文档库 最新最全的文档下载
当前位置:文档库 › 超声波测距

超声波测距

超声波测距
超声波测距

超声测距的移动机器人路径导航

摘要

随着机器人技术的不断发展,自主移动机器人正越来越成为研究的热点。导航技术是其研究核心,而路径规划又是移动机器人导航中最重要的任务之一。基于超声波测距的自主移动机器人路径规划是移动机器人技术中的一项重要研究课题。本文对基于超声波测距的自主移动机器人路径规划问题进行了较为深入的探讨和分析。首先。对自主移动机器人的发展状况,以及移动机器人导航技术和路径规划技术的国内外发展现状进行了综述。然后介绍了超声波测距原理,讨论了超声波测距系统应用于导航技术的优势。重点探讨了基于超声波测距的自主移动机器人路径规划技术,采用栅格法进行环境建模,运用了一种称作沿边走的算法进行了路径规划。最后分析了现有方案的优缺点,展望了机器人路径规划技术的未来发展趋势和研究方向。

关键字:自主移动机器人;超声波;路径规划

目录

第一章绪论-------------------------------------------------------------------------------------5 1.1论文背景和意义------------------------------------------------------------------------5 1.2国内外研究现状------------------------------------------------------------------------6

1.2.1自主移动机器人导航技术现状----------------------------------------------6

1.2.2自主移动机器人路径规划技术现状----------------------------------------7 1.3本论文的主要内容----------------------------------------------------------------------9 第二章超声波测距技术---------------------------------------------------------------------10 2.1移动机器人中的测距技术-----------------------------------------------------------10

2.1.1无源测距技术------------------------------------------------------------------10

2.1.2有源测距技术------------------------------------------------------------------10 2.2测距传感器的选择性分析-----------------------------------------------------------12 2.3超声波测距-----------------------------------------------------------------------------13

2.3.1超声波发生器------------------------------------------------------------------13

2.3.2压电式超声波发生器原理---------------------------------------------------14

2.3.3超声波测距原理---------------------------------------------------------------14 2.4本章小结--------------------------------------------------------------------------------15 第三章环境建模------------------------------------------------------------------------------16 3.1 栅格法简介-----------------------------------------------------------------------------16 3.2栅格法建模-----------------------------------------------------------------------------17 3.3基于超声波传感器测距的栅格化方法--------------------------------------------17 3.4本章小结--------------------------------------------------------------------------------18 第四章基于超声波测距的沿边走路径规划的导航算法------------------------------19 4.1 坐标系的建立--------------------------------------------------------------------------19 4.2基于超声波测距的沿边走路径规划机器人的导航算法-----------------------20

4.2.1沿边走算法简介---------------------------------------------------------------20

4.2.2沿边走过程---------------------------------------------------------------------21 4.3沿边走路径规划流程图--------------------------------------------------------------23 4.4本章小结--------------------------------------------------------------------------------24

第五章结果分析------------------------------------------------------------------------------25 5.1仿真结果---------------------------------------------------------------------------------25 5.2结果分析--------------------------------------------------------------------------------26 5.3本章小结--------------------------------------------------------------------------------26 第六章现有方案缺陷及路径规划技术的发展趋势------------------------------------27 第七章结论------------------------------------------------------------------------------------29 参考文献----------------------------------------------------------------------------------------30 致谢----------------------------------------------------------------------------------------------31 附录----------------------------------------------------------------------------------------------32

第一章绪论

1.1论文背景和意义

自1962年美国研制出世界上第一台工业机器人以来,经过40余年的发展,机器人技术以及应用都已取得非常大的进步。可以说机器人的出现,是20世纪人类最伟大的发明之一。科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”[1]。

随着机器人的应用越来越广泛,人们对机器人技术智能化本质的认识也在不断加深,机器人技术开始向人类活动的各个领域渗透。于是出现了各式各样的具有感知、决策、行动和交互能力的特种机器人和各种智能机器,如微机器人、水下机器人、医疗机器人、军用机器人、空中空间机器人、娱乐机器人等。

机器人技术在不断发展,人们对机器人在社会服务、野外作业以及在有害、危险环境作业中的应用也越来越重视。研究能够在复杂环境中自主运动和自动作业的智能自主移动机器人势在必行。

移动机器人是机器人学的一个重要分支,其研究始于20 世纪60年代。移动机器人由于具有更大的使用灵活性已成为目前机器人技术研究的一个热点。近年来,移动机器人技术在工业、农业、航天及空间探测等许多领域都起到了重要的作用,显示了广泛的应用前景[2]。自主式移动机器人具有高度自规划、自组织、自适应能力,适合于在复杂的非结构化环境中工作。自主式移动机器人的目标是在没有人的干预、无需对环境做任何规定和改变的条件下,有目的地移动和完成相应任务。在自主式移动机器人相关技术的研究中,导航技术是其研究核心,也是移动机器人实现智能化及完全自主的关键技术。而路径规划又是移动机器人导航中最重要的任务之一。基于超声波测距的自主移动机器人路径规划正是机器人智能控制技术中的一项重要课题。

1.2 国内外研究现状

机器人技术是一门综合性的学科。世界各地的专家学者都在不断致力于机器人技术的研究,尤其是移动机器人的导航和路径规划技术方面,已经取得了相当

多的研究成果。

1.2.1自主移动机器人导航技术现状

导航是移动机器人应具备的基本功能,是移动机器人实现智能化及完全自主工作的关键技术之一。理想的移动机器人应具有以下能力:当处于一个未知的、复杂的、动态的非结构环境中,并且在没有人的干预下,通过感知环境,能够到达期望的目的地,同时应尽量减少时间或能量的消耗等。

正是由于有了导航装置,移动机器人在行走过程中才能确定行动的方向,才不会与障碍物发生碰撞。移动机器人常见的导航方式有磁导航、惯性导航、激光导航、视觉导航等。地下埋线的导航方式是20世纪50年代美国开发的,到20世纪70年代这种导航方式迅速发展并应用于柔性生产。目前,国内制造行业使用的移动机器人大多还是基于这种导航方式。该导航方式的技术已十分成熟,但其成本高,改造和维护困难。就国内研究现状来看,以上几种导航方式均在研究之中,而磁导航方式的技术已相当成熟。中国科学院沈阳自动化研究所已生产出基于磁导航的多代机器人产品。其他导航方式的机器人也在研究之中,如:清华大学已研制的三代THMR 移动机器人,上海大学的“导购机器人”、哈尔滨工业大学研制的“导游机器人”和正在开发的各种服务机器人。

诸多研究表明:视觉导航方式具有信号探测范围宽、获取信息完整等优点,将成为未来机器人导航的一个主要发展方向。在视觉导航方式中,目前国内外应用最多的还是采用在机器人上安装车载摄像机的基于局部视觉的导航方式,如:D. L.Boley[3]等研制的移动机器人利用车载摄像机和较少的传感器通过识别路标进行导航,比直接采用卡尔曼滤波器获得了更好的实时性,并有效抑制了噪声;

