文档库 最新最全的文档下载
当前位置:文档库 › 在普通车床上实现球面轴承座的高精度球面加工方法

在普通车床上实现球面轴承座的高精度球面加工方法

在普通车床上实现球面轴承座的高精度球面加工方法

43CA6140车床改装成深孔加工机床的油路部分设计

目录 1 绪论 (1) 1.1课题研究的背景 (1) 1.2深孔加工系统要求 (2) 1.2.1 对机床的要求 (2) 1.2.2 对加工系统其他附件的安装要求 (2) 1.3国内外深孔加工技术的发展现状 (3) 1.4课题研究现状 (3) 1.5课题研究的目的 (4) 1.6本课题解决的问题 (4) 1.7本课题拟采用的研究手段 (4) 1.8本节小结 (5) 2 深孔加工的主要原理 (5) 2.1枪钻 (5) 2.2BTA系统 (6) 2.3喷吸钻系统 (6) 2.4DF系统 (7) 2.4.1 DF系统的分类 (7) 2.4.2 DF系统负压抽屑机理 (8) 2.5本节小结 (12) 3 深孔加工系统中常用的装置 (13) 3.1授油器 (13)

3.1.1 不旋转式授油器 (13) 3.1.2 旋转式授油器 (13) 3.1.3微型授油器 (14) 3.2联结器 (15) 3.2.1典型结构 (15) 3.2.2 结构设计 (16) 3.3中心架 (21) 3.3.1 局部滚动式中心架 (21) 3.3.2 整体滚动式中心架 (21) 3.4本节小结 (22) 4 普通车床改深孔加工机床的方案 (23) 5 改装方案分析 (24) 5.1CA6140车床的主要参数 (24) 5.2改装方案分析 (25) 5.3本节小结 (27) 6 油路系统的研究 (28) 6.1油路的研究和改造分析 (28) 6.2本节小结 (28) 7 油路设计 (29) 7.1油管的选取 (29) 7.2油箱的选取 (29) 7.3压力表的选取 (32)

7.4过滤网的选取 (32) 7.5油泵的选取 (32) 7.6溢流阀的选择 (34) 7.6.1溢流阀的作用及类别 (34) 7.6.2 溢流阀的选择 (39) 7.7授油器和油泵的连接 (40) 8 结论 (41) 参考文献 (42) 致谢 (44) 1 绪论 1.1课题研究的背景 在机械制造行业中,一般规定孔深L与孔径d0之比大于5的圆柱孔(内圆 柱面),即L/ d0>5的孔称为深孔;L/ d0≤5的孔称为浅孔。孔加工氛围浅孔加工 和深孔加工两类。孔的深度与直径之比,决定了孔加工工艺系统的刚度及刀具结 构上的特点。L/ d0增大,工艺系统刚度降低,切屑排除及冷却润滑的难度加大。 最早用于加工金属的深孔钻头是扁钻。它发明与18实际初期,1860年美国 人对扁钻做了改进,发明了麻花钻,在钻孔领域迈出了重要的一步。 在20实际初期,德国、英国、美国等国家的军事工业部门先后发明了单刀 钻孔工具,因为被用于加工制造枪孔而得名枪钻。 在1943年,的国海勒公司研制出碧斯涅耳(Beisner)加工系统(即我国常 成为内排屑深孔钻削系统)。战后,英国的维克曼公司、瑞典的卡尔斯德特公司、德国的海勒公司、美国的孔加工协会、法国的现代设备商会等联合组成了深孔加 工国际孔加工协会(Boring and Trepanning Association),简称BTA协会。经过他 们的努力,这种特殊的加工方法又有了新的发展,并被定名为BTA法,在世界各 国普遍应用。后来瑞典的山特维克公司首先设计出可转位深孔钻及分屑多刃错齿

浅谈车床加工深孔方法

论文题目: 浅谈车床加工超深孔的一种新方法 姓名: 荆忠明 所在省市:山东省青岛市

摘要:内、外圆柱形表面是构成各种机器零件形状的基本表面之一,也是在车削加工中最常见、最普通的一种加工形式。本文通过在车床上加工超深孔,保证其同轴度、直线度,粗略探讨一种新的加工方法。 关键词:钻削;超深孔;加长钻头;工装。 在机械加工中,有许多零件需要孔轴配合,当加工零件内孔时,其长度与直径之比为L/D≥5(L-长度 ,D-直径),称为深孔加工。深孔又分作一般深孔(L/D>5~20)、中等深孔(L/D>20~30)、超深孔(L/D>30~100)三类。L/D的比值越大,说明加工越困难。 车床上加工深孔,是车工在技术上难度较大的一种工艺方法,原因是刀杆受内孔限制,刀杆一般细儿长,刚性差,强度低,在车削时会产生振动和“让刀”现象,使零件易产生波纹,锥度等,严重影响零件的加工质量。在钻孔与扩孔时,输入冷却润滑液困难,切削不易排出,因而易划伤已加工的孔壁,从而加剧刀具磨损,降低刀具的耐用度,加工质量不易控制,同时也往往影响生产效率。主要关键在于正确的选择和使用切削工具和辅助装置,以保证深孔加工精度和提高劳动生产率。 我们常用的深孔加工方法和排屑方式有三种: 一、枪孔钻和外排屑 二、喷吸钻和内排屑 三、高压内排屑钻 经分析采用以上三种传统加工方法时工具制作复杂,对设备的要求高,在批量生产中效率很高,但在单件和小批量生产中的工作效率不高。

从以上的情况可知,加工深孔是一种难度较大的加工工艺,需使用特殊刀具和特殊附件。所以我采取了一种新方法来针对小批量生产中的超深孔加工,以提高生产效率及保证其形位精度要求。 例如:为试制一台起升卷扬机的排绳器,现要加工一件超深孔工件如图1所示,材料为尼龙(聚酰胺)1010。生产的主要难点在 16深度1570mm 孔的加工。 深孔加工的难点在于刀具细长,刚性差,强度低,容易引起刀具偏斜。在钻削过程中切削液难以进入切削区域,散热困难,排屑不易,而且会经常堵塞。深孔的端部常产生直径变大、出现锥形等现象。影响加工质量。 尼龙虽有较高的抗拉强度和良好的冲击韧性,摩擦系数小,耐磨等优点。但却具有热变形温度低,导热率低,热膨胀大,收缩率大等缺点。 工件材料长而不直,最大弯曲超过15mm,不能采用机械校正的办法,

