、无毒、无臭,价廉易得。

橡胶工艺原理_复习思考题_答案..

《橡胶工艺原理》复习思考题 0.1名词解释 碳链橡胶、硬质橡胶、杂链橡胶、混炼胶、硫化胶、冷冻结晶、拉伸结晶、极性橡胶 杂链橡胶:碳-杂链橡胶:主链由碳原子和其它原子组成 全杂链橡胶:主链中完全排除了碳原子的存在,又称为“无机橡胶”,硅橡胶的主链由硅、氧原子交替构成。 混炼胶:所谓混炼胶是指将配合剂混合于块状、粒状和粉末状生胶中的未交联状态,且具有流动性的胶料 硫化胶:配合胶料在一定条件下(如加硫化剂、一定温度和压力、辐射线照射等)经硫化所得网状结构橡胶谓硫化胶,硫化胶是具有弹性而不再具有可塑性的橡胶,这种橡胶具有一系列宝贵使用性能。 硬质橡胶:玻璃化温度在室温以上、简直不能拉伸的橡胶称为硬质橡胶 0.2 一般来说,塑料、橡胶、纤维的分子结构各有什么特点? 0.3影响橡胶材料性能的主要因素有哪些? 橡胶性能主要取决于它的结构,此外还受到添加剂的种类和用量、外界条件的影响。 (1)化学组成:单体,具有何种官能团 (2)分子量及分子量分布 (3)大分子聚集状况:空间结构和结晶 (4)添加剂的种类和用量 (5)外部条件:力学条件、温度条件、介质 0.4简述橡胶分子的组成和分子链结构对橡胶的物理机械性能和加工性能的影响。 答: 各种生胶的MW曲线的特征不同,如NR—般宽峰所对应的分子量值为30~40万,有较多的低分子部分。低分子部分可 以起内润滑的作用,提供较好的流动性、可塑性及加工性,具体表现为混炼速率快、收缩率小、挤出膨胀率小。分 子量高部分则有利于机械强度、耐磨、弹性等性能。 0.5简述橡胶的分类方法。 答:按照来源用途分为天然胶和合成胶,合成胶又分为通用橡胶和特种橡胶;按照化学结构分为碳链橡胶、杂链橡胶和元素有机橡胶; 按照交联方式分为传统热硫化橡胶和热塑性弹性体。 0.6简述橡胶的分子量和分子量分布对其物理机械性能和加工性能的影响。 答:分子量与橡胶的性能(如强度、加工性能、流变性等)密切相关。随着分子量上升,橡胶粘度逐步增大,流动性变小,在溶剂中的溶解度降低,力学性能逐步提高。 橡胶的大部分物理机械性能随着分子量而上升,但是分子量上升达到一定值(一般是600000)后,这种关系不复存在; 分子量超过一定值后,由于分子链过长,纠缠明显,对加工性能不利,具体反映为门尼粘度增加,混炼加工困难,功率消耗增大等。 0.7简述橡胶配方中各种配合体系的作用。 生胶*母体材料 硫化体系;使橡胶由线型大分子変成立体网状大分子 补强填充体至;提髙力学性能.使菲自补强性橡胶获得应用.改善工艺性能科I降低成本*还有的有功能桎.如阻燃、导电、磁性等 防老体系’延氏橡胶制品使用寿命*主要存防热颈"臭敏、光瓠右害金届 :离子、疲劳、霉歯等引起的老化 增塑及操作体系:降低胶料黏度*改善加工性能?降低威本.主姜有増朗制r分散剋、均匀剂,增黏剂*塑解剂、防焦剤*脱模刑尊 特种配合体系:赋予標胶持殊的性能.如黏合、看色*发泡、阻燃、偶联、捕静审..导电.存味,増碑.佃滑,陆唏等斷1件滋理0.8列出一般橡胶加工工艺过程。 '炼胶:分塑炼和混炼.塑炼定义为降低分子址,增加塑性、改善加工性能,制成可整性符合要求的鲍炼胶°混炼定义为经过配合*将橡胶与配合剂均匀她混合和分敌,制成混炼胶,使用设备为开炼机、密炼机和挤出机

