文档库 最新最全的文档下载
当前位置:文档库 › 4-5第4讲 理想流体运动微分方程及其积分

4-5第4讲 理想流体运动微分方程及其积分

4-5第4讲  理想流体运动微分方程及其积分
4-5第4讲  理想流体运动微分方程及其积分

第2章 流体运动的基本方程

第2章 流体运动的基本方程 流体运动极其复杂,但也有其内在规律。这些规律就是自然科学中通过大量实践和实验归纳出来的质量守恒定律、动量定理、能量守恒定律、热力学定律以及物体的物性。它们在流体力学中有其独特的表达形式,组成了制约流体运动的基本方程。本章将根据上述基本定律及流体的性质推导流体运动的基本方程,并给出不同的表达形式。 2.1 连续方程 2.1.1 微分形式的连续方程 质量守恒定律表明,同一流体的质量在运动过程中保持不变。下面从质量守恒定律出发推导连续性方程。 在流体中任取由一定流体质点组成的物质体,其体积为V ,质量为M ,则 ? = V dV M ρ 根据质量守恒定律,下式在任一时刻都成立 0== ? V dV dt d dt dM ρ (2-1) 应用物质体积分的随体导数公式(1-15b ),则 0dV )]v (div t [dV )v div Dt D ( dV dt d V V V ?? ? =+??=+= ρρρρ ρ 因假定流体为连续介质,流体密度和速度均为空间和时间的连续函数,被积函数连续,且体积V 是任意选取的,故被积函数必须恒等于零,于是有 0v div Dt D =+ ρρ (2-2a ) 或 0)v (div t =+?? ρρ (2-3a ) 上式亦可以写成如下形式 0x u Dt D i i =??+ρ ρ (2-2b ) 或 0x )u (t i i =??+ ??ρρ (2-3b )

式(2-2)和式(2-3)称为微分形式的连续性方程。 在直角坐标系中,微分形式的连续性方程为 0z )u (y )u (x )u (t z y x =??+ ??+ ??+ ??ρρρρ (2-4) 微分形式的连续性方程适用于可压缩流体非恒定流,它表达了任何可实现的流体运动所必须满足的连续性条件。其物理意义是,流体在单位时间流经单位体积空间时,流出与流入的质量差与其内部质量变化的代数和为零。 由式(2-2)可对不可压缩流体给出确切定义。不可压缩流体的条件应为 0=Dt D ρ (2-5) 即密度应随质点运动保持不变。 0=??t ρ只是指密度是恒定不变的,但流体质点密度还可以 在流动中随位置发生变化。只有满足式(2-5),质点密度才能保持不变。但不能排除各个质点可以具有各自不同的密度。如海水在河口淡水下面的入侵(图2-1),含细颗粒泥沙的浑水在水库的清水下面沿库底的的运动(图2-2),都是具有不同密度的不可压缩流动。在这种流动中,因密度不同形成不同的流层,常称为分层流动。 图2-1 河口的海水入侵[1] 图2-2 水库中的浑水异重流[1] 对不可压缩均质流体,则不但0=Dt D ρ,而是在全流场和全部时间内ρ=常数,因此, 连续性方程简化为

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

第3章--振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。 解:系统具有一个自由度,选复摆转角?为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =? 其中 )(22 a g P J C O += ρ 得到复摆运动微分方程为 ?? ρcos )(22 Pa a g P C =+ 或 0cos )(22 =-+?? ρga a C 3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。 解:系统具有一个自由度,选θ为广义坐标。 半圆柱体在任意位置的动能为: 222 1 21ωC C J mv T += 用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2 C C m J ρ= 故 222222 1)cos 2(21θρθθ C m Re R e m T +-+= 系统具有理想约束,重力的元功为 题3-1图 题3-2图