深孔加工方法

车床加工深孔方法 1简介 工件如图1所示,材料为尼龙1010。生产的主要难点在f16深度2550 孔的加工。 33D iiBh 418 点击此处查看全部新闻图片 图1工件 2工艺分析 深孔加工的难点在于刀具细I .,刚度差,强度低,易引起刀具偏斜。钻削中冷却润滑液难以进入,散热困难,排屑不易,而且会经常堵塞。深孔的口部常产生直径变大、出现锥形等现象。影响加工质量。 尼龙虽有较高的抗拉强度和良好的冲击韧性,摩擦系数小,耐磨等优点 但却具有热变形温度低,导热率低,热膨胀大,收缩率大,易吸湿等缺点 工件材料长而不直,最大弯曲超过20mm不能采用机械校正的办法,二:':给深孔钻削带来很大的困难。

在无深孔加工专用设备,普通设备加工长度又不够的条件下,分析了工件的特点,针对深孔钻削的技术难点,确定了在普通车床上采用两端接刀的方法进行钻削。 3工装设计 工装结构示意图如图2所示。 点击此处查看全部新闻图片 图2 工装结构示意图 准备一根f60 x 5X 2500mm勺钢管,进行校直。在钢管纵向铣3mn宽通槽, 成为开口钢管套,用来对弯曲的尼龙棒料校直。 支承套的内孔与开口钢管套外圆尺寸一致,大端外圆大于机床主轴外圆,小端外圆与车床主轴内孔配作,小端外圆前面部分可以作成锥形,以方便安装。然后沿支承套轴向加工3mn 宽通槽。

导向定位套的f60 沉孔与开口钢管套外圆尺寸一致,用来在卡盘前端支承工件,并在其前面中心位置加工有f16 孔,给加长钻头起导向作用。 f16 加长钻头共设计了三种,其长度尺寸分别为500mm、900mm、1400mm 根据钻孔深度进行选用。并在加长钻头的加长部分开有排屑槽,方便排屑和冷却液流入。 4加工方法 先将开口钢管套撬开,把工件放入,使开口钢管将工件紧紧包住。然后将工件一端插入主轴孔内,另一端用三爪卡盘卡住。工件头部装上导向定位套,并用中心架支承。工件尾部装入支承套,利用支承套外圆与机床主轴内孔的配合,在车床主轴后端支承工件。 钻削深孔时首先用标准钻头在工件上预钻引导孔。然后从短到长分别用 f16加长钻头进行钻孔,加工到深度约1350mm为止。最后调头用同样的装夹和加工方法钻削另一半深孔。 当切削一段深度后,如果出现排屑不畅,应及时移动尾座排屑。 通过这种加工方法,两端接刀的偏差小于0.5mm偏差主要取决于钢管 的直线度,以及支承套与主轴内孔的配合加工示意图见图3

偏心轴零件的加工工艺

偏心轴零件的加工工艺 摘要:机械传动中,由回转运动变为往复运动,往往是由偏心轴和曲轴来完成的,可见偏心零件在机械制造中运用十分广泛。本文就结合于生产实践,分析偏心轴类零件加工工艺和偏心工件安装车削方法、偏心轴零件的检测方法,即针对其缺陷提出了高效加工高精度偏心工件类零件的工艺。 关键词:偏心轴;加工工艺;安装车削;检测 偏心轴工件是零件的外圆和外圆或外圆与内孔的轴线平行而不相重合,偏一个距离的工件。这两条平行轴线之间的距离称为偏心距。外圆与外圆偏心的零件叫做偏心轴。 在机械传动中,回转运动变为往复直线运动或往复直线运动变成回转运动,一般都是利用偏心零件来完成的。大多数偏心轴是高压开关操纵机构上的关键零件,通过电机驱动实现对机构储能。其偏心外圆中心位置,直接影响偏心轴的使用性能及工作寿命。 1.工艺分析 要保证偏心轴零件加工精度,必须在两端打两组偏心中心孔,如何保证偏心外圆中心与零件中心在一条线上,是加工偏心轴类零件的难点。通过分析,只能先打偏心中心孔,然后加工偏心外圆,否则偏心外圆中心与零件中心不会在一条直线上。 2.偏心工件安装车削方法 偏心轴零件加工主要是在装夹方面采取措施,即把需要加工的偏心部分的轴线找正到与车床主轴旋转轴线想重合。但实践加工中应按工件的不同数量、形状和精度要求采用不同的装夹方法,将需要加工偏心部分的轴线找正到与车床主轴轴线相重合的位置进行加工,并注意轴线间的平行度和偏心距的精度。 一般车偏心工件的方法有5种,即在三爪卡盘上车偏心工件,在四爪卡盘上车偏心工件,在花盘上车偏心工件,在两顶尖间车偏心工件,在专门夹具上车偏心工件。下面我将介绍前3种常用的方法: 2.1在三爪卡盘上车削 长度较短,数量较多,偏心距较小,精度要求不高的偏心工件,大多采用三爪自定心卡盘安装车削。其方法是先把偏心工件中的非偏心部分的外圆车好,然后在三爪中的任意一个卡爪与工件接触面之间,垫上一块预先选好的垫片,经校正母线与偏心距,使工件轴线相对车床主轴轴线产生位移,并使位移距离等于工件的偏心距,并把工件夹紧后,即可车削。