橡胶生产工艺

橡胶生产工艺 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

橡胶制品的基本生产工艺过程 基本工艺流程 伴随现代工业尤其是化学工业的迅猛发展,橡胶制品种类繁多,但其生产工艺过程,却基本相同。以一般固体橡胶(生胶)为原料的制品,它的生产工艺过程主要包括: 原材料准备→塑炼→混炼→成型→硫化→休整→检验 原材料准备 橡胶制品的主要材料有生胶、配合剂、纤维材料和金属材料。其中生胶为基本材料;配合剂是为了改善橡胶制品的某些性能而加入的辅助材料;纤维材料(棉、麻、毛及各种人造纤维、合成纤维)和金属材料(钢丝、铜丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。 在原材料准备过程中,配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对某些材料进行加工: 生胶要在60--70℃烘房内烘软后,再切胶、破胶成小块; 块状配合剂如石蜡、硬脂酸、松香等要粉碎; 粉状配合剂若含有机械杂质或粗粒时需要筛选除去; 液态配合剂(松焦油、古马隆)需要加热、熔化、蒸发水分、过滤杂质; 配合剂要进行干燥,不然容易结块、混炼时旧不能分散均匀,硫化时产生气泡,从而影响产品质量; 塑炼 生胶富有弹性,缺乏加工时的必需性能(可塑性),因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼;这样,在混炼时配合剂就容易均匀分散在生胶中;同时,在压延、成型过程中也有助于提高胶料的渗透性(渗入纤维织品内)和成型流动性。将生胶的长链分子降解,形成可塑性的过程叫做塑炼。生胶塑炼的方法有机械塑炼和热塑炼两种。机械塑炼是在不太高的温度下,通过塑炼机的机械挤压和摩擦力的作用,使长链橡胶分子降解变短,由高弹性状态转变为可塑状态。热塑炼是向生胶中通入灼热的压缩空气,在热和氧的作用下,使长链分子降解变短,从而获得可塑性。

橡胶制品基本工艺流程

基本工艺流程 伴随现代工业尤其是化学工业的迅猛发展,橡胶制品种类繁多,但其生产工艺过程,却基本相同。以一般固体橡胶(生胶)为原料的制品,它的生产工艺过程主要包括: 原材料准备7塑炼7混炼7成型7硫化7休整7检验 2.原材料准备 橡胶制品的主要材料有生胶、配合剂、纤维材料和金属材料。其中生胶为基本材料;配合剂是为了改善橡胶制品的某些性能而加入的辅助材料;纤维材料(棉、麻、毛及各种人造纤维、合成纤维)和金属材料(钢丝、铜丝)是作为橡胶制品的骨架材料,以增强机械强度、限制制品变型。 在原材料准备过程中,配料必须按照配方称量准确。为了使生胶和配合剂能相互均匀混合,需要对某些材料进行加工: 内容来白橡胶园 生胶要在60--70C烘房内烘软后,再切胶、破胶成小块; 块状配合剂如石蜡、硬脂酸、松香等要粉碎; 粉状配合剂若含有机械杂质或粗粒时需要筛选除去; 液态配合剂(松焦油、古马隆)需要加热、熔化、蒸发水分、过滤杂质;配合剂要进行干燥,不然容易结块、混炼时旧不能分散均匀,硫化时产生气泡,从而影响产品质量; 3.塑炼 生胶富有弹性,缺乏加工时的必需性能(可塑性),因此不便于加工。为了提高其可塑性,所以要对生胶进行塑炼;这样,在混炼时配合剂就容易均匀分散在生胶中;同时,在压延、成型过程中也有助于提高胶料的渗透性(渗入纤维织品内)和成型流动性。将生胶的长链分子降解,形成可塑性的过程叫做塑炼。生胶塑炼的方法有机械塑炼和热塑炼两种。 机械塑炼是在不太高的温度下,通过塑炼机的机械挤压和摩擦力的作用,使长链