θθδd mge W sin -= 应用动能定理的微分形式 W dT δ= θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd m g e d m R e d m R e d R e m C s i n s i n c o s 2)(2222-=+-++ 等式两边同除dt , θθθθθθθθθθ ρ s i n s i n c o s 2)(2222m g e m R e m R e R e m C -=+-++ 0≠θ ,等式两边同除θ 故微分方程为 0s i n s i n )c o s 2(2222=+++-+θθθθρθ m g e m R e Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为 0])[(22=++-θθρge r R C 要点及讨论 (1)本题也可以用平面运动微分方程求解。系统的受力图与运动分析图如图(b )所示。列写微分方程 ??? ??--=-=-=④③② θ θθρsin )cos (2Ne e R F m mg N y m F x m C C C 上述方程包含C x ,C y ,θ ,F ,N 五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标θ之间的关系 ?? ?-=-=θθ θcos sin e R y e R x C C , ???=-=θθθθθ sin cos e y e R x C C 所以 ?????+=+-=⑥ ⑤22cos sin sin cos θθθθθθθθθ e e y e e R x C C 运动学方程式⑤⑥与方程②③④联立,消去未知约束力N ,F ,就可以得到与式①相同的系统运动微分方程。 因为在理想约束的情况下,未知约束力在动能定理的表达式中并不出现,所以用动能定理解决已知力求运动的问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统的动能 222222 1)c o s 2(21θρθθ C m Re R e m T +-+=

常微分方程第四章考试卷

常微分方程第四章测试试卷(3) 班级 姓名 学号 得分 一、 填空(20分) 1.——————称为n 阶齐线性微分方程。 2.1x )(t 非零为二阶齐线性方程''x 1a +)(t 2'a x +x t )(≡0的解,这里 ()t a 1 和()t a 2于区间[]b a ,上连续,则()t x 2 是方程解的冲要条件是― ——————。 3.常系数非齐线性方程中,若()()t m m m m e b t b t b t b t f λ++++=--1110 , 其中λ与i b 为实常数,那么方程有形如————的特解。 4.在n 阶常系数齐线性方程中,n a a a ,2,1 为常数,则它的特征方程为——————。 5.若方程()()022=++y x q dx dy x p dx y d 中满足————条件,则方程有形 如∑∞ ==0 n n n x a y 的特解。 6.微分方程03'2'''4=++y y xy 的阶数为——。 7.设()01≠t x 是二阶齐线性方程()()0'''21=++x t a x t a x 的一个解,则方程的通解可表为________ 8.解线性方程的常用方法有____、_____、_____、_____ 9.若())2,1,0(n i t x i =为齐线性方程的n 个线性无关解,则这一齐线性方程的通解可表为__________. 10.若()),,2,1(n i t x i =为齐线性方程的一个基本解组,()t x 为非齐线性方程的一个特解,则非齐线性方程的所有解可表___.

二. 计算(30分) 1. 求通解y y y 2'1''2 += 2. 求特解x x e xe y y y -=+-'2'',()()11'1==y y 3. 设二阶非齐线性方程的三个特解为 x x y x x y x y cos ,sin ,321+=+== 求其通解 4. 求解方程()()o y x y x xy =+++-2'12'' ()0≠x 5. 求方程2233'4'''''x xy y x y x =-+的通解 6. 求方程0'''=--y xy y 的解、 三.设可导函数()x φ满足()()1sin 2cos 0+=+?x tdt t x x x φφ,求()x φ 四.证明题(20分) 1.若函数()()()t x t x t x n ,,,21 为n 阶齐线性方程的n 个线性相关解,则它们的伏朗斯基行列式()0=t w 2.试证n 阶非齐线性方程存在且最多存在n+1个线性无关解。

流体主要计算公式

主要的流体力学事件有: 1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 物理意义几何意义 单位重流体的位能(比位能)位置水头 单位重流体的压能(比压能)压强水头 单位重流体的动能(比动能)流速水头 单位重流体总势能(比势能)测压管水头

总比能总水头 二、沿流线的积分 1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。(应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标

常微分方程第4章习题答案

习 题 4—1 1.求解下列微分方程 1) 22242x px p y ++= )(dx dy p = 解 利用微分法得 0)1)( 2(=++dx dp p x 当 10dp dx +=时,得p x c =-+ 从而可得原方程的以P 为参数的参数形式通解 22 242y p px x p x c ?=++?=-+? 或消参数P ,得通解 )2(2 122x cx c y -+= 当 20x p +=时,则消去P ,得特解 2x y -= 2)2()y pxlnx xp =+; ??? ? ?=dx dy p 解 利用微分法得 (2)0dp lnx xp x p dx ??++= ??? 当0=+p dx dp x 时,得 c px = 从而可得原方程以p 为参数的参数形式通解: 2 ()y pxln xp px c ?=+?=? 或消p 得通解 2y Clnx C =+ 当20lnx xp +=时,消去p 得特解 21()4 y lnx =- 3)() 21p p x y ++= ??? ??=cx dy p 解 利用微分法,得 x dx p p p - =+++22 11 两边积分得 () c x P P P =+++2211