浅谈普通车床深孔切削加工

浅谈普通车床深孔切削加工 单位中原油田中原总机石油设备有限公司 工种车工

等级高级技师 刘英凯 摘要:机械制造业在整个国民经济生产中占有十分重要的地位,而金属切削加工在机械制造业中,是获得产品零部件基本而又可靠的精密加工手段。在机械.电机.电子等各种现代化产业部门中都起着重要的作用。工具的设计.制造和使用自古以来就很受重视,这里我们所说的工具不仅仅指机械加工的机床。我们更关心的是直接进行切削加工的刀具及工装。在机械零件加工中,孔的加工是一中常见的加工行式。而孔的加工中主要又分为浅孔和深孔。 本文根据机床的特点,针对深孔零件的加工,进行了工艺方案的分析,工装方案的确定,刀具的改进和切削用量的选择,确定加工顺序和加工路线,及工艺方法的制定。通过整个工艺的过程的制定,充分体现了在保证加工精度,加工效率,简化工序等方面的优势 关建词:深孔加工工艺方案进给路线控制尺寸 引言:机械加工的目的,是将毛坯加工成符合产品图纸工艺要求的零部件。通常,毛坯需要经过若干工序才能转化为符合产品图纸要求的零件。一个相同结构相同要求的机器零件,可以采用几种不同的工艺

方法完成,但其中总有一种工艺方法在某一特定条件下是即经济、又合理的。 在现有的生产条件下,如何采用经济有效的加工方法,合理地安排加工工艺路线以获得符合产品图纸工艺要求的零件,最重要的就是要编制出合理的,符合零件加工工艺要求的工艺规程。 本文以与切削用量的选择,工件的定位装夹,加工顺序和典型零件为例,结合车床加工的特点,分别进行工艺方案分析,机床的选择,刀具加工路线的确定,最终形成可以指导生产的工艺文件。在整个工艺过程的设计中,通过分析,确定最佳的工艺方案,使得零件的加工成本最低,通过合理的选用定位夹紧方式,使得零件加工方便、定位精准、刚性好,合理选用刀具和切削参数,在保证零件精度的情况下,加工效率最高、刀具消耗最低。最终形成完整的工艺文件,并能用以指导实际生产。 在机械零件加工中,作为一名车工经常需要车削加工各种直径大小不同,深度不同的盲孔和通孔。而在孔加工中主要又分为浅孔和深孔加工两大类,一般将孔深(L)与孔径大小(d)之比作为判定依据。当L/d大于5时,称之为深孔,反之为浅孔。浅孔在普通车床上容易车削,而深孔在普通车床上车削加工则是一个难题,前辈们都说“刨工怕刨精簿板,车工怕车细长孔”,由于深孔刀杆细长,至使刀杆刚性差,车削加工中因切削力,切削热,切削速度的影响易产生颤动,让刀,同时因冷却,排屑不畅造成刀具损坏,至使劳动强度提高,生产效率底.为了

浅谈机械加工中的深孔加工

浅谈机械加工中的深孔加工 刘彬 083731260 机交学院机制082班 摘要:在加工深孔时,由于刀具细长,刚性差,冷却困难,切屑不易排出;又因为刀具在工件的内部进行切削,刀具的磨损和刀头的损坏都无法观察到。因此,加工深孔至今还仍是一种难度较大的加工工艺。所以,在深孔加工时必须使用一些特殊刀具(深孔钻,深孔镗刀等),以及特殊的附件,并且对切削液的流量、压力都提出了较高的要求。 关键词:深孔;深孔钻;刀具;排屑;切削液 正文: 深孔加工主要的关键技术是深孔钻的几何形状和冷却排屑问题。国内外的工人和技术人员都作了很多的工艺试验和研究,现介绍如下。 一、排屑方式 目前采用的深孔钻排泄方式有三种。 (一)外排屑 外排泄的枪孔钻,见图1。枪孔钻是一个空心管子,高压切削液从刀具前端的小孔中喷出来,把切屑从抢孔钻的三角槽中冲出。 图1 (二)喷吸式内排屑 喷吸式内排屑加工深孔的原理见图2。切削液分两部分:一部分进入刀头切削区,另一部分经倾斜(一般与轴线相交30 °)的“月牙孔”向后喷射,

使排屑杆中造成压力差,切屑液的压力和吸力的作用下,就能很顺利的从排屑杆中排出。 图2 (三)高压内排屑 高压内排屑加工深孔的方法见图3。高压大流量的切屑液从封油头经深孔壁之间进入钻头的切屑区,切屑在高压切屑液的冲刷下从排屑杆中间排出。这种方式,切屑杆内没有压力差,需要切屑液的压力更高,因此成为“高压内排屑”。 图3 二、枪杆钻及加工方法 (一)抢孔钻及加工方法 在加工φ3--φ20mm的深孔时,一般都采用枪孔钻。抢孔钻的结构和几何形状,见图4。抢孔钻用高速钢或硬质合金的刀头和无缝钢管的刀杆焊接而成,刀杆上压有V型槽,中间可通切削 液。主刀刃和副刀刃垂直于轴线的平 面分别别相交30°、20°,刀尖偏于 D/4处。 抢孔钻的切削力分布情况见图 5。外刀刃A、内刀刃B切削时产生的 切削力在基面上的分量各为R A、R B, 合力为R。R又可以分解为P X(轴向 力)、P Y(径向力)。由于抢孔钻的P Y 力较小,并由支撑棱2支撑;P Z力由 支撑棱1支撑;另外,中心还有定心

偏心轴的工艺规程与设计

西南石油大学 机械制造工艺学 课程设计说明书 设计题目:设计“偏心轴”零件的机械加工工艺规程及工艺装备(生产纲领:小批量生产) 班级: 专业: 设计者: 指导教师: 设计日期:2016年6月15日至2016年6月26日

西南石油大学 机械制造工艺课程设计任务书 设计题目:设计“偏心轴”零件的机械加工工艺规程及工艺装备(生产纲领:小批量生产) 设计内容; 产品零件图1张 产品毛坯图1张 机械加工工艺过程卡片1份 机械加工工序卡片1套 家具设计装配套1份 家具设计零件图1~2张 课程设计说明书1份 班级: 专业: 设计者: 指导教师: 设计日期:2016年6月15日至2016年6月26日

