文档库 最新最全的文档下载
当前位置:文档库 › 降雨资料一致性检验实例计算分析

降雨资料一致性检验实例计算分析

降雨资料一致性检验实例计算分析
降雨资料一致性检验实例计算分析

暴雨洪水计算分析

86. 4T 式中q w 水田设计排涝模数(m 3/s ? km 2) 暴雨洪水计算分析 《灌溉与排水工程设计规范》 表 3.1.2 灌溉设计保证率 表 3.3.3 灌排建筑物、灌溉渠道设计防洪标准 3.3.3 灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按 5~10a 确定。 附录 C 排涝模数计算 C.0.1 经验公式法。平原区设计排涝模数经验公式: Q=KRm A n ( C.0.1 ) 式中:q 设计排涝模数(m 3/s ? km 2) R --------------- 设计暴雨产生的径流深(mm ) K ——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m —峰量指数(反应洪峰与洪量关系) N ――递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2 平均排除法 1 平原区旱地设计排涝模数计算公式: q d = R (C . 0. 2-1) 86. 4T 式中qd 旱地设计排涝模数(m 3/s ? km 2) R ---- 设计暴雨产生的径流深( T ——排涝历时( d )。 说明:一般集水面积多大于 50km 2。 参考湖北取值, K=0.017,m=1, n=-0.238 ,d=3 2. 平原区水田设计排涝模数计算公式: q w = P -h 1-ET ' -F (C . 0. 2-2) mm )

P ——历时为T 的设计暴雨量(mm )h 1 ——水田滞蓄水深(mm) ET' ――历时为T的水田蒸发量(mm), —般可取3?5mm/d> F ――历时为T的水田渗漏量(mm), —般可取2~8mm/d>说明:一般集水面积多小于10km 2。 h 1=hm -h 0 计算。h m 、h 0 分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1. 续灌渠道流量推算(1 )水稻区可按下式计算 Q = 0. 667 a Ae 3600t n 式中:a ――主要作物种植比例(占控制灌溉面积的比例) A ――该渠道控制的灌溉面积。 e ――典型年主要作物用水高峰期的日耗水量(mm),根据调查确定,一般粘壤土 地区水稻最大日耗水量8?11mm最大13mm。 t ――每天灌水时间(小说),一般自流灌区24小时,提水灌区20?22小时。 n ――渠系水利用系数。 (2)旱作区可按下式计算 Q = a mA 3600Tt n 式中:m ――作物需水量紧张时期的灌水定额,m 3/亩。T ――该次灌水延续时间,天。第四节:(二)排水流量 (1)、(2)前面两种计算公式同《灌溉与排水工程设计规范》(3)丘陵山区:a .10km 2

暴雨强度公式计算方法

暴雨强度:指单位面积上某一历时降水的体积,以升/(秒?公顷)(L/(S?hm2))为单位。专指用于室外排水设计的短历时强降水(累积雨量的时间长度小于 120 分钟的降水) 暴雨强度公式:用于计算城市或某一区域暴雨强度的表达式 二、 其他省市参考公式: 三、暴雨强度公式修订 一般气候变化的周期为10~12年,考虑到近年来的气候变化异常,5~10年宜收集新的降水资料,对暴雨强度公式进行修订,以应对气候变化。 工作流程: 1.资料处理; 2.暴雨强度公式拟合(单一重现期、区间参数公式、总公式); 3.精度检验; 4.常用查算图表编制; 5.各强度暴雨时空变化分析 注意事项: 基础气象资料 采用当地国家气象站或自动气象站建站~至今的逐分钟自记雨量记录,降水历时按 5、10、15、20、30、45、60、90、120、150、180 分钟共11种,每年每个历时选取 8 场最大雨量记录; 年最大值法资料年限至少需要 20 年以上,最好有 30 年以上资料; 年多个样法资料年限至少需要 10 年以上,最好有 20 年以上资料。 统计样本的建立 年多个样法:每年每个历时选择8个最大值,然后不论年次,将每个历时有效资料样本按从大到小排序排列,并从大到小选取年数的 4 倍数据,作为统计样本。 年最大值法:选取各历时降水的逐年最大值,作为统计样本。 (具有十年以上自动雨量记录的地区,宜采用年多个样法,有条件的地区可采用年最大值法。若采用年最大值法,应进行重现期修正) 具体计算步骤: 一、公式拟合