由此得原方程以P 为参数形式的通解: 21(p p x y ++= ,() .11222c x p p p =+++ 或消去P 得通解 222)(C C X y =-+ 1. 用参数法求解下列微分方程 1)45222=?? ? ??+dx dy y 解 将方程化为 2215 42=??? ??+dx dy y 令2sin y t = 2cos 5 dy t dx = 由此可推出 1 515(2sin )22cos 2 cos 5dx dy d t dt t t ===从而得 c t x +=25 因此方程的通解为 52x t c = + ,2sin y t = 消去参数t ,得通解 22sin ()5 y x C =- 对于方程除了上述通解,还有2±=y , 0=dx dy ,显然 2=y 和2-=y 是方程的两个解。 2)223()1dy x dx -= 解:令u x csc =, u dx dy cot 31-= 又令tan 2 u t = 则t t u x 21sin 12+==

常微分方程第四章考试卷1

常微分方程第四章测验试卷(1) 班级 姓名 学号 得分 一、 填空(30分) 1、如果),...,2,1)((n i t x i =为齐线性方程的n 个线性无关解,则这 一齐线性方程的所有解可表为————————————————。 2、形如————————————————的方程称为欧拉 方程。 3、如果),...,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x i 为非齐线性方程的一个特解,则非齐线性方程的所有解可表为————————————。 4、设0)(1≠t x 是二阶齐线性方程021=+'+''x a x a x 的一个解,则方程的通解可表为—————————————————————。 5、微分方程t x x 3 sin 1 = +''的基本解组为——————————。 6、函数组t t t e e e 2,,-的伏朗基行列式为—————————。 7、若),...,2,1)((n i t x i =b t a ≤≤上线性相关,则伏朗基行列式满足——————。 8、解线性方程的常用方法有————、————、————、————。 9、n 阶齐线性方程的线性无关解的最大个数为————。 二、 计算(50分) 1、 求32254+=-'+''-'''t x x x x 的通解。 2、 求方程0)()(32='+'-''x x x x

3已知。的解,试求方程的通解是0sin 2=+'+''= x x x t t x t 4、求方程t t x x t x t ln 22=+'-''的通解。 5、的解。求方程1)0()0()0()0(,2)4(='''=''='==+x x x x e x x t 三、 证明题(20分) 1、 ),...,2,1)((n i t x i =是齐次线性方程组的n 个解,则有:当 )()......,(1t x t x n 在[a,b]上线性无关时,伏朗斯基行列式w(t)≠0, t ],[b a ∈. 2、若()(1,2)i x t i =是非齐次线性方程43sin x x x x ''''''++=的2个解,则 有:当12lim ()()n x t x t →∞ -存在。

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(222222222 2)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++-=?++-+=?+-=?-=?=+-=+-=?-=?=+=++?=+++?+++=++= =++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+=?=?=+-=+-=?-+-=?-=?-=?=+=++?++++==+=(特解)解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32323232sin 2cos 231313322323232 2sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=?=?=?=-+=?=?-=?=+=-+?=+-+?=-++?-(通解) 2.用参数法求解下列微分方程:、接口不严等问题,合电气设备进行调试工作案。高中资料试卷保护装置调