序言 机械制造工艺学课程设计是我们学完了大学的全部基础课程,技术基础课以及大部分专业课之后进行的。这是我们在进行毕业设计前对所学各课程的一次深入的综合性连接,也舍一次理论联系实际的训练。因此,它在我们对大学学习生活中占有十分重要的地位。 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作惊醒一次试验性的训练,为今后参加祖国的现代化建设打下一个良好的基础。 由于能力所限,设计上有许多不足之处,恳请各位老师给予指导。 偏心零件的加工是机械加工中的难点,对于象偏心轴承、凸轮等偏大心零件的加工目前普遍采用三爪、四爪卡盘,在普通机床上加工。随着科学技术的不断发展,对偏大心零件的需求越来越多,精度也越来越高,因此对该类偏心夹具的需求也相应的增加,其应用前景广阔。 偏心轴类零件是常见的典型零件之一。按轴类零件结构形式不同,一般可分为光轴偏心、阶梯轴偏心和异形偏心轴等;或分为实心偏心轴、空心偏心轴等。它们在机器中同样用来支承齿轮、带轮等传动零件,以传递转矩或运动。 台阶偏心轴的加工工艺较为典型,反映了偏心轴类零件的大部分内容与基本规律下面就介绍一种偏心轴常用的加工工艺。 二、拟订加工工艺 图A1所示是常见的偏心轴零件。它属于台阶轴类偏心轴,由圆柱面、轴肩、退刀槽、键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使用零件装配里有一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便:键槽用于安装键,以传递转矩。 根据工作性能与条件,该传动轴图样(图A1)规定了主要轴颈M、N,,外圆P、Q 以及轴肩H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些要求必须在加工中给予保证。 (一)、零件图样分析 M N O P

偏心工件的加工的技巧

《机械制造技术实训》课程授课教案№31 实训课题第六章车工技能实训(二)续(Ⅱ)实训课时6学时 教学目的掌握偏心轴、曲轴、复杂台阶轴的加工方法 重点 掌握偏心轴、曲轴、复杂台阶轴的加工方法 难点 主要教学容 第六章车工技能实训(二)续(Ⅱ) 6.2车偏心工件 6.3.1偏心工件的划线 根据图样或实物的尺寸,在工件上用划线工具划出待加工部位的轮廓线或定位基准的点、线的工作,称为划线。划线的方法有两种:平面划线和立体划线,只在工件的一个平面上划线的方法称平面划线;同时在工件的几个平面上(如长、宽、高方向或其它倾斜方向)划线的方法称立体划线。偏心工件所用的是立体划线法。 偏斜工件的划线如图6.32所示,将已车好的光轴放置在平台上的V型块上。用游标高度划线 (a)(b) 图6.32偏心工件划线示意图 a)划十字轴线b)划偏心圆周 尺移到工件的最高点读出最高点的尺寸,由此将划线尺下移工件的一个半径距离,在工件的端面和四周水平划出轴线。将工件转过90°,用90°角尺对齐已划号的轴线,用原来调好的游标高度划线尺,在工件和端面上再划出一圈十字轴线。将游标高度划线尺的游标上移一个图纸要求尺寸的偏心距,在工件端面水平划出偏心轴线,找到偏心轴轴心A点,以A为圆心,用划规画出偏心园即可。度划线尺移到工件的最高点读出最高点的尺寸,由此将划线尺下移工件的一个半径距离,在工件的端面和四周水平划出轴线。将工件转过90°,用90°角尺对齐已划号的轴线,用原来调好的游标高度划线尺,在工件和端面上再划出一圈十字轴线。将游标高度划线尺的游标上移一个图纸要求尺寸的偏心距,在工件端面水平划出偏心轴线,找到偏心轴轴心A点,以A为圆心,用划规画出偏心园即可。

普通车床改装深孔加工机床结构设计

目录 1 绪论 (3) 1.1 深孔概念 (3) 1.2 深孔加工中存在的问题 (3) 1.3 深孔加工发展历史 (3) 2 深孔加工系统 (5) 2.1 深孔加工系统介绍 (5) 2.1.1 枪钻系统 (5) 2.1.2 枪钻系统的缺陷 (5) 2.1.3 BTA系统 (6) 2.1.4 BTA系统的缺陷 (6) 2.1.5 喷吸钻系统 (7) 2.1.6 喷吸钻系统的缺陷 (7) 2.1.7 DF系统 (8) 2.1.8 DF系统的缺陷 (8) 2.1.9 SIED系统 (8) 2.1.10 SIED系统的优点 (9) 2.2 深孔加工中设备要求 (9) 2.2.1 深孔加工机床要求 (9) 2.2.2 深孔加工附件要求 (10) 2.3 车床改造原因 (10) 3 课题分析 (10) 3.1 机床参数对比 (10) 3.1.1 深孔钻床主要技术参数 (10) 3.1.2 普通车床主要技术参数 (11) 3.2 机床结构对比....................................... 错误!未定义书签。 3.3 机床加工对比....................................... 错误!未定义书签。 3.4 改造可行性分析..................................... 错误!未定义书签。 3.4.1 加工方法分析..................................... 错误!未定义书签。

3.4.2 加工受力分析..................................... 错误!未定义书签。 3.4.3 加工功率分析..................................... 错误!未定义书签。 3.5 改造方案........................................... 错误!未定义书签。 4 设计过程 (12) 4.1 负压抽屑分析 (12) 4.1.1 负压抽屑原理 (12) 4.1.2 影响负压抽屑效应的因素........................... 错误!未定义书签。 4.2 SIED抽屑器参数的选取............................... 错误!未定义书签。 4.3 SIED抽屑器结构设计................................. 错误!未定义书签。 4.3.1 钻柄卡头设计..................................... 错误!未定义书签。 4.3.2 后喷嘴设计 (14) 4.3.3 管联接件设计..................................... 错误!未定义书签。 4.3.4 前喷嘴设计....................................... 错误!未定义书签。 4.3.5 密封垫设计....................................... 错误!未定义书签。 4.3.6 前帽设计......................................... 错误!未定义书签。 4.3.7 后盖设计......................................... 错误!未定义书签。 4.3.8 箱体设计......................................... 错误!未定义书签。 4.3.9 装配效果......................................... 错误!未定义书签。 4.4 SIED输油器结构的选取............................... 错误!未定义书签。 4.4.1 密封套设计....................................... 错误!未定义书签。 4.4.2 后堵设计......................................... 错误!未定义书签。 4.4.3 后盖设计......................................... 错误!未定义书签。 4.4.4 定径套设计....................................... 错误!未定义书签。 4.4.5 前内套设计....................................... 错误!未定义书签。 4.4.6 前盖设计......................................... 错误!未定义书签。 4.4.7 输油器箱体设计................................... 错误!未定义书签。 4.4.8 装配效果......................................... 错误!未定义书签。 4.5 总体改装图......................................... 错误!未定义书签。结论 (15)