1.单一重现期暴雨强度公式拟合 最小二乘法、数值逼近法 2.区间参数公式拟合 二分搜索法、最小二乘法 3.暴雨强度总公式拟合 最小二乘法、高斯牛顿法 二、精度检验 重现期~10 年 < /min < 5% 三、不同强度暴雨时空变化分析 城市暴雨的时间变化特征分析 (1)各历时暴雨年际变化特征——可通过绘制各历时暴雨出现日(次)数的年际变化图,分析各历时暴雨的逐年或年代变化特征。 (2)暴雨样本年际变化特征——可以各年降水数据入选各历时基础暴雨样本的比例外评价指标,分

层次分析法一致性检验

层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。运用层次分析法建模,大体上可按下面四个步骤进行: (i)建立递阶层次结构模型; (ii)构造出各层次中的所有判断矩阵; (iii)层次单排序及一致性检验; (iv)层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类: (i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。 (ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过9个。这是因为支配的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立。 例1 假期旅游有、、3个旅游胜地供你选择,试确定一个最佳地点。在此问题中,你会根据诸如景色、费用、居住、饮食和旅途条件等一些准则去反复比较3个侯选地点。可以建立如下的层次结构模型。 目标层选择旅游地 准则层景色费用居住饮食旅途 措施层 1.2 构造判断矩阵 层次结构反映了因素之间的关系,但准则层中的各准则在目标衡量中所占的比重

井点降水计算实例

轻型井点降水施工方案 1、工程简介 着中重说明基础工程中的地质概况、地下水概况以及与降水有关的情况,即为什么要降水? 2、降水方式方法及采取的措施 现场井点布置,采用的设备型号,技术参数等。 3、降水工作中应注意的事项 在降水施工过程中,技术、质量、安全、环保应注意的事项 4、计算书(附后) 本节主要讨论轻型井点降水有关计算 轻型井点降水计算 一、总涌水量计算 1.基坑总涌水量Q(m3/d),即环形井点系统用水量,常按无压完整井井群, 用下式计算公式: (2H―s)s Q= lgR―lgx0 2.单井井点涌水量q(m3/d)常按无压完整井,按下计算公式: (2H―s)s q= lgR―lgr 式中:K—土的渗透系数(m/d); H—含水层厚度(m); s—水的降低值(m); R—抽水影响半径(m),由现场抽水试验确定,也可用下式计算:R=s√H? K r—井点的半径(m);

x0—基坑的假想半径(m,当矩形基坑长宽比小于5时,可化成假想半径x0的圆形井,按下式计算:x0=√F/π F—基坑井点管所包围的平面面积(m2); π—圆周率,取; 二、井点管需要根数 井点管需要根数n可按下式计算: Q n=m q 式中 q=65π?d?l 3√K 式中: n—井点管根数; m—考虑堵塞等因素的井点备用系数,一般取m=; q—单根井点管的出水量(m3/d); d—滤管直径(m); l—滤管长度(m); 三、井点管平均间距 井点管平均间距D(m),可按下式计算: 2(L+B) D= n-1 求出的D应大于15d,并应符合总管接头的间距(一般为80、120、160mm)要求。式中:L—矩形井点系统的长度(m); B—矩形井点系统的宽度(m); 四、例题 某工程基坑平面尺寸见图,基坑宽10m,长19m,深4.1m,挖土边坡1:。地下水

玉溪市中心城区暴雨强度公式

玉溪市中心城区暴雨强度公式(修订)1.总则 1.1 编制的必要性和目的 城市暴雨强度公式编制是城市室外排水工程规划设计的重要基础性工作。我国已经进入高速城市化时期,特大城市和城市群的出现,城市“热岛效应”凸现。城市降雨特征会发生局地性变化。已有数据表明,部分城市每隔10年左右出现超过历史记录的特大暴雨,玉溪近年来突发性、短时特大暴雨频发。依据水文气象频率分析的理论,基于已有的降雨记录数据,采用数理统计的方法得到的城市暴雨量、暴雨强度、降雨历时、时间空间的分布等,是科学表达城市降雨规律的一种方法,同时要认识到这种方法的科学性和局限性,以指导具体工作。 城市财富的聚集和市民生活水平的提高、城市地下空间的开发利用等因素使得城市对灾害的承受能力趋弱,降雨特征的趋势性变化对城市的防灾减灾提出挑战。新建、扩建城市室外排水设施的规划建设以及已建城市排水设施历史欠账问题的解决,都需要对城市降雨规律进行科学表达和定量分析。因此,开展城市暴雨强度公式的编制及修编是非常必要的。 为了适用国家需求和玉溪城市发展需求,指导城市暴雨强度公式的编制及修编,特编制本编制玉溪本地暴雨强度公式。 1.2条款涉及的国家颁布的有关标准如下(但不限于) (1)《室外排水设计规范》(GB50014-2006,2013年版)