理想流体的平面无旋运动

理想流体的平面无旋运动 6-1 给定平面流速度场u x = x 2y + y 2,u y = x 2 - y 2x ,问: (1) 是否存在不可压缩流函数和速度势函数; (2) 如存在,给出它们的具体形式; (3) 写出微团变形速率各分量和旋转角速度各分量。 6-2 已知不可压缩流体平面流在y 方向的速度分量为u y = y 2 -2x + 2y ,求速度在x 方向的分量。 6-3 对平面不可压缩流体的运动,试证明: (1) 如运动为无旋运动,则必满足?2u x = 0,?2u y = 0; (2) 满足?2u x = 0,?2u y = 0的流动不一定是无旋流。 6-4 已知平面流动的速度分布为2222,y x cx u y x cy u y x +=+=其中c 为常数。求流函数并 画出若干条的流线。 6-5 已知平面流动流函数 )(283)22arctan 22(arctan 222y x x y x y Q ++-+++-= πψ 判断是否是无旋流动。 6-6 已知速度势? ,求相应的流函数ψ : (1) ? = xy ; (2) ? = x 3 - 3xy 2 ; (3) 22y x x +=?。 6-7 证明? = 1/2(x 2 - y 2) + 2x - 3y 所表示的流场和ψ = xy + 3x + 2y 所表示的流场完全相同。 6-8 强度为60 m 2/s 的源流和汇流位于x 轴,各距原点为 a=3m 。计算坐标原点的流速,计算通过(0,4)点的流线的流 函数值,并求该点流速。 6-9 在速度为υ = 0.5 m/s 的水平直线流中,在x 轴上方2 单位处放一强度为Q = 5m 2/s 的源流。求此流动的流函数,并绘出此半物体的形状。 6-10 如图所示,等强度两源流位于x 轴,距原点为a 。求 流函数,并确定滞止点位置。

常微分方程解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。 [教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步

推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截断误差,计算稳定性以及数值解的收敛性与整体误差等问题. 4.2 简单的单步法及基本概念 4.2.1 Euler法、后退Euler法与梯形法 求初值问题(4.1.1)的一种最简单方法是将节点的导数用差商 代替,于是(4.1.1)的方程可近似写成 (4.2.1) 从出发,由(4.2.1)求得再将 代入(4.2.1)右端,得到的近似,一般写成 (4.2.2) 称为解初值问题的Euler法. Euler法的几何意义如图4-1所示.初值问题(4.1.1)的解曲线y=y(x)过点,从出发,以为斜率作一段直线,与直线交点于,显然有 ,再从出发,以为斜率作直线推进到上一点,其余类推,这样得到解曲线的一条近似曲线,它就是折线.

常微分方程考研讲义第四章 高阶微分方程

第四章高阶微分方程 [教学目标] 1. 理解高阶线性微分方程的一般理论,n阶齐次(非齐次)线性微分方程解的性质与 结构,熟练掌握n阶常系数齐次线性微分方程的待定指数函数解法。 2.掌握n阶非齐次线性微分方程的常数变易法,理解n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。 3.熟练欧拉方程与高阶方程的降阶法和幂级数解法。 4.掌握高阶方程的应用。 [教学重难点]重点是线性微分方程解的性质与结构,高阶方程的各种解法。难点是待 定系数法求特解。 [教学方法] 讲授,实践。 [教学时间] 16学时 [教学内容]线性微分方程的一般理论,齐次(非齐次)线性微分方程解的性质与结构,非齐次线性微分方程的常数变量易法;常系数线性方程与欧拉方程的解法,非齐线性 方程的比较系数法与拉氏变换法;高阶方程的降阶法和幂级数解法及高阶方程的应用。[考核目标] 1.理解高阶线性微分方程的一般理论,能够求解高阶常系数线性微分方程。 2.掌握n阶非齐次线性微分方程的常数变易法。 3.n阶常系数非齐次线性微分方程特解的待定系数法和Laplce变换法。 4.熟练高阶方程的降阶法和幂级数解法及高阶方程的应用。 §4.1线性微分方程的一般理论 4.1.1引言 讨论n阶线性微分方程