深孔加工方法

车床加工深孔方法 1 简介 工件如图1所示,材料为尼龙1010。生产的主要难点在f16深度2550孔的加工。 点击此处查看全部新闻图片 图1 工件 2 工艺分析 深孔加工的难点在于刀具细,刚度差,强度低,易引起刀具偏斜。钻削中冷却润滑液难以进入,散热困难,排屑不易,而且会经常堵塞。深孔的口部常产生直径变大、出现锥形等现象。影响加工质量。 尼龙虽有较高的抗拉强度和良好的冲击韧性,摩擦系数小,耐磨等优点。但却具有热变形温度低,导热率低,热膨胀大,收缩率大,易吸湿等缺点。

工件材料长而不直,最大弯曲超过20mm,不能采用机械校正的办法,给深孔钻削带来很大的困难。 在无深孔加工专用设备,普通设备加工长度又不够的条件下,分析了工件的特点,针对深孔钻削的技术难点,确定了在普通车床上采用两端接刀的方法进行钻削。 3 工装设计 工装结构示意图如图2所示。 点击此处查看全部新闻图片 图2 工装结构示意图 准备一根f60×5×2500mm的钢管,进行校直。在钢管纵向铣3mm宽通槽,成为开口钢管套,用来对弯曲的尼龙棒料校直。 支承套的内孔与开口钢管套外圆尺寸一致,大端外圆大于机床主轴外圆,小端外圆与车床主轴内孔配作,小端外圆前面部分可以作成锥形,以方便安装。然后沿支承套轴向加工3mm宽通槽。

导向定位套的f60沉孔与开口钢管套外圆尺寸一致,用来在卡盘前端支承工件,并在其前面中心位置加工有f16孔,给加长钻头起导向作用。 f16加长钻头共设计了三种,其长度尺寸分别为500mm、900mm、1400mm 根据钻孔深度进行选用。并在加长钻头的加长部分开有排屑槽,方便排屑和冷却液流入。 4 加工方法 先将开口钢管套撬开,把工件放入,使开口钢管将工件紧紧包住。然后将工件一端插入主轴孔内,另一端用三爪卡盘卡住。工件头部装上导向定位套,并用中心架支承。工件尾部装入支承套,利用支承套外圆与机床主轴内孔的配合,在车床主轴后端支承工件。 钻削深孔时首先用标准钻头在工件上预钻引导孔。然后从短到长分别用f16加长钻头进行钻孔,加工到深度约1350mm为止。最后调头用同样的装夹和加工方法钻削另一半深孔。 当切削一段深度后,如果出现排屑不畅,应及时移动尾座排屑。 通过这种加工方法,两端接刀的偏差小于0.5mm。偏差主要取决于钢管的直线度,以及支承套与主轴内孔的配合。加工示意图见图3。

偏心轴的加工

2015届专科毕业设计 设计说明书 破碎机中偏心轴的加工规程及车削加工的夹具设计 学生姓名王苏飞 班级12机制专 学号1201010053 成绩 指导教师(签字)

目录 一、绪论 ..................................................................................... 错误!未定义书签。 二、拟定加工工艺 (3) (一)零件图样分析 (3) (二)确定毛坯 (4) (三)确定主要表面的加工方法 (5) (四)确定定位基准 (5) (五) 划分阶段 (6) (六) 热处理工序安排 (6) (七)加工尺寸和切削用量 (6) (八)拟定工艺过程 (7) 三、确定夹具零件图及部分夹具设计 (10) (一)设计卡盘零件 (10) (二)设计卡盘中卡罐的零件图 (10) (三)确定零件工艺整个工装 (11) 四.总结 (12) 五.参考文献 (13)

一、绪论 偏心零件的加工是机械加工中的难点,对于象偏心轴承、凸轮等偏大心零件的加工目前普遍采用三爪、四爪卡盘,在普通机床上加工。随着科学技术的不断发展,对偏大心零件的需求越来越多,精度也越来越高,因此对该类偏心夹具的 需求也相应的增加,其应用前景广阔。 偏心轴类零件是常见的典型零件之一。按轴类零件结构形式不同,一般可分为光轴偏心、阶梯轴偏心和异形偏心轴等;或分为实心偏心轴、空心偏心轴等。它们在机器中同样用来支承齿轮、带轮等传动零件,以传递转矩或运动。 台阶偏心轴的加工工艺较为典型,反映了偏心轴类零件的大部分内容与基本规律下面就介绍一种偏心轴常用的加工工艺。 二、拟订加工工艺 (一)、零件图样分析 M N O P

高精度深长孔的精密加工方法

高精度深长孔的精密加工法 一、历史背景 枪钻与内排屑深孔钻两种加工孔的刀具分别出现于20世纪30年代初和40年代初的欧洲兵工厂,这并非历史的偶然。其主要历史背景是: 一次世界大战(1914?1918年)首次使战争扩大到世界规模。帝国主义列强为瓜分殖民地而需要大量现代化的枪炮(特别是枪械和小口径火炮的需求量极大)。而继 续使用传统的扁钻、麻花钻、单刃炮钻,已经完全不能满足大量生产新式武器的要求,迫切需要进行根本性的技术更新。于是高精度深长孔的制造就成为了一个摆在制造者 面前的一个首要问题,并且一直延续到了现今。 第一次世界大战中的火炮 二、传统加工工艺及存在的问题 在现代机械加工中,也经常会遇到一些深孔的加工,例如长径比(L/D)≥10,精度 要求高,内孔粗糙度一般为Ra0.4~0.8的典型深孔零件,过去我们采用的传统工艺路线一般是:钻孔(加长标准麻花钻)→扩孔(双刃镗扩孔刀)→铰孔(标准六刃铰刀)→研磨