(2)《地面气象观测规范》(QX/T 52-2007) (3)《地面气候资料30 年整编常规项目及其统计方法》(QX/T 22-2004) (4)《地面气象观测资料质量控制》(QX/T 118-2010) (5)《数值修约规则与极限数值的表示和判定》(GB/T 8170-2008) (6)《水利水电工程设计洪水计算规范》(SL44-93) (7)《城市排水工程规划规范》(GB 50318-2000) (8)《建筑给水排水设计规范》(GB 50015-2003) (9)《公路排水设计规范》(JTJ 018-97) 2.资料及方法 降雨资料是暴雨强度公式推算的基础,暴雨强度公式及查算图表编制应以国家气象站自记降雨资料为依据,资料使用玉溪市红塔区国家基本气象站1981年1月至2014年12月逐分钟降水自记资料。降雨资料完整、合理,所用资料真实可靠。 暴雨强度公式及计算图表的编制国家相关规范推荐的方法基础上进行推算,推算方法及过程科学合理,采用滑动统计降雨历时的年度最大值雨量,滑动步长为1min,降雨频率分布曲线拟合中经用皮尔逊Ⅲ型、指数型、耿贝尔型函数的最小二乘法和高斯牛顿法运算比较。三种函数曲线的最小二乘法均能通过对均方差计算。均能通过平均绝对均方差不宜大于0.05mm/min;在较大降雨强度的地方,平均相对均方差不宜大于5%规定的检验,皮尔逊Ⅲ型、

层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI) [x,lumda]=eig(A); r=abs(sum(lumda)); n=find(r==max(r)); max_lumda_A=lumda(n,n); max_x_A=x(:,n); w=A/sum(A); CR=(max_lumda_A-m)/(m-1)/RI; end 本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。 其中A为判断矩阵,不同的标度和评定A将不同。 m为A的维数 RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。 当CR<0.1时符合一致性检验,判断矩阵构造合理。 下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义 层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。它是一种定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。 (1)层次分析法的原理 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)层次分析法的步骤 a)建立系统的递阶层次结构; b)构造两两比较判断矩阵;(正互反矩阵) c)针对某一个标准,计算各备选元素的权重; d)计算当前一层元素关于总目标的排序权重。 e)进行一致性检验。 小结:层次分析法的思路与步骤如图

江西省暴雨强度计算公式

序号 县(市)名 暴雨强度公式 (L/s ·hm 2) 资料记录年数(a ) 备注 1 南昌 64 .0)4.1()69.01(1598++= t LgP q 35 用7年自动记录雨量资料统计法求得 64 .0)4.1()69.01(1386++= t LgP q (487,423) 2 新建 64 .0)4.1() 69.01(1464++=t LgP q 18 446 3 景德镇 7 .0)8() 60.01(2226++=t LgP q 27 370 4 萍乡 79 .0)10() 78.01(2619++=t LgP q 30 308 5 九江 7 .0)8() 60.01(2307++=t LgP q 73 383 6 彭泽 66 .0)8() 58.01(1350++=t LgP q 15 248 7 湖口 7 .0)8() 60.01(2198++=t LgP q 32 365 8 瑞昌 7 .0)8() 60.01(1707++=t LgP q 14 284 9 都昌 7 .0)8() 60.01(1323++=t LgP q 20 220 10 德安 74 .0)9() 70.01(1171++=t LgP q 12 74 .0)9() 70.01(1771++= t LgP q A=1771?166 11 永修 64 .0)4.1() 69.01(1330++=t LgP q 30 405 12 星子 7 .0)8() 60.01(1860++=t LgP q 29 309 13 武宁 79 .0)10() 78.01(2273++= t LgP q 18 368 14 修水 79 .0)10()78.01(3246++= t LgP q 21 用6年自动记录雨量资料统计法求得 79 .0)10()78.01(3006++= t LgP q (382,354) 15 上饶 71 .0)5() 47.01(2374++= t LgP q 22 463 16 婺源 71 .0)5() 47.01(1818++= t LgP q 23 355