1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (4.1) 其中()(1,2,,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数 如果()0f t ≡,则方程(4.1)变为: 1111()() ()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (4.2) 称它为n 阶齐线性微分方程,而称一般的方程(4.1)为n 阶非齐线性微分方程,并且通常把方程(4.2)叫对应于方程(4.1)的齐线性方程。 定理1 如果()(1,2,,)i a t i n = 及()f t 都是区间a t b ≤≤上的连续函数,则对于任一 []0,t a b ∈ (1)(1) 000 ,,,n x x x - ,方程(4.1)存在唯一解()x t ?=,定义于区间a t b ≤≤上,且满足初始条件: 1(1)(1)0000001 ()()(),,,n n n d t d t t x x x dt dt ???---=== (4.3) 从这个定理可以看出,初始条件唯一地确定了方程(4.1)的解,而且这个解在所有()(1,2,,)i a t i n = 及()f t 连续的整个区间a t b ≤≤上有定义。 4.1.2 齐线性方程的解的性质与结构 讨论齐线性方程 1111()() ()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (4.2) 定理2(叠加原理)如果12(),(),,()k x t x t x t 是方程(4.2)的k 个解,则它们的线性组合1122()()()k k c x t c x t c x t +++ 也是(4.2)的解,这里12,,,k c c c 是任意常数。 特别地,当k n =时,即方程(4.2)有解 1122()()()n n x c x t c x t c x t =+++ (4.4) 它含有n 个任意常数。在什么条件下,表达式(4.4)能够成为n 阶齐线性方程(4.2)的通解?为了讨论的需要,引进函数线性相关与线性无关及伏朗斯基()Wronsky 行列式等概念。 设12(),(),,()k x t x t x t 是定义在区间a t b ≤≤上的函数,如果存在不全为零的常数 12,,,k c c c ,使得恒等式 1122()()()0k k c x t c x t c x t +++≡

常微分方程第四章考试卷4

常微分方程第四章测验试卷(4) 班级 姓名 学号 得分 一. 填空(30分) 1.———————————————————称为n 阶齐线性微分方程。 2.函数组e e e t t t 2,,-的伏朗斯基行列式为———————————。 3.若()()n i t x i ,......2,1=为n 阶齐线性方程的解,则它们线性无关的充要条件——————————————————。 4.若()()n i t x i ,......2,1=为n 阶齐线性方程的解,则()t w 为其伏朗斯基行列式,则()t w 满足一阶线性方程——————————————。 5.设()01≠t x 是二阶齐线性方程021=+'+''x a x a x 的一个解,则方程的通解可表示为——————————————————————。 6.形如———————————————————称为欧拉方程。 7.解线性方程的常用方法有———————————`—————————————`————————————————`——————————————————。 8..若()()n i t x i ,......2,1=为齐线性方程的n 个线性无关的解,则这一齐线性微分方程的所有解可表示为——————————————————。 二. 计算(70分) 1. 求方程t x x cos 1 = +''的通解,已知它对应的齐线性方程的基本解组为t t sin ,cos 。

2.2t x x t ='-'' 0≠t 3.求方程t t x dt x d 2sin 422=+的通解,已知它对应的齐线性方程的基本解 组为t t 2sin ,2cos 4. 求033=-+''-'''x x x x 的解。 5.求0532 22 =++y dx dy x dx y d x 的解。

常微分方程第四章知识总结

一n 阶线性微分方程的一般理论 1. n 线性微方程,它的一般形式为: ++--111)(n n n n dt x d t a dt x d …)()()(1t f t a dt dx t a n n =++- 齐次线性方程 ++--111)(n n n n dt x d t a dt x d …0)()(1=++-t a dt dx t a n n 非齐次线性方程:()0f t ≠ 2. n 阶线性齐次方程的一般理论 (1)定理2(叠加原理) 如果)(,),(),(1t x t x t x k i ?是方程(4.2)的k 个解,则它们的线性组合)()()(2211t x c t x c t x c n n +?++也是方程(4.2)的解,这里 12,,,n c c c ?是任意常数 (2)函数线性相关性 定义在区间],[b a 上的函数)()(),(21t x t x t x k ?,如果存在不全为零的常数 k c c c ,,,21?使得 0)()()(2211≡+?++t x c t x c t x c k k 在],[b a 上恒成立,我们称这些函数是线性相关的,否则称这些函数线性无关。 (3)Wronsky 行列式 由定义在],[b a 上k 个k-1次可微的函数)()(),(21t x t x t x k ?所作成的行列式 ) ()()()()()()() () ()]()(),([) 1()1(2)1(1212121t x t x t x t x t x t x t x t x t x t x t x t x W k k k k k k k ---?? ? ? ? '? ''?≡ ? 称为这些函数的Wronskiy 行列式,也写作W(t).