A.Ohya[4]等利用车载摄像机和超声波传感器研究了基于视觉导航系统中的避碰问题;P. I.Corke[5]等对由车载摄像机构成的移动机器人视觉闭环系统的研究表明,这种控制方法对提高路径跟踪精度有较好效果。

视觉导航研究由于受到现有计算设备运算速度和存储容量的限制而发展较慢,但随着计算机图像处理能力和技术的提高,加之视觉导航具有信号探测范围宽、目标信息完整等优势,在图像处理速度得到解决之后,视觉导航仍将是主要导航方式。

在一个智能系统中,使用单一的智能控制方法,往往不能取得满意的效果。

应综合采用常规控制方法和智能控制方法,才能够取得良好效果。神经网络和模糊推理是自主导航研究中的两个重要工具,但是神经网络样本集的完整性研究尚未取得突破,将事件空间的每一点都作为网络的学习样本显然是不可取的;模糊逻辑推理则侧重于模糊规则的选取,但有些规则很难形式化描述,或者必须用大量的规则描述而增大运算量,这样就背离了模糊逻辑应用的初衷,因此近年来将神经网络与模糊逻辑结合起来,应用到自主导航研究中就成了机器人研究的热门课题。

传感器融合技术在近年来被引入到了机器人导航研究中,并已取得令人振奋的成果,采用常规传感器导航的移动机器人将成为机器人产业的主要发展方向。当然,在一些复杂的地理条件下,非视觉传感器的探测范围就不如视觉系统那么完整,目前对于一些高精度的导航还难以胜任,因而开发新型传感器或按照一定融合策略构造传感器阵列以弥补单个传感器的缺陷,以及提出新的融合方法来完善探测的结果,都将是重要的研究方向。

1.2.2移动机器人路径规划技术现状

路径规划是移动机器人导航中最重要的任务之一。它是按照某一性能指标搜索一条从起始状态到目标状态的最优或近似最优的无碰路径。机器人路径规划的研究起始于20 世纪70 年代,目前对这一问题的研究仍然十分活跃,国内外学者作了大量的工作。

目前,路径规划可以分为三种类型:一种是基于环境先验完全信息的路径规;另一种是基于传感器信息的不确定环境的路径规划;第三种是基于行为的路径规划方法。

(1)基于环境先验完全信息的路径规划该方法也被称为全局路径规划,能够处理完全已知环境下的移动机器人路径规划。当环境发生变化时,如出现未知障碍物时,这种方法就无能为力了。这种方法包括以下几种:可视图法,栅格法和拓扑法等。可视图法(visibility graph)[6]是将机器人视为一点,把机器人、目标点和多边形障碍物的各个顶点进行连接,要求机器人和障碍物各顶点之间,目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线,都不能穿越障碍物,这样就形成了一张图,称之为可视图。由于任意两直线的顶点都是可视的,显然移动机器人从起点沿着这些连线到达目标点的所有路径均是无碰路径。对可视图

进行搜索,并利用优化算法删除一些不必要的连线以简化可视图,缩短了搜索时间,最终就可以找到一条无碰最优路径。栅格法(grids)[7]是将移动机器人工作环境分解成一系列具有二值信息的网格单元,多采用二维笛卡儿矩阵栅格表示工作环境,每一个矩形栅格都有一个累积值CV,表示在此方位中存在障碍物的可信度。CV 值越高,表征存在障碍物的可能性越高。用栅格法表示格子环境模型中存在障碍物的可能性的方法起源于美国CMU大学。通过优化算法在单元中搜索最优路径。由于该方法以栅格为单位记录环境信息,环境被量化成具有一定分辨率的栅格,因此栅格的大小直接影响着环境信息存储量的大小以及路径搜索的时间,因此在实用上受到一定的限制。拓扑法[8]是根据环境信息和运动物体的几何特点,将组成空间划分成若干具有拓扑特征一致的自由空间,然后根据彼此间的连通性建立拓扑网,从该网中搜索一条拓扑路径。该方法的优点在于因为利用了拓扑特征而大大缩小了搜索空间,其算法复杂性只与障碍物的数目有关,在理论上是完备的。但建立拓扑网的过程是相当复杂而费时的,特别是当增加或减少障碍物时,如何有效地修正已经存在的拓扑网络以及如何提高图形搜索速度是目前亟待解决的问题[10] 。但是针对一种环境,拓扑网只需建立一次,因而在其上进行多次路径规划就可期望获得较高的效率。

(2) 基于传感器信息的局部路径规划人工势场法( artificial potential field)最初由Khatib提出[9],这种方法由于它的简单性和优美性而被广泛采用。其基本思想是把移动机器人在已知全局环境中的运动看作一种虚拟的人工受力场中的运动。目标点对机器人产生引力作用,障碍物对机器人产生斥力作用,引力和斥力的合力控制机器人的运动。这种方法结构简单,易于实现。但是这种方法也存在着一些缺点:如存在陷阱区,在相近的障碍物前不能发现路径,在障碍物前产生振荡以及在狭窄通道中摆动等缺点。针对人工势场法的缺陷,国内外许多专家学者不断寻找新的途径,以克服该方法所存在的弊端。如文献[10]结合栅型声纳测试,建立一种新类型的势场函数,为距离转换路径寻找算法。文献[11]采用预测与势场法相结合的算法解决移动机器人的导航问题,取得了良好的效果。文献[12通过引入虚拟障碍物使搜索过程跳出局部最优的陷阱,但引入虚拟障碍物可能会产生新的局部极小点,同时也增加了算法的复杂度。基于传感器的模糊控制方法和神经网络控制方法见文献,因其对硬件要求比较高,简单的配置不易使移动机

器人实现快速实时运动规划。

(3) 基于行为的路径规划方法所谓基于行为的研究方法是把移动机器人所要完成的任务分解成一些基本的、简单的行为单元,这些单元彼此协调工作。每个单元有自己的感知器和执行器,二者紧耦合在一起,构成感知动作行为,机器人根据行为的优先级及结合本身的任务综合作出反应。该方法的主要优点在于每个行为的功能较简单,因此可以通过简单的传感器及其快速信息处理过程获得良好的运行效果。但这种方法主要考虑机器人的行为,而对机器人所要解决的问题以及所面临的环境没有任何的描述,只是通过在实际的运行环境中机器人行为的选择,达到最终的目标。如何构造和优化机器人行为控制器是成功与否的关键。主要方法包括:基于传感器信息的局部运动规划方法和基于模糊逻辑及神经网络的监督学习方法等。

1.3 本论文的主要内容

本论文的主要研究基于超声波测距的自主移动机器人路径规划技术,重点进行了以下工作:

(1)概述自主移动机器人的发展状况,以及国内外导航技术和路径规划技术的发展现状。

(2)介绍移动机器人中的两种常用测距技术——有源测距和无源测距。并详细介绍机器人超声波测距原理以及超声波测距系统应用于导航技术

的优势。

(3)重点探讨基于超声波测距的自主移动机器人路径规划技术。采用栅格法进行环境建模,运用一种称作沿边走的算法来进行路径规划。

(4)分析现有方案的优缺点,展望机器人路径规划技术的未来发展趋势和研究方向。

第二章超声波测距技术

2.1移动机器人中的测距技术

在研究机器人的避障时,环境信息的采集是研究的关键问题。距离测量为移动机器人提供了周围环境的二维或三维信息,是移动机器人中不可缺少的组成部分。移动机器人可以根据这些信息进行实时避障、导航和执行特定的任务。通常,对获取这类环境信息的传感器有两方面的要求:一方面,需要有足够大的视场来覆盖整个工作区;另一方面,需要有足够高的采集速率以保证在运动的环境中提供实时的信息。

2.1.1无源测距技术

经典的距离测量方法使用无源测距技术,我们称之为被动方法,例如立体视觉和结构光方法。

立体视觉:在机器人获取信息的各种感知器中,视觉系统无疑是最重要的。从仿生学的角度来说,基于双目视觉原理的立体视觉系统最接近生物体的视觉系统,但由于受到原理计算法的限制,测距精度和成象速度不能满足要求。

结构光测距:结构光测距的原理与光学测距法类似,使用单一光点或平面逐点测量从而获得物体的完整的三维描述。这种方法虽然能够产生比较精确的结果,但是其速度过慢而无法用于实时任务。

在移动机器人的领域中,无源测距方法大都无法同时满足可靠性或实用性的要求。有源测距技术使用主动传感器替代被动传感器,它由于具有以下的两大优点而在实时机器人领域显示出诱人的魅力:

(1)主动传感器不存在复杂的图象匹配技术,不象立体视觉需要通过大量的计算获取距离数据,因而实时性好,测距速度快。

(2)主动传感器不易受到如天气状况、光照条件及表面标记、阴影、污渍等外界条件的影响。主动传感器工作时不仅使用自然光照,它自身也对被测物体产生光照。

此外,在多数主动传感器系统中,有源光的发送和接受是同轴的,这就从本质上解决了结构光和立体视觉方法难于解决的“消失片段”问题。

2.1.2有源测距技术

在有源测距技术中,常用的主动传感器主要有超声波、微波雷达和激光雷达三种。

(1)超声波传感器

超声波是一种只有少数生物(如蝙蝠、海豚)才能感觉到的机械波,其频率在20KHz以上,波长短,绕射小,能定向传播。它具有纵波(在气、液、固中传播)、横波(在固体中传播)和表面波(沿固体表面传播)三种波形,而且遇到杂质或传播界面回产生明显的反射[13]。这种反射不是严格定向的,具有散射性。在移动机器人中应用的超声波传感器,是利用超声波在空气中的定向传播和固体反射特性(纵波),通过接收自身反射的超声波反射信号,根据超声波发出和回波接收时间差及传播速度,计算出传播距离,从而得到障碍无物到机器人的距离。从发射波束特性知,由于扩散角的原因,使超声波测距的角度分辨率较低,但距离分辨率较高。超声波传感器具有反应灵敏、探测速度快的优点,而且结构简单,体积小,成本低,因而在目前已知的移动机器人中,多数都安装了它,用于室内和室外近距离避障。通常,以多个传感器组成阵列形式,根据单个传感器扩散角及反射特性。确定合理的密度,以覆盖要求的探测区域。

总的来说,超声波传感器的造价低廉、速度快、距离分辨率较高,但其方向性差、镜面反射严重、测距范围小,因此,比较适用于室内环境的距离测量。(2)微波雷达

微波是一种电磁波,其波长为,频率为,定向传播及反射性能介于超声波和激光之间。作为新型测距传感器,其工作原理与超声波传感器相同。角度分辨率高于超声波和红外传感器,低于激光传感器,距离分辨率略高于超声波传感器。目前最大探测距离介于超声波和激光测距之间,最小探测盲区距离略低于超声波传感器。

微波雷达的优点是因目标的颜色、材质等不同而引起的反射率变化小,对雾的透过率高,受灰尘、雾、雨的影响小,在各种目标和气候条件下都能比较稳定的进行探测。缺点是利用车载的小型天线时因为不能形成尖锐的射束,所以不能进行高精度测角。一般很难进行高精度测位。另外,根据目前的电波法规定,微波一般是不能使用的,但是不久的将来,经过修改以后,这种规定会被解除的,这项高新技术的产品,已用于国外汽车倒车及高速公路车辆间距监测等实用技术

领域,并开始安装在新研制的移动机器人上,是一种很有前途的移动机器人深度信息传感器。

(3)激光雷达

近年来,激光雷达因具有测量速度快、测程远、测距精度高、方向性好、镜面反射小、造价适中等优点而受到广泛重视。激光调制波的强度大,有利于远距离目标的测量及目标与背景的区分;光速窄、平行性好、散射小,保证了很好的测距方向分辨率;一般为单一频率的光波,光谱比较纯,保证了较高的信噪比。通过二维或三维的扫描激光束或光平面,激光测距雷达能够以相对高的频率提供大量准确的距离数据。激光测距雷达与其它距离传感器相比,它能够较好的同时考虑到精度要求和速度要求,特别是在移动机器人领域。它与传统获得深度信息的方法不同,激光测距雷达不仅可以在有环境光的情况下工作,也可以在无环境光中工作,而且在无环境光的情况下测量效果更好。但由于光线的传播速度极快,通常难以通过简单的装置估算其传播距离,因此在简单、低成本的应用中,并不适用。

2.2 测距传感器的选择性分析

在本课题中,自主移动需要在实现避障和路径规划的基础上,完成局部自主式移动,因此它必须对其工作环境的状态有一清楚的了解。同时,由于涉及到不同的工作场合,成本的高低,安装麻烦等限制,我们在设计的过程中,排除了用外部的测量、定位和导航系统的可能性。因此,在这里,机器人将依靠其自身携带的传感器,通过主动探测的方式来完成对外部环境的感知。由于在实现避障和无碰撞路径规划的过程中,机器人本身与周围环境以及障碍物之间的距离是最关键的因素。因此,我们对于传感器的选择,也集中在测量距离这一参数上。

如上一节所述,超声波测距技术是一种有源非接触性测距技术,是利用超声波在空气中的定向传播特性和固体反射特性,通过接收自身反射的超声波反射信号,根据超声波发出及回波接收时间差及传播速度,计算出传播距离,从而得到障碍物到机器人的距离。由于超声波传感器具有成本低廉,采集速度快,距离分辨率高,质量轻、体积小、易于装卸的优点,并且超声波传感器在采集环境信息时不存在复杂的图象匹配技术,不需要通过大量的计算就可获得数据,因而其测距速度快,实用性好。同时超声波传感器不易受到天气条件、环境光照及障碍物