层次分析法

层次分析法(AHP) AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。 AHP十分适用于具有定性的,或定性定量兼有的决策分析。这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。 一、递阶层次结构的建立 一般来说,可以将层次分为三种类型: (1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。 (2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。 (3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。 典型的递阶层次结构如下: 一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到: (1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。 (2)整个结构不受层次限制。 (3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。 (4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。 二、构造比较判断矩阵 设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,

最新井点降水计算实例

轻型井点降水施工方案 1 2 1、工程简介 3 着中重说明基础工程中的地质概况、地下水概况以及与降水有关的情况,即4 为什么要降水? 5 2、降水方式方法及采取的措施 6 现场井点布置,采用的设备型号,技术参数等。 7 3、降水工作中应注意的事项 8 在降水施工过程中,技术、质量、安全、环保应注意的事项 9 4、计算书(附后) 10 本节主要讨论轻型井点降水有关计算 11 轻型井点降水计算 12 一、总涌水量计算 13 1.基坑总涌水量Q(m3/d),即环形井点系统用水量,常按无压完整井井群,14 用下式计算公式: 15 (2H―s)s 16 Q=1.366K 17 lgR―lgx0 18 2.单井井点涌水量q(m3/d)常按无压完整井,按下计算公式:

19 (2H―s)s 20 q=1.366K 21 lgR―lgr 22 式中:K—土的渗透系数(m/d); 23 H—含水层厚度(m); 24 s—水的降低值(m); 25 R—抽水影响半径(m),由现场抽水试验确定,也可用下式计算:R=1.95 s√H? 26 K 27 r—井点的半径(m); 28 x0—基坑的假想半径(m,当矩形基坑长宽比小于5时,可化成假想半径x0的圆形井,按下式计算:x0=√F/π 29 30 F—基坑井点管所包围的平面面积(m2); 31 π—圆周率,取3.1416; 二、井点管需要根数 32 33 井点管需要根数n可按下式计算: 34 Q 35 n=m 36 q 37 式中 q=65π?d?l 3√K

式中: 38 39 n—井点管根数; 40 m—考虑堵塞等因素的井点备用系数,一般取m=1.1; q—单根井点管的出水量(m3/d); 41 42 d—滤管直径(m); 43 l—滤管长度(m); 44 三、井点管平均间距 45 井点管平均间距D(m),可按下式计算: 46 2(L+B) 47 D= 48 n-1 49 求出的D应大于15d,并应符合总管接头的间距(一般为80、120、160mm)50 要求。 51 式中:L—矩形井点系统的长度(m); 52 B—矩形井点系统的宽度(m); 53 54 四、例题 55 某工程基坑平面尺寸见图,基坑宽10m,长19m,深4.1m,挖土边坡1:0.5。 56 地下水位-0.6m。根据地质勘察资料,该处地面下0.7m,为杂填土,此层下面57 有6.6m的细砂层,土的渗透系数K=5m/d,再往下为不透水的粘土层。现采用

辽宁省无资料地区设计暴雨洪水计算方法的研究

辽宁省无资料地区设计暴雨洪水计算方法 的研究 辽宁省无资料地区设~1- 暴雨洪水~1-算75-法的研究 唐继业吴俊秀单丽 (辽宁省水文水资源勘测局) 江秋兰 (辽宁省水文水资源勘测局抚顺分局116000) 【摘要】本文针对辽宁省水工程设计中的实际情况,在认真总结经验的基础上,对流域特大暴雨重现期进行了探 讨;根据不同地区的产流特点,提出了分层扣损的饱卸产漉及非饱和流模型;建立了辽宁中部平厚区的三水”转 亿摸型;提出了综台经验单位线转换为瞬时单位线的流计算方法;在小流域设计洪永计算上,建立了推理公式辽 宁击和概化过程发法.形成一垂适合辽宁特点的无资料地区设计暴雨洪水计算方法. 【关键词】重现期模型单位巍 无资料地区暴雨洪水计算问题,一直是国内外水学科专