常微分方程学习活动6-第三章一阶线性方程组、第四章n阶线性方程的综合练习WORD版

常微分方程学习活动6 第三章一阶线性方程组、第四章n 阶线性方程的综合练习 本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握. 要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。 一、填空题 1.若A (x )在(-∞,+∞)上连续,那么线性齐次方程组Y A Y )(d d x x =,n R Y ∈的任一非零解在1 +n R 空间 不能 与x 轴相交. 2.方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 n+1 维空间中的一条积分曲线. 3.向量函数组Y 1(x ), Y 2(x ),…,Y n (x )线性相关的 必要 条件是它们的朗斯期行列式W (x )=0. 4.线性齐次微分方程组n x x x R Y R Y A Y ∈∈=,,)(d d ,的一个基本解组的个数不能多于 n+1 个. 5.若函数组)()(21x x ??,在区间),(b a 上线性相关,则它们的朗斯基行列式)(x W 在区间),(b a 上 恒等于 . 6.函数组???==x y x y cos sin 2 1的朗斯基行列式)(x W 是 x x x x x W sin cos cos sin )(-= 7.二阶方程02 =+'+''y x y x y 的等价方程组是 ??? ??--='='y x xy y y y 2 111 . 8.若)(1x y ?=和)(2x y ?=是二阶线性齐次方程的基本解组,则它们 没有 共同零点. 9.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 线性无关 . 10.n 阶线性齐次微分方程线性无关解的个数最多为 n 个. 11.在方程y″+ p (x )y′+q (x )y = 0中,p (x ), q (x )在(-∞,+∞)上连续,则它的任一非零解在xOy 平面上 可以 与x 轴横截相交.

变质量物体的运动微分方程研讨(doc 6页)

变质量物体的运动微分方程研讨 (doc 6页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

变质量物体的运动微分方程及火箭运动 专业:物理学 学号: 0840******** 姓名: 秦瑞锋

变质量物体的运动微分方程及火箭运动 秦瑞锋 (物理与电气工程系09级物理学专业,0840********) 摘要:我们已经了解了一定质量的系统的运动学方程和动力学方程,但在实际问题中,系统的质量往往是变化(按一定规律减少或增加)的,我们所学的一定质量的物体的运动学或动力学方程却不适用于变质量系统,下面我们将研究变质量系统的运动学和动力学的若干方程,以及变质量物体的运动规律. 关键字: 变质量系统 运动微分方程 火箭 动能定理 动量定理 一、变质量物体的基本运动微分方程 在以前的学习中,我们接触到的质点或者质点组系统运动过程中,本身的质量不会发生变化。但在实际生活和自然现象中,在某时刻有一部分质量进入或者离开我么们所要研究的对象,经常有变质量系统的运动情况,例如,地球的质量由于陨石的降落而增加,飞行中的喷气飞机和火箭随着燃料的减少质量减少,浮冰由于溶化而减少质量,运动着的传送带在某时可添加或取走货物,下降的陨石由于空气的作用发生破碎或者燃烧使质量减少……这些质点系在运动过程中,不断发生系统外的质点并入,或系统内的质点分离,以致系统的总质量随时间不断改变,我们称这些系统为变质量系统。那么该用怎样的方法研究变质量系统的运动情况呢? 我们可以假设在任何时刻,系统的分离或并入的质量是小量,两次发生分离或并入的时间间隔是小量,在这些理想的假设下,离开质点系的质量 )(m 2 t 和进入质点系的质量 )(1 t m 是时间的连续可微函数,如果系统的质量m t 在t=0时刻为m 0 ,则它随着时间的 变化规律为)()()(2 1 t t t m m m m +-= ,那对应的关于质量的一些物理量也是对时间的 可微函数,得到微分方程后,进行积分,问题可解决。 设变质量质点的质量m 是时间t 的函数,即m =m (t )。在瞬时t ,质点的质量为 m (t ),质点对于定坐标系Oxyz 的速度为v (图1),即将与之合并的微粒的质量为d m (t ),其对Oxyz 的速度为u 。在瞬时t +d t ,微粒与质点合并。于是质点的质量变为(m +d m ),其对Oxyz 的速度成为v +d v 。对于质量分出的情况则d m <0,即 dt dm 为负。 m 和d m 所组成的质点系在瞬时t 的动量为m v +u d m ;在瞬时t +d t 的动量为 (m +d m )(v +d v )。在d t 时间内,动量的增加t F p d ??=ρ ρ为: p d ρ=(m +d m ))(v d v ρρ+-(m v ρ+u ρ d m )。