阴影、表面粗糙度、裂缝等外界环境条件的影响。鉴于以上种种优点,使得超声波传感器在移动机器人的应用中具有很大的优势。因此,在这里我们选择超声波测距传感器作为智能机器人的主要传感部件。

目前,超声波测距传感器在移动式机器人导航中应用十分广泛。它的测量原理是基于测量渡越时间,即测量从发射换能器发出的超声波,经目标反射后,沿原路返回到接收换能器所需的时间。由渡越时间和介质中的声速即可求得目标与传感器之间的距离。

2.3超声波测距

为了检测作业对象及环境或机器人与它们的关系,在机器人上安装了触觉传感器、视觉传感力觉传感器、接近觉传感器、超声波传感器和听觉传感器,大大改善了机器人工作状况,使其能够更充分地完成复杂的工作。由于外部传感器为集多种学科为一身的产品,有些方面还在探索之中,随着外部传感器的进一步完善,机器人的功能越来越强大,将在许多领域为人类做出更大贡献。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。

2.3.1超声波发生器

超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

按收发方式又分两类:一类是发射和接收分别是两种不同的分体式超声波传感器,此类传感器测距有效范围比较大,但不具备防尘、防水性能,如用于发射的MA40A5S及用于接收的MA40A5R 。另一类是具有双向的发射/接收功能的收发一体式超声波传感器,如R/S40,不仅用于发射超声波,也用于接

收超声波,此类超声波测距有效范围比较小,防尘、防水性能好,主要用于汽车倒车雷达。

2.3.2压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图2-1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。超声波传感器在机器人上的分布如图2-2所示。

图2-1 超声波传感器结构图2-2 超声波传感器位置分布图

2.3.3超声波测距原理

超声波是一种一定频率范围的声波。它具有在同种媒质中以恒定速率传播的特性,而在不同媒质的界面,会产生反射现象。利用这一特性,就可以根据测量反射波与发射波之间的时间间隔,从而达到测量距离的作用。其主要有三种测量方法:

(1)相位检测法

相位检测法虽然精度高,但检测范围有限

(2)声波幅值检测法

声波幅值检测法易受反射波的影响

(3)渡越时间检测法

超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出就可以计算出发射点距障碍物的距离:

D= C T/2(2-1)

这就是渡越时间法测距机理。

式中:

D ——距离;

S ——声波在介质中传播的速度;

T ——声波传输所用时间。

声波在空气中传输速率为:

273/10T C C +=(2-2)

式中:

T ——绝对温度;

0C ——331.4m/s 。

在测距精度不是很高的情况下,一般认为C 为常数340m/s 。

附录中表2列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。

用于行走机器人上的超声测距系统共有4对超声波换能器,分别装在前、后、左、右4个方向上。采用AT89C52单片机,由单片机定时向发射机发出控制信号,其脉冲宽度为0.25ms ,同时启动定时器。发射机产生40KHz 左右的调制脉冲,经换能器转换为超声波信号向前方空间发射。超声波信号在空间中传播遇到障碍物后,将反射回波。其反射波被接受机收到后,变成电信号脉冲,该信号经放大、滤波、整流、比较后,产生负脉冲触发单片机外部中断读出此时定时器值,即得出超声波在空气中传播的时间。再根据公式(2-1)即可求得距离。

2.4 本章小结

本章先介绍了移动机器人中常用的两种测距技术——无源测距和有源测距,并对测距传感器的选择做了分析,讨论了超声波测距的优越性。然后详细讲述了超声波发生器原理和超声波测距原理。

第三章环境建模

对环境的感知是自主式移动机器人研究的关键技术之一。环境信息的描述是实现机器人自主式导航的算法基础。环境信息采集和建模描述的精确度应该以实现对机器人导航的可靠性为基础。强制要求传感器对环境信息采集和描述的精确度会影响传感器的信息采集速率,增加算法复杂度和计算量,从而影响算法的实时性、可靠性和鲁棒性。虽然现在对环境信息的建模方法有很多种,比较成功和有效的方法主要有势场法和栅格法。这里仅介绍和使用栅格法来进行环境建模。

3.1 栅格法简介

栅格法(grids) 是将移动机器人工作环境分解成一系列具有二值信息的网格单元,多采用二维笛卡儿矩阵栅格表示工作环境,每一个矩形栅格都有一个累积值CV ,表示在此方位中存在障碍物的可信度。CV 值越高,表征存在障碍物的可能性越高。用栅格法表示格子环境模型中存在障碍物的可能性的方法起源于美国CMU大学。通过优化算法在单元中搜索最优路径。由于该方法以栅格为单位记录环境信息,环境被量化成具有一定分辨率的栅格,因此栅格的大小直接影响着环境信息存储量的大小以及路径搜索的时间,因此在实用上受到一定的限制。

栅格法将基于传感器系统的地图模型识别法和测距法相结合,环境描述易于创建和维护,对某个网络的感知信息可直接与环境中某个区域对应,机器人对所测的障碍物具体形状不太敏感,具有直观简洁、分辨率高等特点,适用于室内等中小环境路径规划地图模型的建立[14]。

栅格法与其它环境建模方法相比具有以下特点:

(1)所建立的栅格跟系统所采用的传感器类型有关。不同的传感器由于采集环境信息的方法不同,所获得栅格形状和精确度也不同。

(2)对栅格中的障碍物形状和具体定位在全局坐标中不能表示出来。

3.2 栅格法建模

在这里采用栅格法建立环境地图模型。忽略机器人的旋转运动,墙壁为直线型,视房间为一个矩形,按照设定好的清洁范围,以机器人大小尺寸为基本单元,将房间自动划分成互不重叠的单元格,形成栅格图,每个栅格表示一个自由区域

或障碍区域。如图

图3-1环境地图模型

图中,A点为机器人停放位置,机器人的工作位置可以通过坐标(x,y)表示,设工作房间长X,宽Y,则x为沿X方向坐标,y为沿Y方向坐标。参数X 和Y可以任意调整。白色区域表示自由区,机器人可以自由活动。黑色区域表示障碍区,机器人不能通过,非线形障碍物可以近似等效为线形。

3.3 基于超声波传感器测距的栅格化方法

如图3-2所示,我们利用多对超声波传感器的角度扫描范围,以及传感器最大距离探测误差为半径分割整个平面,这样,我们就得到一个被分割成许多栅格的平面。

图3-2 超声波扫描测距示意图

由于超声波传感器角度分辨率差,利用栅格法获取环境信息是较为可行的基本方法。现在,我们就两个超声波传感器A、B讨论一下环境信息的获取。

图中,a为传感器的角度探测范围,b为传感器B的角度探测范围。Ra为A 探测到的最近障碍物的距离,Rb为B探测到的最近障碍物的距离。

当Ra<Rb(Ra与Rb之间差距大于一个阀值)时,我们认为距离A最近的障

碍物在栅格1中,也就是栅格1中存在障碍物,而在栅格2中不存在障碍物。同理,当Rb<Ra时我们认为距离B最近的障碍物在栅格3中,也就是栅格3中存在障碍物,而栅格2中不存在障碍物。而当Ra==Rb时,我们认为距离a 或b最近的障碍物可能在1,2,3任意栅格中,也就是1,2,3中都有有存在障碍物的可能。