家学者在不断探索和研究的课题.《辽宁省中小河流(无资料地区)设计暴雨洪水计算方法》一书经过3年的工作编制完成.该书通过对大量水文气象资料分析.全面阐述了辽宁省暴雨,洪水时空变化规律,探人分析了暴雨洪水相关参数,提供出设计洪水计算的新理论,新方法和一系列新图件基础 资料详实可靠,计算方法先进,综合成果符合部颁档计洪水计算规范》要求. l基本资料与系列代表性分析 1.1基本资料 车成果分析暴雨资料的选用时段为最大10rain,Ih,6h, 24h,3d等5个时段.资料系列取自有资料以来截止到1995 年,选用站数达306站,年限在25~9O年之间,共有12857 站年.系列最长的站是沈阳,大连,营口,均为91年,起讫时 间为1905—1995年. 1.2亲列代表性分析 首先从定性上开始,绘制各次实测大暴雨等值线图,了 解气象成因与天气系统组合;绘制3d,24h暴雨各站历年实测最高记录图;综合各次大暴雨等值线图,将历次笼罩范围

层次分析法判断矩阵求权值以及一致性检验程序(20210228092245)

function [w,CR]=mycom(A z m z RI) [x,lumda]=eig(A); r=abs(sum(lumda)); n=find(r==max(r)); max_lumda_A=1umda(n,n); max_x_A=x(:,n); w=A/sum(A); CR=(max_lumda_A-m)/(m-1)/RI; end 木matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。 其中A为判断矩阵,不同的标度和评定A将不同。 m为A的维数 RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。 RI值 当CR<0.1时符合一致性检验,判断矩阵构造合理。下而是层次分析法的简介,以及判断矩阵构造方法。

一?层次分析法的含义 层次分析法(The analytic hierarchy process)简称AHP,在20 世纪70 年代中期由美国运筹学家托马斯?塞蒂(T.L.Saaty)正式提出。它是一种 定性和定量相结合的、系统化、层次化的分析方法。由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。它的应用己遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。 二?层次分析法的基木思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。 (1)层次分析法的原理 层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重"是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)层次分析法的步骤 a)建立系统的递阶层次结构; b)构造两两比较判断矩阵;(正互反矩阵) c)针对某一个标准,计算各备选元素的权重; d)计算当前一层元素关于总目标的排序权重。 e)进行一致性检验。 小结:层次分析法的思路与步骤如图

轻型井点降水施工计算实例

轻型井点降水施工计算实例 井点降水, 实例, 施工 一、总涌水量计算 1. 基坑总涌水量Q(m3/d),即环形井点系统用水量,常按无压完整井井群, 用下式计算公式: (2H―s)s Q=1.366K lgR―lgx0 2. 单井井点涌水量q(m3/d)常按无压完整井,按下计算公式: (2H―s)s q=1.366K lgR―lgr 式中:K—土的渗透系数(m/d); H—含水层厚度(m); s—水的降低值(m); R—抽水影响半径(m),由现场抽水试验确定,也可用下式计算:R=1.95 s √H? K r —井点的半径(m); x0—基坑的假想半径(m,当矩形基坑长宽比小于 5 时,可化成假想半径x0 的圆形井,按 下式计算:x0=√F/ π F—基坑井点管所包围的平面面积(m2); π—圆周率,取 3.1416 ; 二、井点管需要根数 井点管需要根数n 可按下式计算: Q n=m q 式中q =65π?d?l 3 √K 式中: n—井点管根数; m—考虑堵塞等因素的井点备用系数,一般取m=1.1 ; q —单根井点管的出水量(m3/d);

d—滤管直径(m); l —滤管长度(m); 三、井点管平均间距 井点管平均间距D(m),可按下式计算: 2 (L+B) D= n - 1 求出的D应大于15d,并应符合总管接头的间距(一般为80、120、160mm)要求。 式中:L—矩形井点系统的长度(m); B —矩形井点系统的宽度(m); 四、例题 某工程基坑平面尺寸见图,基坑宽10m,长19m,深 4.1m,挖土边坡1:0.5 。地下水位-3.m。根据地质勘察资料,该处地面下0.7m,为杂填土,此层下面有 6.6m 的细砂层,土的 渗透系数K=5m/d,再往下为不透水的粘土层。现采用轻型井点设备进行人工降低地下水位, 机械开挖土方,试对该轻型井点系统进行计算。 解:(1)井点系统布置 该基坑顶部平面尺寸为14m×23m,布置环状井点,井点管离边坡为0.8m。要求降水深度s =4.10 -0.6 +0.5 =4.0m,因此,用一级轻型井点系统即可满足要求,总管和井点布置在 同一水平面上。由井点系统布置处至下面一层不透水粘土层的深度为0.7 +6.6 =7.3m,设井点管长度为7.2m(井管长6m,滤管 1.2m,直径0.05m),因此,滤管底距离不透水粘土 层只差0.1m,可按无压完整井进行设计和计算。 (2)基坑总涌水量计算 含水层厚度:H=7.3 -0.6 =6.7 m 降水深度:s=4.1 -0.6 +0.5 =4.0m 基坑假想半径:由于该基坑长宽比不大于5,所以可化简为一个假想半径为x0 的圆井进行 计算: x0=√F/ π=√(14+0.8 ×2)(23+0.8 ×2)/ 3.14 =11m 抽水影响半径:R=1.95 s √H? K =1.95 ×4√6.7 × 5 =45.1m 基坑总涌水量: (2H―s)s Q=1.366K lgR―lgx0