此工艺虽可达到精度要求,但也存在诸多缺点,特别是在最初工序采用加长麻花钻钻孔时,切削刃越靠近中心,前脚就越大。若钻头刚性差,则震动更大,表面形状误差难以控制,加工后孔的直线度误差,钻头易产生不均匀的磨损等现象,生产效率和产品合格率低,而且研磨抛光时,工作环境比较脏,由于钻孔工序的缺点,而带来的影响难以在后面的工序中克服,形状误差不能得以修正,因此加工质量差。 传统深孔的加工流程 三、工艺路线与刀具的改进 本着提高生产效率提高产品合格率的原则,结合深孔加工的一些特性,对加工工艺及刀具进行了改进,改进后的工艺路线是:钻孔(BTA钻)→扩孔(BTA扩)→铰孔(单刃铰刀)→研磨 1、钻孔与扩孔刀具及工艺的改进 单管内排屑深孔钻的由来 单管内排屑深孔钻产生于枪钻之后。其历史背景是:枪钻的发明,使小深孔加工中自动冷却润滑排屑和自导向问题获得了满意的解决,但由于存在钻头与钻杆难于快速拆装更换和钻杆刚性不足、进给量受到严格限制等先天缺陷,而不适用于较大直径深孔的加工。如能改为内排屑,则可以保持钻头和枪杆为中空圆柱体,使钻头快速拆装和提高刀具刚性问题同时得到解决。 20世纪内排屑深孔钻的发展,可概括出以下6项里程碑式的成果: ①单出屑口单管内排肩深孔钻基本结构的形成。 ②用硬质合金取代工具钢和高速钢做切削刃及导向条,使加工效率大幅度提髙。

机加工经验总结

多年经验总结,车削加工中的小经验 车削加工中的小经验 车削加工产品 1.巧获微量吃深妙用三角函数 在车削加工中,经常加工一些内、外圆在二级精度以上的工件。由于切削热,工件和刀具之间的摩擦造成刀具磨损及四方刀架的重复定位精度等多种原因,质量难以保证。为解决精确的微量吃深,我们在车削加工中,根据需要利用三角形的对边和斜边的关系,将纵向小刀架搬一个角度,即可精确地达到微量移动车刀的横向吃深值的目的,省工省时,确保了产品质量,提高了工效。 一般的C620车床小刀架刻度值每格是0.05mm,如果要想获得横向吃深值为0. 005mm时通过查正弦三角函数表: sinα=0.005/0.05=0.1 α=5o44′ 因此只要把小刀架搬成5o44′时,每移动小刀架上纵向刻发盘一格时,即可达到车刀在横向方向上吃深值为0.005mm的微量移动。 2.反向车削技术应用三例 长期的生产实践证明在特定的车削加工中,采用反向切制技术能获得良好的效果。现举实例如下: (1)反向切削螺纹材料为马氏体不锈钢件 在加工螺距为1.25及1.75mm的内、外螺纹工件时,因为车床丝杆螺距被工件螺距去除时,所得的数值是一个除不尽的值。如果采用抬起对合螺母手柄退刀的方法来加工螺纹时,往往产生乱扣,一般普通车床又无乱扣盘装置,而自制一套乱扣盘又相当费时,因此在加工这类螺距的螺纹时,常。采用的方法是低速顺车削法,因为用高速挑扣来不及退刀,因而生产效率低,在车削中容易产生啃刀,表面粗糙度又差,尤其在加工1Crl3、2 Crl3等马氏体不锈钢材科低速切削时,啃刀现象更为突出。在加工实践中创造出来的反向装刀、反转切削、走刀方向相反的“三反”切削方法能获得良好的切削综合效果,因为本方法可在高速下车削螺纹,刀具的运动方向是由左向右走刀退出工件,所以不存在高速切削螺纹时刀具

浅析机械加工过程中的深孔加工方法

浅析机械加工过程中的深孔加工方法 随着科学技术的飞速发展,各行业对于机械加工过程中钻孔的加工技术和质量的要求也越来越苛刻,对于方法的研究越来越深入。这其中面临的最为严峻的问题就是深孔加工的问题。深孔加工属于加工工艺中最为复杂的组成部分,深孔一般是指长度和直径的比值大于五的孔,属于半封闭式切削加工工艺的一种,相比于其他工艺而言,条件更为恶劣,施工难度也更大。对于长径比大于二十的深孔而言,宜采用麻花钻在普通钻床和车床上加工。文章在阐述深孔钻削中常见几大问题的基础上,对于冷却、润滑、切屑处理等环节进行了浅要的分析。 标签:机械加工;深孔加工特点;设备方法 1 深孔钻削的特点 深孔钻削中最为主要的部分就是刀具的选择,按照工作条件、工艺技术和施工特点等方面的原因进行分类,可分为单刃外排屑深孔钻,俗称枪钻,包括BTA 深孔钻和喷吸钻在内的内排屑深孔钻、套料深孔钻、深孔镗。 目前比较常见的深孔加工问题主要体现在排屑、导向、散热三个主要方面,主要的表象问题集中在以下几个方面:首先是在钻孔过程属于半隐蔽作业,刀具切的观察难度比较大,整个过程中,信息收集多半只能依靠声音、切屑的状态、油表、电表等仪表设备、膜振动等表象来判断切削过程是否顺利进行。其次,受到深孔桩自身条件的约束和限制,孔的长径比通常比较大,钻杆的外观细而长,这就直接决定了钻杆的刚度不会很高,在运作过程中抗振动性较低,钻杆在下钻的过程中经常出现跑偏的现象,因此,在深孔的钻削过程中,对于支撑和导向的要求通常都很高。再次,由于在切削过程中,排屑的难度很大,对于判断方面的要求也更高,必须得到可靠的保证,在切屑的形状、长度各方面都要加以有效的控制,一旦发生切屑堵塞,不能得到有效的清除,则会对钻孔刀具造成严重的损坏。受到钻杆的限制,能够用于排屑的空间很大程度的受到压缩,加上钻孔内芯片的限制,环境条件变得更加恶劣,难度也随之加大,因此有时不得不采取强制排屑的方式。最后,则是散热的问题。在切削的过程中,由于空间有限,产生的热量不易排出,如不采用有效的散热手段,就会给整个钻孔过程带来很多麻烦。 2 钻孔过程中的冷却润滑工作 对于深孔工艺而言,如何能使钻削过程中冷却润滑系统平稳可靠的发挥作用,是保证工作效率至关重要的环节之一。冷却液、润滑液的合理选择使用对工程的质量、刀具的保护、工作效率都有着重要的意义。冷却液和润滑液在深孔加工工艺中,不仅起到了冷却润滑的作用,在冲刷、减震、消音等方面的作用也同样不容忽视。钻削的过程中产生的抗力和阻力很大,克服这些阻力使得工作能够顺利的完成,就会消耗很多能量,与此同时,切向和径向的力同时作用在导向块上,和孔壁之间产生摩擦,产生摩擦能量。这些能量最终都会转化成切削热,这些热主要还是靠冷却液将其带走。除此之外,冷却液的存在,能够使得导向块和