当然,这只是推理的原理,在实际应用中,我们是根据栅格中存在障碍物的可信度来记录环境信息的。也就是说,当我们进行一次探测后,我们将可能存在障碍物的栅格的CV值加1。而在另一方面,我们将不可能存在障碍物的栅格的CV值设为0[5]。这样,我们就超声波传感器获取的环境信息转化为我们所需的栅格信息。我们可以看到,随着超声波传感器数量增多,栅格的粒度就越小,我们获取的栅格信息也就越精确。

由于超声波扫描本身的特性,使得所建立的栅格是扇形的,这样不利于对整个工作环境(如房间,大厅等)进行栅格化,只要传感器的数量较多,这样的近似是可以接受的。

另外,如果是家用自主式移动机器人如智能吸尘机器人,其所工作的环境是室内,并且由于超声波测距范围和精确度,以及工作环境面积大小等因素,这样就不能要求超声波传感器能在某个具体的位置,就能把整个室内环境的信息全部记录下来。因此超声波传感器采集信息的工作方式应该是边走边扫描记录。在这种采集信息的工作方式下,其采集到的信息数据不仅跟环境静态的结构布局有关,并且室内环境中还存在动态的物体如人等,因此对采集到的信息进行建模时还应该考虑到时间的因素。也就是说采集到的物体位置信息(X,Y)不仅应该是二维平面的x和y的函数,也是时间t的函数。

3.4 本章小结

本章主要介绍了栅格法的原理及特点。讲述了利用栅格法进行环境建模的建模过程以及基于超声波传感器测距的栅格化方法。

第四章 基于超声波测距的沿边走路径规划的导航算法

4.1 坐标系的建立

在移动机器人的环境信息(主要是环境结构布局以及障碍物分布布局信息)进行描述时,必须建立两个坐标系:全局坐标系和机载运动局部坐标系。这两者的关系如图4-1:

图4-1 全局坐标与机载运动坐标关系图

(1)全局坐标系

建立全局坐标系的目的是用来描述整个环境的信息,标识当前机器人的位置。全局坐标值描述了机器人当前在整个工作环境中所处的位置,因此全局坐标值可以用来对机器人定位。

(2)车载坐标系

由于自主式移动机器人是在运动过程中,探测当前环境的信息的。每次探测的距离信息都是以当前机器人的运动姿势来定量测量的。建立车体局部坐标系就是为了描述当前探测到的局部信息,它主要用于控制机器人的当前行走。 全局坐标系与车载坐标系转换

全局坐标系和机载运动坐标系的转换关系为:

λλsin cos ''?-?+=X Y m Y

λλsin cos ''?+?+=Y X n X

其中λ为机载坐标系绕全局坐标系所转过的角度。并定义为顺时针方向为正,逆时针方向为负。

4.2基于超声波测距的沿边走路径规划机器人的导航算法

超声波传感器测距具有成本低廉,采集信息速率快,距离分辨率高,质量轻、体积小、易于装卸等优点,更加适合于家用的自主式移动机器人。因此本文在充分考虑家用自主式移动吸尘器的工作环境和设计时的相关因素的基础上,提出了一种称为沿边走的路径规划算法。

4.2.1沿边走算法简介

所谓沿边走,顾名思义,是让移动机器人沿着墙边移动,在移动过程中,可以不断根据与墙边的距离调整所走方向,这样对于在移动中自身坐标不是很确定的移动机器人来说,可以辅助周边的事物对其当前位置进行调整。这就是我们采用“沿边走算法”的基本出发点。

当然,我们也考虑了效率的因素。首先,对于移动机器人,转弯是相当费时的,理论上,除了顺次扫描,沿边走能有效的减少转弯的次数。另外,考虑到家用型吸尘器通常工作环境为不大的房间(一般不超过30 平米) ,而我们采用的超声波传感器有效测距范围是2m ,这样,采用“沿边走算法”,我们能在沿墙边2m 的空间中始终采用沿边走的策略,也就是说,对于5 * 6 平米的房间,采用沿边走的策略可以扫描28 平米的范围(对于这样的效率,我们认为是可以接受的) 而对另外2 平米的空间可以采用扫描方法进行处理。这就是说,沿边走算法通常会分为两个步骤来进行,首先是沿着墙边进行有次序的扫描;另外是对于房间中间部分的扫描,当然由于在这一部分区域中,机器人可能无法探测到墙壁或其他障碍物,可能会迷失方向,因此,并不需要采用沿边走策略。

这种路径规划行程较短,理论上减少了转弯的次数,可避免“外螺旋式”和“往复前进式”的边缘效应,易于实现较大的覆盖率。同时,“内螺旋式”的终点位于区域中心附近,远离障碍物,从而在区域覆盖问题上,有利于机器人在区域间的衔接行走,从而有效地提高了清洁效率。

清洁机器人路径规划是根据所感知到的工作环境信息,按照某种优化指标,从起始点到目标点规划出一条与环境障碍无碰撞的路径,并实现封闭区域内机器人行走路径对工作区域的最大覆盖率和最小重复率。清洁机器人的路径规划方法可以分为两类:无环境模型的路径规划方法和基于静态结构化环境模型,在障碍物信息(位置和形状)预先给定的情况下,采用沿边走的路径规划算法,即让机

器人沿着墙边或障碍物的边界移动,进行内螺旋式“回”字型路径规划,如图4-2所示。

图4-2 内螺旋式“回”字型路径示意图

图中箭头表示行走方向,直线表示行走路线,虚线表示返回停放位置的可能路径。清洁机器人工作开始时先绕房间行走一周,一熟悉环境,计算出清洁面积,限定以后的运行路径的范围。

4.2.2沿边走过程

下面我们看一下,在“沿边走算法”中的第一个步骤,我们称之为沿边走过程。在沿边走过程中,我们会遇到以下几种情况:

(1) 墙边的障碍物

对于墙边存在的障碍物,例如衣柜、沙发等,我们通常可以不去理会,因为,对于移动机器人来说,它会把这些障碍物当作墙壁来处理,在这里,我们就不继续讨论了。

(2) 不在墙边,但在沿边走过程中会碰到的障碍物

对于此类障碍物,由于不在墙边,因此,在走第一圈时,是不会碰到的,但由于离墙边的距离小于超声波传感器的测距范围,因此会记录到障碍物链中。因为,我们关心的是沿着墙壁走以及离墙壁的距离,对这类障碍物并不需要进行特别处理,而只需沿墙壁的方向绕开即可。