暴雨洪水计算分析

《灌溉与排水工程设计规范》 表3.1.2灌溉设计保证率 表3.3.3灌排建筑物、灌溉渠道设计防洪标准 3.3.3灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按5~10a 确定。 附录C 排涝模数计算 C.0.1经验公式法。平原区设计排涝模数经验公式: Q=KR m A n (C.0.1) 式中:q ——设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) K ——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m ——峰量指数(反应洪峰与洪量关系) N ——递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2平均排除法 1平原区旱地设计排涝模数计算公式: )12.0.(4.86-= C T R q d 式中 q d ——旱地设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) T ——排涝历时(d )。

说明:一般集水面积多大于50km 2。 参考湖北取值,K=0.017,m=1,n=-0.238,d=3 2.平原区水田设计排涝模数计算公式: ) 22.0.(4.86'1----= C T F ET h P q w 式中q w ——水田设计排涝模数(m 3/s ·km 2) P ——历时为T 的设计暴雨量(mm ) h 1——水田滞蓄水深(mm ) ET`——历时为T 的水田蒸发量(mm ),一般可取3~5mm/d 。 F ——历时为T 的水田渗漏量(mm ),一般可取2~8mm/d 。 说明:一般集水面积多小于10km 2。 h 1=h m -h 0计算。h m 、h 0分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1.续灌渠道流量推算 (1)水稻区可按下式计算 η αt Ae 3600667.0Q = 式中:α——主要作物种植比例(占控制灌溉面积的比例)。 A ——该渠道控制的灌溉面积。 e ——典型年主要作物用水高峰期的日耗水量(mm ),根据调查确定,一般粘壤土地区水稻最大日耗水量8~11mm ,最大13mm 。 t ——每天灌水时间(小说),一般自流灌区24小时,提水灌区20~22小时。 η——渠系水利用系数。 (2)旱作区可按下式计算 η αTt mA 3600Q =

暴雨强度公式选择

某市为推求当地的暴雨强度公式,收集有30年自记雨量记录。每年选择了降雨强度较大的8场雨,然后按降雨强度不论年次而按大小由第1号排到第240号,最后选取了前120号降雨作为最终的统计资料。其中排在第30号的那场雨的降雨资料如下:降雨历时5、10、15、20min 的累计降雨量分别为9、15、19、22mm 。试计算该场雨各降雨历时为5、10、15、20min 时的最大平均暴雨强度i (mm/min )值;并根据你计算的i 值,从下列三个暴雨强度公式中选取一个比较适合该市的暴雨强度公式,)ha s /L () 14t ()76lgP .01(3600q 84.01?++=、)ha s /L ()12t ()77lgP .01(2500q 74.02?++=、)ha s /L ()3.6t ()71lgP .01(1800q 71 .03?++=。并利用该公式计算上述第30场雨降雨历时为120min 时的累计降雨量。(暴雨强度均保留小数点后两位,降雨量单位为mm ,保留小数点后一位)