偏心轴制造工艺流程

偏心轴制造工艺流程 材料:30CrMnSi 工艺流程: 1、粗车外圆,保证外圆的同轴度、圆度,直径单面留5mm余量; 2、镗铣三个偏心孔,保证同轴度达到最终尺寸要求; 3、粗车三个偏心轴,各端面留余量15mm;三处直径单面留余量5mm; 4、调质热处理HRC28到HRC35之间,加热温度(℃):880;剂冷却时间2小时;在180度条件下保温8小时或240度调节下6小时; 5、半精车各外圆,半径及端面留余量3mm(中心孔需要全部车掉); 6、镗铣加工中心重新打三处中心孔,保证同轴度要求; 7、精车,各端面留余量0.3mm;半径方向留余量0.3mm; 8、表面渗碳淬火(渗碳后要采用有保护气或盐浴炉加热淬火,淬火根据渗碳后工件的表面碳浓度决定,用下限温度或亚温淬火(790±10℃),确保渗碳淬火的实际硬度) A、根据产品零件的具体要求,在对调质钢30CrMnSi钢工件,采用固体渗碳或气体渗碳等通用渗碳方法并根据产品零件所需要的渗碳层深度确定加热温度和渗碳时间对该工件表层进行渗碳; B、对渗碳后的工件或者渗碳后又进行切削加工的工件,在860~900℃温度范围内进行等温淬火,其等温冷却的温度可根据零件非渗碳处的硬度要求和壁厚按30CrMnSi钢等温冷却的温度与其硬度及强度的关系确定,等温冷却的时间为15~20分钟; C、将等温冷却后的工件从等温冷却槽中取出,让其空冷至室温,使其完成渗碳处的材料组织的马氏体转变; D、对冷却至室温后的工件在180~250℃温度范围内及时进行回火2~3个小时,以保证工件渗碳处的硬度要求和充分消除淬火应力。 9、研磨顶尖孔及顶尖,磨削三处偏心外圆及端面,保证产品的最终精度要求。

偏心轴套件的加工及工艺

偏心轴套件的加工及工艺 摘要:数控车床又称为CNC 车床,即计算机数字控制车床,是目前国内使用量最大,覆盖面最广的一种数控机床,数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置。 关键词:数控车床;偏心轴;加工本课题来源于偏心工件零件的生产制造,在传动机构中, 般常用偏心件来完成回转运动与往复运动相互转换的功 能,如偏心轴带动油泵,内燃机中的曲轴等,因此偏心件 对机器的工作性能,可靠性和耐久性有很大的影响。 偏心类工件是轴线与轴线平行但不重合的工件,它在机 械加工中比较常见,是轴类零件中比较难加工的,但加工方法也很多,如用三爪卡盘车削、四爪卡盘车削、特殊自制夹具车削等。 三爪车削法适用加工单件小批量、小偏心距、精度要求 不高的工件,车削方法一般分如下几步: 1)先把偏心工件不是偏心的部分外圆车好。 2)根据外圆和偏心距计算垫片的厚度3)将试车后的工件,缓慢转动,用百分表在工件上测 量其径向跳动量,跳动量的一半就是偏心距,也可试车偏心,

注意在试车偏心时,只要车削到能在工件上测出偏心距误差 即可。 这种加工方法需要数学计算,垫块厚度X = 1 . 5e+ k , 式中:X 为垫块厚度, e 为工件偏心距,k 为工件偏心距修正值。 四爪车削适用于加工少批量、偏心距较大、精度要求高 的工件。这种方法虽只需要掌握简单数学计算和专业理论知识,但对加工者操作技能的要求较高,装夹工件繁琐,同时效率低下,它具有以下不足: 1)为保证偏心轴两轴线的平行度,应用百分表分别校 正工件的水平和垂直的两个方向位置的侧母线,费时费力又不一定取得好效果。 2)根据实际偏心距数值要调整四爪之间的距离,使百 分表最高点与最低点之间的读数差是图纸偏心距的二倍,这样做人为因素直接影响工件的加工精度。 3)工件经找正后,应将四个卡爪再拧紧一遍,再次用 百分表测量看是否准确,因为加紧力的不同,会影响找正精度,而三爪卡盘这方面因素存在很小。 4)工件卸下后再次安装时需要重新找正、重新测量偏 心距,根本没有互换的可能性。 加工偏心类工件应注意的事项:1)垫片的材料最好采用调质过 的45#钢,这样的材料有