(3) 机器人自身定位

为了能够提供机器人坐标系与全局坐标系的转换,机器人自身的坐标是相当重要的。相对机器人转弯的角度误差,我们较为相信移动机器人步进机前进时的距离信息。这也正是我们采用沿边走算法的主要因素之一。因为,我们认为墙壁是直的,四周的墙壁应该形成矩形,这样在机器人沿墙边走的同时,我们可以让机器人与墙壁的距离来进行角度调整。另一方面,在沿边走算法中,机器人每走完一圈就要将移动时离墙壁的距离递增,因此,我们需要对完成一圈的行走进行

51单片机超声波测距程序

//晶振:11.0592 //TRIG:P1.2 ECH0:P1.1 //波特率:9600 #include #include #include #define uchar unsigned char #define uint unsigned int sbit RX=P0^2; sbit TX=P0^3; unsigned int time=0; unsigned int timer=0; float S=0; bit flag =0; void Conut(void) { time=TH0*256+TL0; TH0=0; TL0=0; S=(time*1.87)/100; //算出来是CM if(flag==1) //超出测量 { flag=0; printf("-----\n"); } printf("S=%f\n",S); } void delayms(unsigned int ms) { unsigned char i=100,j; for(;ms;ms--) { while(--i)

{ j=10; while(--j); } } } void zd0() interrupt 1 //T0中断用来计数器溢出,超出测距范围{ flag=1; //中断溢出标志 } void StartModule() //T1中断用来扫描数码管和计800ms启动模块{ TX=1; //800MS启动一次模块 _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); TX=0; } void main(void) { TMOD=0x21; //设T0为方式1,GATE=1; SCON=0x50; TH1=0xFD; TL1=0xFD; TH0=0; TL0=0;

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

超声波传感器测距原理

芀一、超声波测距原理 肅超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的 同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S , 即: 膂S = v·△t /2 ① 芀这就是所谓的时间差测距法。 蝿由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: 螅V = 331.45 + 0.607T ② 芄 声 速 确 定

后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 薂二、系统硬件电路设计 腿图2 超声波测距仪系统框图 蒆基于单片机的超声波测距仪框图如图 2 所示。该系统由单片机定时器产生 40KHZ 的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机 是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单 片机复位,然后控制程序使单片机输出载波为40kHz 的10 个脉冲信号加到超声 波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后, 单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数, 这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 莅1 、超声波发射电路 螀超声波发射电路如图3所示,89C51 通过外部引脚P1.0 输出脉冲宽度为250 μ s , 40kHz 的10 个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发 射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远, 可对振荡信号进行功率放大后再加在超声波传感器上。 薈图3中T为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应 将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用在它 上面的机械振动转换为相应的电信号, 从而起到能量转换的作用。市售的超声 波传感器有专用型和兼用型,专用型就是发送器用作发送超声波,接收器用作接

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

超声波测距程序(详细C语言数码管显示)

超声波测距程序(详细C语言数码管显示) #include //头文件 #include// _nop_() 函数延时1US用 #include #include #define uchar unsigned char #define uint unsigned int #define nop _nop_() sbit csb=P1^0;//超声波发送端口为P1.0 sbit bai=P2^2;//数码管百位 sbit shi=P2^1;//数码管十位 sbit ge=P2^0;//数码管个位 uchar flag;//超声波接收标志 float juli1;//距离变量,用来数码管显示用 int juli; uchar table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//共阳数码管0到9的代码 int xianshi[3]; void delayshow(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } void ledshow(void) { xianshi[0]=juli/100; xianshi[1]=((juli%100)/10); xianshi[2]=juli%10; bai=0; P0=table[xianshi[0]]; delayshow(2); bai=1; delayshow(2); shi=0; P0=table[xianshi[1]]; delayshow(2); shi=1;

超声波传感器及其测距原理

安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了SensComp公司生产的Polaroid 6500系列超声波距离模块和600系列传感器,微处理器采用了ATMEL公司的AT89C51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转 化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(time of flight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的

声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由Polaroid 600系列传感器、Polaroid 6500系列超声波距离模块和AT89C51单片机构成。 2.1 Polaroid 600系列传感器 此超声波传感器是集发送与接收一体的一种传感器。传感器里面有一个圆形的薄片,薄片的材料是塑料,在其正面涂了一层金属薄膜,在其背面有一个铝制的后板。薄片和后板构成了一个电容器,当给薄片加上频率为49.4kHz、电压为300VAC pk-pk的方波电压时,薄片以同样的频率震动,从而产生频率为49.4kHz的超声波。当接收回波时,Polaroid 6500内有一个调谐电路,使得只有频率接近49.4kHz的信号才能被接收,而其它频率的信号则被过滤。 Polaroid 600超声传感器发送的超声波具有角度为30度的波束角[3],如图1所示:

超声波测距传感器(硬件件篇)

自制一个由你掌控的 —— 超声波测距传感器(硬件篇) 一、背景 四年多前,我曾尝试自己制作一个超声波测距传感器。 当时是想为 LEGO 的 RCX 配套,因为我是Semia 的技术支持,那时RCX 还没有配置任何测距传感器。由于可查阅的资料有限,且不详细,最后以失败告终 /(也许在网络搜索上我属于“菜鸟”)。 为了达到目的,只好选用了 Sharp 公司的 GP2D12。但自制超声波测距传感器的愿望一直没被遗忘。一是觉得超声波用于测距从原理上讲应该效果不错(GP2D12的测距范围太小,只有 10 — 80 cm);二是市售成品不够灵活,为了适应它还得做转换接口,费力耗财。 前段时间协助一个单位搞项目,涉及到超声波测距;有幸的是解剖了一款进口的超声波测距传感器 —— SensComp公司的6500,使我对相关原理和技术有了比较透彻的了解。 本想项目结束后立刻动手设计一个自己的传感器,后因忙于“圆梦小车”耽搁了。 现在圆梦小车已初具雏形,可以腾出一点时间,而且小车也需要一些传感器与之配套,便着手实现了这个夙愿。