解: (1)i t=5min =9/5=1.80(mm/min ); i t=10min =15/10=1.50(mm/min ); i t=15min =19/15=1.27(mm/min ); i t=20min =22/20=1.10(mm/min )。 (2)排在第30号的这场雨的重现期)a (14301430mM 1NM P ≈?+?=+= ①利用第一个暴雨强度公式)ha s /L ()14t ()76lgP .01(3600q 84 .01?++=计算各降雨历时为5、10、15、20min 时的最大平均暴雨强度i 如下: )min /mm (82.1167114) (5)76lg1.01(3600i 0.845min t =?++==; );min /mm (49.1167114)(10)76lg1.01(3600i 0.84 10min t =?++== );min /mm (27.1167114) (15)76lg1.01(3600i 0.8415min t =?++== 。)min /mm (11.1167114)(20)76lg1.01(3600i 0.8420min t =?++= = 利用最小二乘法选择最佳暴雨强度公式, 0006 .0)10.111.1()27.127.1()50.149.1()80.182.1()i ?i (Q 22222j j 1=-+-+-+-=-=∑ ②利用第二个暴雨强度公式)ha s /L () 12t ()77lgP .01(2500q 74.02?++=计算各降雨历时为5、10、15、20min 时的最大平均暴雨强度i 如下: )min /mm (84.1167112)(5)77lg1.01(2500i 0.74 5min t =?++==; );min /mm (52.1167112) (10)77lg1.01(2500i 0.7410min t =?++== );min /mm (31.1167112)(15)77lg1.01(2500i 0.74 15min t =?++== )min /mm (15.1167112)(20)77lg1.01(2500i 0.7420min t =?++= = 利用最小二乘法选择最佳暴雨强度公式,

轻型井点降水设计计算例题

轻型井点系统设计计算示例 某多层厂房地下室呈凹字形,其平面尺寸如图1-76所示,基础底面标高为-4.5m,电梯井部分深达-5.30m,天然地面标高为-0.40m。根据地质勘测资料:标高在-1.40m 以上为亚粘土,再往下为粉砂土,地下水静水位在-1.80m处,土的渗透系数为5m/d。基坑边坡采用1∶0.5,为施工方便,坑底开挖平面尺寸比设计平面尺寸每边放出0.5m。 图1—76 某地下室现场 根据本工程基坑的平面形状和深度,轻型井点选用环形布置并在凹字形中间插入一排井点,如图1-77所示。 井点管的直径选用50mm,布置时距坑壁取1.0m,其所需的埋置深度(从地面算至滤管顶部)用(公式1-54)计算,则至少为: (4.5-0.4)+0.5+17.5×0.1=6.34m 由于考虑轻型井点降水深度一般以6m为宜及现有井点管标准长度为6m,因此将总管 埋设在地面下0.6m处即先挖0.6m深的沟槽,然后在槽底铺设总管。此时井点管所需的长度: 6.34-0.6+0.20(露出槽底高度)=5.91(m),(小于6.0,可满足要求)。 电梯井处的基坑深度比其他部分要深0.8m ,所以该处井点管长度改用7m。 井点管的间距,考虑粉砂土的渗透系数不大,初步选用1.6m。

总管的直径选用127mm ,长度根据图布置方式算得: 2(67.6+2×1.0)+(46.4+2×1.0)+(46.4-2×1.8-2×1.0) = 276.2 (m) 抽水设备根据总管长度选用三套,其布置位置与总管的划分范围如图所示。 图1—36 某工程基坑轻型井点系统布置 a )平面布置图(1、2、3—三套抽水设备编号、同时表示挖土时情况); b )高程布置图 现将以上初步布置核算如下。 1)涌水量计算 按无压不完整井考虑,由于凹字形中间插有一排井点,分为两半计算:含水层的有效深度H0按表1-9求出: ,所以m H (99.10)00.194.4(85.10=+=) 基坑中心的降水深度)(2.35.08.15.4m s =+-= 抽水影响半径R 按公式(1-58)求出: )(25.46599.102.395.1m R =??= 83.00 .194.494.41'/=+=+s s