复杂深孔的高效加工方法

复杂深孔的高效加工方法 复杂的深孔加工变得越来越富有挑战性。零件常常要求附加特征,例如非常小的孔光洁度、内室、孔径变化、轮廓、凹槽、螺纹及变化的孔方向。要高效地获得此类公差很小的孔,不仅需要具备丰富的经验和研发资源,而且需要工程能力、应用设施以及实质性的客户参与。 深孔加工(DHM) 是一类由专为现有应用而设计的刀具所主导的加工领域。许多不同的行业都涉及到深孔加工,但应用最广泛的是能源和航空航天业。起初某些深孔零件特征往往看似无法形成,但由专家们设计的非标刀具解决方案除了解决工序问题,也能确保它们在某种程度上以高效率和无差错为特征予以执行。 对复杂孔的需求不断增长,并且迫切需要缩短加工时间,这样就促进了现代深孔加工技术的发展。数十年来,深孔钻削都是一种采用硬质合金刀具的高效加工方法,但孔底镗削作为瓶颈已开始不断显现。 现在,该加工领域取得成功通常基于混合使用标准和专用刀具元件,这些元件具有设计成专用深孔加工刀具的经验。这些刀具配有加长的高精度刀柄,并且具有支撑功能和集成式铰刀,再

结合最新的切削刃槽形和刀片材质以及高效的冷却液和切屑控制,就能在最高的穿透率和加工安全性下获得所需的高质量结果。 停止深孔加工的零件首先需求钻削十分深的孔,然后往往是各种复杂的特征加工。深孔加工取得成功通常基于混合运用规范和公用刀具元件,这些元件具有设计成非标刀具的阅历。此类基于T-Max 424.10型钻头的非标刀具是单管运用的一局部。 在深孔钻削中1mm以下的小直径孔采用硬质合金枪钻加工而成,但对于15mm及以上的孔,一般采用焊接刃钻头,而对于25mm及以上的孔,则采用可转位刀片钻头才能进行非常高效的钻削。现代可转位刀片技术和钻管系统也为深孔加工提供了专用刀具的新可能性。 孔深超过10倍孔径时,加工出的孔一般认为很深。孔深达300倍径时就需要专门的技术,并采用单管或双管系统才能进行钻削。在漫长地加工至这些孔底部的过程中,需要专门的运动机构、刀具配置以及正确的切削刃才能完成内室、凹槽、螺纹和型腔的加工。支撑板技术是另一重要领域,在深孔钻削中也至关重要,现在它作为深孔加工技术的一部分也进展颇大。其中包括适合此领域可提供更高性能的合格刀具。 在深孔加工中,1mm以下的小直径孔采用硬质合金枪钻加工而成,但关于15mm及以上的孔,普通采用焊接刃钻头,而关于25mm及以上的孔,则采用可转位刀片钻头在单管系统和Ejector双管系统中才干十分高效地执行这些工序。山特维克可乐

在普通车床上加工小锥度深孔的探索

小锥度深孔的加工 摘要:锥度深孔的加工是普通车床车削加工中的一个难题。文中分析比较 了传统加工中存在的问题通过设计带配重的圆锥刀杆,选择合理的刀具几何参数 及切削用量,探索出在普通车床上加工锥度深孔的经济加工方法,使切削振动减少,加工成本降低,产品质量达到要求,为生产解决了加工关键问题。 关键词:小锥度深孔;刀具几何参数;配重圆锥刀杆 1 概述 在普通车床上加工锥度深孔的常用方法有以下3种:调整小刀架的角度,转动小 刀架手轮,手动纵向进给; 拆掉横刀架的横向进给丝杆,装上车锥度的专用靠模;在车床上安装一套专用工装。第一种方法进给行程只有150mm,会使长锥孔表而留下接刀痕迹,零件表面 粗糙度不均匀,加工效率低。第二种方法拆卸、安装、调整时间长,且靠模长度 要大于零件锥孔的长度。第三种方法适合大批量生产。 某厂有一批300多件锭模钢管,材料为45钢热轧钢管,零件如图1所示。该产 品加工难点:长锥孔加工,零件长度与孔径比等于IO,刀卡细长,切削振动大,表面粗糙度难以保证。受该厂委托研究如何用普通车床进行加工能达到质量要 求,并降低加工成本。 2 根据车床加工锥度的原理设计加工方案 (1)车床加工锥度原理:一般工件直接装夹在主轴的卡盘上,工件的旋转轴线和 主轴同轴。如果工件的旋转轴线和刀具进给方向存在夹角,工件旋转、刀具直 线进给时,即可加工出锥度,该夹角即为锥度半角。 (2)计算锭模钢管要求的锥角只有59′25″。为了研究加工这样小锥角工件能否不 要工装,我们选一台刚件好的加长C620车床做试验。 在主轴孔中插入检验捧,拔出床头箱的两个定位销,拧松紧固螺钉,将床头 箱绕其中点逆时针转动。经测量发现,主轴轴线最大转动可达l°30′,这说明 用转动床头箱的方法可加工锥角3°以下的锥孔选用500mm长带锥柄的圆柱形检 验棒插入主轴孔内,取其490mm一段,通过主轴轴线应转过的锥度半角a计算该 段两端的差值,设差值为y,则:tana=96¢-¢82/2×810=y/490,y=4.235mm 用百分表测量检验棒上该段的两端点,缓慢地旋转床头箱,使百分表在两端 点的差值为4.235mm。当百分表读数误差为0.01mm时,零件锥孔两端直径相差0.033mm。拧紧紧固螺钉。再复检y值,确保锥度的准确性。加工时用三爪卡盘 夹紧零件的一端,零件的另一端用中心架托住。刀杆固定在中拖板上,即可使用 自动走刀加工锥孔。 3 刀杆设计的试验 深孔加工由于刀杆细长,刚性很差,切削振动大,容易发生让刀、扎刀,使 加工难以进行。刀杆的振动是要解决的关键问题。 在车床加工中.有强迫振动和自激振动,前者主要是外力所致,后者因在切 削过程中产生的交变力,激励工艺系统,工艺系统产生位移,再反馈给切削过程,形成自激振荡,维持振动的能量来源于机床的能量。刀杆有质量和弹性,也可用 无限自由度的悬臂梁表示,其固有频率可用静刚度和重量比来描述,静刚度用下 式表示:K=3EI/L3式中,K:静刚度;E:材料的弹性模量;L:悬臂的长度;I:转动惯量。

相关文档