基于嵌入之梦工作室的宗旨 —— 为学习单片机的大学生服务,将设计和制作的细节与大家分享,希望能有助于读者做出属于你自己的超声波传感器,也让和我有类似想法的人不至于再次失望于网络。 二、需求分析 ?能在测距范围上弥补 GP2D12 的不足,将距离延伸到 80cm以外; ?可以提供给大学生和爱好者 DIY,具有学习功能; ?方便自己随时修改程序,使学习的作用得以充分发挥; ?成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。 三、概要设计 总体设计参照 SensComp公司(https://www.wendangku.net/doc/ac17075710.html,)6500测距模块,其核心是两片专用的超声波测距IC:TL851和TL852。 TL852是一片专门设计用于超声波接收、放大、检测的芯片,集成了可变增益、选频放大器,可通过四根控制线变换11级增益,对于检测超声波信号十分有效。 TL851 与TL852 配套,它可实现超声波发射及控制TL852的增益变换,通过定时控制增益,使TL852的增益与回波时间相匹配,一方面提高了检测的灵敏度,同时减小了干扰。 如果不能随时间变换增益,为增加检测距离,就需要加大灵敏度;而开始时灵敏度就很高,无疑会收到一些不想要的信号。(6500测距模块的相关资料及芯片资料见附件) 解剖此模块时,对TL852的功能十分感兴趣,当初我制作时就是“栽”在这个环节;而TL851的功能基本属数字控制范畴,输出还需要配合单片机才能得到结果,接口也不是十分灵活,笔者认为完全可以用单片机替代。 所以,本次设计的主要改变就是用单片机替换6500模块的TL851。 单片机还是选用圆梦小车所用的STC12系列,一是考虑是51兼容,符合国内多数教材;二是下载程序方便。此次选用的是 STC12LE4052(4K FlashROM,256 RAM)。考虑体积因素,选择了SOP20封装。

简易超声波测距仪的设计

摘要 超声波具有指向性强,能量消耗缓慢,传播距离较远等优点,所以,在利用传感器技术和自动控制技术相结合的测距方案中,超声波测距是目前应用最普遍的一种,它广泛应用于防盗、倒车雷达、水位测量、建筑施工工地以及一些工业现场。 本课题详细介绍了超声波传感器的原理和特性,以及Atmel公司的AT89C51单片机的性能和特点,并在分析了超声波测距的原理的基础上,指出了设计测距系统的思路和所需考虑的问题,给出了以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。整个电路采用模块化设计,由主程序、预置子程序、发射子程序、接收子程序、显示子程序等模块组成。各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。 经实验证明,这套系统软硬件设计合理、抗干扰能力强、实时性良好,经过系统扩展和升级,可以有效地解决汽车倒车、建筑施工工地以及一些工业现场的位置监控。 关键词AT89C51;超声波;测距

Abstract Ultrasonic wave has strong pointing to nature ,slowly energy consumption ,propagating distance farther ,so, in utilizing the scheme of distance finding that sensor technology and automatic control technology combine together ,ultrasonic wave finds range to use the most general one at present ,it applies to guard against theft , move backward the radar , water level measuring,building construction site and some industrial scenes extensively. This subject has introduced principle and characteristic of the ultrasonic sensor in detail ,and the performance and characteristic of one-chip computer AT89C51 of Atmel Company ,and on the basis of analyzing principle that ultrasonic wave finds range ,the systematic thinking and questions needed to consider that have pointed out that designs and finds range ,provide low cost , the hardware circuit of high accuracy , ultrasonic range finder of miniature digital display and software design method taking AT89C51 as the core. Modular design of the whole circuit from the main program, pre subroutine fired subroutine receive subroutine. display subroutine modules form. SCM comprehensive analysis of the probe signal processing, and the ultrasonic range finder function. On the basis of the overall system design, hardware and software by the end of each module. The research has led to the discovery that the software and hardware designing is justified, the anti-disturbance competence is powerful and the real-time capability is satisfactory and by extension and upgrade, this system can resolve the problem of the car availably, building construction the position of the workplace and some industries spot supervision. Key words AT89C51; Ultrasonic Wave; Measure Distance

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

超声波测距仪毕业论文

第一章绪论 1.1课题设计目的及意义 1.1.1设计的目的 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目 前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。 1.1.2设计的意义 超声波测距系统主要应用于汽车的倒车雷达、机器人自动避障行走、建筑施工工地以及一些工业现场例如:液位、井深、管道长度等场合。因此研究超声波测距系统的原理有着很大的现实意义。对本课题的研究与设计,还能进一步提高自己的电路设计水平,深入对单片机的理解和应用。 1.2超声波测距仪的设计思路 1.2.1超声波测距原理 发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。

超声波测距C语言源程序代码

超声波测距C语言源程 序代码 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

/*{HZ即单位s的倒数}本晶振为12MHZ,因此外部的时钟频率为12MHZ,所以内部的时钟频率为(12M H Z)/12=1M H 即1000000HZ,而机械频率为1/(1MHZ),即每完成一次计算(即定时器的值加一)用时, 即1us(微秒).*/ /*************************************************************************** ********/ #include<> #define UC unsigned char #define UI unsigned int void delay(UI); sbit BX = P3^0;void TimeConfiguration(); a = 0; b = 0; c = 0; P2 =~ 0x00; goto loop; } time = TL0 + TH0*256; juli = ( int )( (time*/2 ); BAI = ( (juli%1000)/100 ); SHI = ( (juli%100)/10 ); GE = ( juli%10 ); /******************************************两种模式的距离显示 ********************************************/ if(juli > MAX) { Hong = 0; Lv = 1; while( t1-- ) { a = 0; b = 1; c = 1; P2 =~ CharacterCode[BAI]; delay(400); a = 1; b = 0; c = 1; P2 =~ CharacterCode[SHI]; delay(400); a = 1; b = 1; c = 0; P2 =~ CharacterCode[GE]; delay(390);

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

用51单片机实现HC-SR04超声波测距程序

#include //包括一个52标准内核的头文件 #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long sbit Trig = P1^0; //产生脉冲引脚 sbit Echo = P3^2; //回波引脚 sbit test = P1^1; //测试用引脚 uchar code SEG7[10]={~0xC0,~0xF9,~0xA4,~0xB0,~0x99,~0x92,~0x82,~0xF8,~0x80,~0x90};//数码管0-9 uint distance[4]; //测距接收缓冲区 uchar ge,shi,bai,temp,flag,outcomeH,outcomeL,i; //自定义寄存器 bit succeed_flag; //测量成功标志 //********函数声明 void conversion(uint temp_data); void delay_20us(); void main(void) // 主程序 { uint distance_data,a,b; uchar CONT_1; i=0; flag=0; test =0; Trig=0; //首先拉低脉冲输入引脚 TMOD=0x11; //定时器0,定时器1,16位工作方式 TR0=1; //启动定时器0 IT0=0; //由高电平变低电平,触发外部中断 ET0=1; //打开定时器0中断 EX0=0; //关闭外部中断 EA=1; //打开总中断0 while(1) //程序循环 { EA=0; Trig=1; delay_20us(); Trig=0; //产生一个20us的脉冲,在Trig引脚 while(Echo==0); //等待Echo回波引脚变高电平 succeed_flag=0; //清测量成功标志 EX0=1; //打开外部中断 TH1=0; //定时器1清零 TL1=0; //定时器1清零 TF1=0; //