中小流域洪水计算分析

中小流域洪水计算分析 发表时间:2019-12-12T11:17:55.660Z 来源:《建筑学研究前沿》2019年18期作者:冯晶 [导读] 经过合理性分析认为瞬时单位线法推求的设计洪水更符合当地的防洪标准,且利于后期防洪预警指标的精确性。 陕西省水文水资源勘测局陕西西安 710069 摘要:强降雨引发的山洪地质灾害,是近年来威胁人类生存及发展的重要原因。一些中小流域上水文站点分布不均且监测资料匮乏,洪水计算方法合理性及成果有效性亟待验证。本文以陕西省延安市吴起县乱石头川流域为例,主要阐明有关洪水计算的几种方法,其中以瞬时单位线计算结果为主,结合推理公式、分布式模型及经验公式的计算结果,通过合理性分析,对比分析适合该流域的洪水计算成果,为后期山洪预警提供有效基础数据。 关键词:山洪灾害;洪水计算;瞬时单位线 引言: 吴起县位于黄土高原梁状丘陵沟壑区,地处东经107°38′57″至108°32′49″,北纬36°33′33″至37°24′27″之间。区域总面积约3791.5 km2。境内以白于山为界,分为洛河与无定河两大水系。吴起县年平均降雨量483.4 mm,降水量分布东南部多而西北部少,降水多集中在在夏季,年内水量变化比较大,吴起县洪水一般发生在7~9月。 吴起县特殊地形地貌和复杂的气象气候条件导致区域山洪灾害频发。研究区内水文站点稀少,监测资料匮乏,设计洪水计算标准不一,成果合理性有待验证,因此针对无资料地区设计洪水分析研究至关重要。 1 研究方法 以陕西省延安市吴起县乱石头川流域为例,流域内无实测小流域基础资料,因此设计洪水计算主要采用无资料地区的水文计算。 吴起县地处黄土高原,气候干燥,雨量较少流域土壤常处于干旱状态,暴雨历时短,强度大,时空分布极不均匀,主雨段多集中在1~2小时,产流历时一般不超过6小时。吴起县乱石头川流域属黄土丘陵沟壑Ⅱ区,黄土层深厚,植被差,地下水埋藏深,包气带不可能达到饱和,其产流方式为“超渗产流”。根据《陕西省中小流域设计暴雨洪水图集》吴起县属于Ⅰ2区。在雨洪同频率的假设下,基于《延安地区实用水文手册》,设计暴雨采取图表查算法,得到各个不同频率下设计暴雨1小时、3小时、6小时、24小时的面雨量。流域内设计暴雨历时按流域面积大小分为三级:流域面积小于100km2时设计历时采用6小时;流域面积介于100~300km2时设计历时采用12小时;流域面积介于300~1000km2时设计历时采用24小时。 设计洪水采用瞬时单位线法、推理公式法、及经验公式法推求设计洪水,通过与已建工程的采用值对比,以及各方法对不同流域面积的适应性评价,确定本流域内最佳的设计洪水结果。其中设计洪水过程线的推求,采用概化过程线法推求。主雨峰段过程线采用五点概化过程线法;次雨峰段过程线采用三角形概化过程线法。两过程线叠加成出口断面的地面径流过程线。 2 计算结果 本次研究区位于吴起县乱石头川流域,共设断面3组计算断面,分别为营盘渠子小组2#、朱渠小组2#、乱石头组下游2#,流域面积分别为484.61km2、731.86km2、748.52km2。各个控制断面瞬时单位线法设计洪水计算成果如表1示。 表1 瞬时单位线法设计洪水成果 3 成果合理性分析 (1)不同方法下设计洪水成果比较 在进行无资料地区设计洪水计算时,经验公式法、瞬时单位线法、水文比拟法、推理公式均为常用的方法。洪峰流量汇水面积相关法和综合参数法均属经验公式。经验公式主要是依据各区的概化条件总结而来,其考虑的参数相对较少,计算方式较为简单,适用范围1000km2以内。瞬时单位线法则在理论上更为严谨,计算过程复杂,其适用范围在1000km2以内。推理公式一般用于面积较小流域的设计洪水计算。 (2)上下游关系之间的合理性检查 同一流域从上游到下游依次为,营盘渠子小组2#、朱渠小组2#、乱石头组下游2#。设计洪水洪峰流量,在趋势上满足,同一流域上,从上游到下游洪峰流量依次增大的规律。 (3)与历史洪水资料的检查 根据发生洪水地点与评价对象接近原则,将设计洪水成果与调查历史洪水的成果进行比较。营盘渠子组和朱渠组的设计洪水洪峰流量,与历史洪水洪峰流量还是较为接近的。 4 结论 中小流域的设计洪水计算方法众多,本文基于雨洪同频的条件,主要讨论了无资料地区设计洪水的推求方法,根据吴起县乱石头川的流域特征及资料的完整性,考虑到防洪安全,经过合理性分析认为瞬时单位线法推求的设计洪水更符合当地的防洪标准,且利于后期防洪

(完整版)层次分析法步骤

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措

相关文档
相关文档 最新文档