橡胶分子降解变短,由高弹性状态转变为可塑状态。热塑炼是向生胶中通入灼热的压缩空气,在热和氧的作用下,使长链分子降解变短,从而获得可塑性。 内容来白橡胶园 4.混炼 为了适应各种不同的使用条件、获得各种不同的性能,也为了提高橡胶制品的性能和降低成本,必须在生胶中加入不同的配合剂。混炼就是将塑炼后的生胶与配合剂混合、放在炼胶机中,通过机械拌合作用,使配合剂完全、均匀地分散在生胶中的一种过程。混炼是橡胶制品生产过程中的一道重要工序,如果混合不均匀,就不能充分发挥橡胶和配合剂的作用,影响产品的使用性能。混炼后得到的胶料,人们称为混炼胶,它是制造各种橡胶制品的半成品材料,俗称胶料,通常均作为商品出售,购买者可利用胶料直接加工成型、硫化制成所需要的橡胶制品。根据配方的不同,混炼胶有一系列性能各异的不同牌号和品种,提供选择。 5.成型 在橡胶制品的生产过程中,利用压延机或压出机预先制成形状各式各样、尺寸各不相同的工艺过程,称之为成型。成型的方法有: 请记住我们的网址: 橡胶园 压延成型适用于制造简单的片状、板状制品。它是将混炼胶通过压延机压制成一定形状、一定尺寸的胶片的方法叫压延成型。有些橡胶制品(如轮胎、胶布、胶管等)所用纺织纤维材料,必须涂上一层薄胶(在纤维上涂胶也叫贴胶或擦胶),涂胶工序一般也在压延机上完成。纤维材料在压延前需要进行烘干和浸胶,烘干的目的是为了减少纤维材料的含水量(以免水分蒸发起泡)和提高纤维材料的温度,以保证压延工艺的质量。浸胶是挂胶前的必要工序,目的是为了提高纤维材料与胶料的结合性能。 压出成型用于较为复杂的橡胶制品,象轮胎胎面、胶管、金属丝表面覆胶需要用压出成型的方法制造。它是把具有一定塑性的混炼胶,放入到挤压机的料斗内,在螺杆的挤压下,通过各种各样的口型(也叫样板)进行连续造型的一种方法。。压出之前,胶料必须进行预热,使胶料柔软、易于挤出,从而得到表面光滑、尺寸准确的橡胶制品。

《橡胶工艺原理》

第一部分生胶及其配合体系 第一章生胶 本章内容与基本要求∶ 1.掌握天然橡胶及通用合成橡胶的结构、性能; 2.掌握特种合成橡胶的结构及主要特性; 3.了解新形态橡胶的结构及特性; 4.了解再生橡胶的制造特性; 5.掌握再生胶的使用特点。 本章主要参考资料∶ 1.橡胶工业手册,第一分册 2.橡胶化学,王梦蛟译 3.橡胶工业原材料国内外技术条件 4.特种合成橡胶 5.橡胶原材料选择指南 6.橡胶工艺 7.Rubber Technology and Manufacture

一.名词解释∶ 1.橡胶 2.格林强度 3.充油丁苯橡胶 4.冷流性 5.抗氧指数 6.自补强性 7.抗湿滑性 8.弹性 9.回弹性 10.滞后损失 11.液体橡胶 12.动态生热性 二.填空∶ 1.碳链橡胶中,饱和橡胶有________、________、________、 ________, 不饱和橡胶有________、________、________、________、 ________; 杂链橡胶有_________、__________;元素有机橡胶包括_________和 _______等。 2.通用合成橡胶包括_________、_________、_________、 _________、 ________、________和________。 3.天然橡胶中包括的非橡胶成分有________、_________、 _________、________和_______。 4.目前所有弹性体中,弹性最好的橡胶是________,比重最小的橡胶是_______,耐磷酸酯油类的橡胶是_______,气密性最好的橡胶是_______,气透性最好的橡胶是_______,耐压减振性好的橡胶是_______,广泛用作胶粘剂的橡胶是_______,具有生理惰性的橡胶是_______,滞后损失、生热大的橡胶是________,抗湿滑性差的橡胶是_______,耐高低温性最好的橡胶是________,耐磨性最好的橡胶是______。 5.为改进乙丙橡胶的硫化交联性能,引入的第三单体有_______、________和__________。 6.根据废橡胶的来源,再生胶可分为__________、___________和__________。 7.热塑性橡胶根据其化学组成,大致可分为________、________、________、_________、_________、和_________。 8.根据用途,CR可分为一般品种、_________和_________,其中一般

相关文档