常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解 习题4-1 1.求解下列微分方程: (通解) 特解) (特解)解:2 212 22 ) (22222 2 2222)(2101.(42202.. 0)1)(2(0)2()2(2222); (,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p x x p p p x px y p x px p y x C x dx dp dx dp dx dp dx dp dx dp dx dp p dx dy ++- = ?++-+= ?+-=?-=? =+-=+-=?-=?=+=++?=+++?+++=++= = ++=+-2 2 4ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln .. 0))(2(ln 22)1(ln ln ); (,)(ln ).2(2 2 2 C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y x C x C x C dx dp x x x x x x x x x dx dp dx dp dx dp dx dy +=?+= ?= ?=+-=+-=?-+-=?-=?-=?=+=++?++++== +=(特解) 解:dy dq q y q y y dy dq q y dy dx p y p p y q y q y q x q y x y p y xp 3 2 2 2 222cos 2) sin (cos 222cos 12 cos 123sec tan , tan , ,tan . cos tan 22).3(-++=+ == = + =+=-令解:y y y y x q q y b y C x y C q y q y q a y y q y q y q y y q y y y y t y y y y y q y C dy dq dy dq q y dy dq dy dq q y dy dq dy dq q y q y y dy dq 32 32 32 32sin 2cos 23 13 133 22 323 2 3 2 2 sin sin sin tan 0tan .sin cos tan 0tan .0 )(tan tan (0)tan ()tan (tan 0 tan tan 23212 cos sin cos sin cos sin cos 3 cos 21cos cos cos sin cos 2=+=+ = ?= ?= ?=- + =?=?-=? =+=-+?=+-+?=-+ +?-(通解) 2.用参数法求解下列微分方程: 管壁薄、接口不严等问题电气设备进行调试工作高中资料试卷保护装置调

流体运动方程与能量方程

第一章流体力学基础——流体运动的微分方程 西安建筑科技大学 粉体工程研究所

质量传递——连续性方程动量传递——纳维-斯托克斯方程能量传递——能量方程状态方程 流体运 动微分方程组 所有流体运动传递过程的通解 质量守恒定律 动量定理能量守恒定律

1.3流体运动的微分方程 ?质量守恒定律——连续性方程?动量定理——纳维-斯托克斯方程?能量守恒定律——能量方程 ?定解条件

1.3.1 质量守恒定律——连续性方程 ?质量既不能产生,也不会消失,无论经历什么形式的运动,物质的总质量总是不变的。 ?质量守恒在易变形的流体中的体现——流动连续性。 18世纪,达朗贝尔推导不可压缩流体微分形式连续性方程 在控制体内不存在源的情况下,对于任意选定的控制体 单组分流体运动过程中质量守恒定律的数学描述:流入控制体的质量速率 流出控制体的质量速率 控制体内的质量累计速率 = A B

τ时刻A 点流体密度为,速度沿x ,y ,z 三坐标轴的分量为1.3.1 质量守恒定律——连续性方程 连续性方程的推导边长为dx ,dy ,dz 的控制体微元 )ρ(x,y,z, τ)(x,y,z,u τ z y x ,u ,u u 单位时间内通过左侧控制面流入微元控制体的质量(即质量流量) x 方向 dydz ρu x 通过右侧控制面流出微元控制体的质量速率 dydz dx x )(ρρu x x ?? ???? ??+u dxdydz x ) (ρx ??-u

A :流入与流出微元控制体的质量速率之差x 方向dxdydz x )(ρx ??-u y 方向z 方向 dxdydz y )(ρ??-y u dxdydz z )(ρ??-z u dxdydz z )(ρy )(ρx )(ρ????????+??+??-z y x u u u B :微元控制体内的质量累计速率 τ时刻 ρdxdydz ρ 密度 质量 τ+d τ时刻dxdydz d ρρ?? ? ?? ??+τττ τ d ρ ρ??+dxdydz ρd ρdxdydz dxdydz d ρρτ τ ττ??=-?? ? ?? ??+

相关文档
相关文档 最新文档