超声波测距原理概述

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (2) 1.1设计任务 (2) 1.2性能指标 (2) 二、超声波测距原理概述 (3) 2.1超声波传感器 (4) 2.1.1超声波发生器 (4) 2.1.2压电式超声波发生器原理 (4) 2.1.3单片机超声波测距系统构成 (4) 三、设计方案 (5) 3.1AT89C2051单片机 (6) 3.2超声波测距系统构成 (7) 3.2.1超声波测距单片机系统 (8) 图3-1:超声波测距单片机系统 (8) 3.2.2超声波发射、接收电路 (8) 图3-1:超声波测距发送接收单元 (9) 3.2.3显示电路 (9) 四.系统软件设计 (10) 4.1主程序设计 (10) 4.2超声波测距子程序 (11) 4.3超声波测距程序流程图 (12) 4.4超声波测距程子序流程图 (13) 五.调试及性能分析 (13) 5.1调试步骤 (13) 5.2性能分析 (14) 六.心得体会 (14) 参考文献 (15) 附录一超声波测系统原理图 (17) 附录二超声波测系统原理图安装图 (18) 附录三超声波测系统原理图PCB图 (19) 附录四超声波测系统原理图C语言原程序 (20) 参考文献 (25)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

带温度补偿的超声波测距程序

/**程序:基于HC-SR04得超声波测距系统 *单片机型号:STC90C51612MHz *说明:开始连续进行7次超声波测距,每次测距间隔80ms, *完成后对7次结果排序并将最大得2个数值与最小得2个数值去除,对剩余得 *3个数值取平均值。完成后指示灯灭,输出结果到LCD1602上。测量超出范围则发出报警声、 *使用两个IO端口控制HC-SR04触发信号输入与回响信号输出, *以及一个T0定时器用于时间计数。 * 使用DS18B20测量环境温度,声速公式:V=334。1m/s+Temperature*0、61, *单片机晶振为12Mhz(11、953M),计数时为T=1us *计算公式:S=(334。1m/s+Temperature*0。61)*N*T/2,N为计数值=TH0*256+TL0*/ /*包含头文件*/ #include 〈reg51。h> #include 〈intrins。h> #define Delay4us(){_nop_();_nop_();_nop_();_nop_();} /*宏定义*/ #define uchar unsignedchar?//无符号8位 #define uint?unsigned int//无符号16位 #define ulongunsigned long ?//无符号32位 /*全局变量定义*/ sbit BEEP=P1^5;??//报警测量超出范围 sbit Trig=P3^4; //HC-SR04触发信号输入 sbitEcho=P3^2;?//HC—SR04回响信号输出 float xdataDistanceValue=0。0;?//测量得距离值 float xdata SPEEDSOUND; ??//声速 float xdataXTALTIME; ?//单片机计数周期 uchar xdata stringBuf[6];??//数值转字符串缓冲 //LCD1602提示信息 uchar codePrompts[][16]= { ?{"Measure Distance"}, //测量距离 {"-Out of Range -"}, //超出测量范围 ?{"MAX range400cm "}, //测距最大值400cm {”MIN range 2cm"},?//测距最小值2cm {”"},?//清屏 }; uchar xdata DistanceText[]="Range: ";//测量结果字符串 uchar xdata TemperatureText[]="Temperature:";//测量温度值 /*外部函数声明*/ extern voidLCD_Initialize(); //LCD初始化 extern void LCD_Display_String(uchar*, uchar); externvoid ReadTemperatureFromDS18B20(); extern int xdataCurTempInteger; void DelayMS(uint ms);?//毫秒延时函数 voidDelay20us(); //20微秒延时函数 voidHCSR04_Initialize();//HCSR04初始化 float MeasuringDistance();?//测量距离

超声波测距器课程设计

《微机原理及应用》课程设计 超声波测距器的设计 学生姓名郝强 学号20110611113 学院名称机电工程学院 专业名称机械电子工程 指导教师王前 2013年12月27日

摘要 随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。相关部分附有硬件电路图、程序流程图。为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。 关键词:超声波;传感器;测量距离;控制

目录 摘要 (2) 目录 (3) 1.设计目的 (4) 2.总体方案 (4) 3.硬件设计 (5) 3.1 超声波测距器硬件电路设计 (5) 3.2.1单片机芯片的选择 (6) 3.2.2AT89C51定时计数应用电路 (6) 3.3超声波发射电路设计 (6) 3.3.1选择超声波发生器类型 (6) 3.3.2 超声波发射电路设计 (7) 3.4超声波接收电路设计 (8) 3.5超声波显示电路设计 (9) 4.软件设计 (9) 4.1波测距器的算法设计 (10) 4.2系统的主控制程序设计 (11) 4.3发生子程序设计 (12) 4.4接收中断程序设计 (13) 4.5显示程序设计 (14) 4.6距离计算程序 (15) 5.结论 (17) 参考文献 (18)

51单片机实现超声波测距报警系统

目录 1引言 (1) 1.1研究的目的和意义 (1) 1.21 国内外发展的状况以及存在的问题 (2) 1.22 现有的倒车雷达存在的问题 (2) 1.3本文研究的主要内容 (2) 2 超声波原理介绍 (2) 2.1 超声波的基本理论 (2) 2.11 超声波的传播速度 (3) 2.12 超声波的物理性质 (4) 2.13 超声波对声场产生的作用 (5) 2.2 超声波测距系统原理 (6) 2.3 规格参数 (8) 2.31 主要功能 (8) 2.32 基本参数 (8) 3系统硬件设计 (8) 3.1 单片机系统 (10) 3.2 超声波发射接收模块 (11) 3.3 报警电路设计 (12) 3. 4 复位电路 (12) 4系统软件程序 (14) 5计算超声波传播时间 (14) 6结论 (29) 参考文献: (29) 致谢 (30)

基于单片机倒车防撞报警系统设计 张杭 南京信息工程大学滨江学院,南京210044 摘要:对于汽车倒车防撞问题,提出了将超声波测距仪和单片机结合于一体的方案,并给出了一种基于AT89C51单片机的倒车防撞报警系统的设计,对系统中控制部分、发射部分、接收部分、显示部分和报警部分出现的问题进行处理。本文采用一种简单易行的测距原理建立了防撞报警系统,具体分析了倒车防撞系统的设计原理及各部分元件的设计方案,充分描述了超声波测距的原理及应用,并介绍了我国在超声波测距的发展现状,不过还有一些无法避免的测量误差,还需日益俱进的科学发展加以解决。 关键词:A T89C51;超声测距;倒车防撞 1引言 1.1研究的目的和意义 随着社会经济的发展交通运输业飞速发展,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失。针对这种情况,设计一种响应快,可靠性高且较为经济实用的汽车防撞报警系统势在必行。超声波测距法是最常见的一种距离测距方法,应用于汽车停车的前后左右防撞的近距离和低速状况,并且在汽车倒车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性——折射,反射,干涉,衍射,散射。超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置通知驾驶人员,起到安全的作用。 1.2 国内外现状

相关文档
相关文档 最新文档