文档库 最新最全的文档下载
当前位置:文档库 › 线能量对压力钢管焊接的影响1

线能量对压力钢管焊接的影响1

线能量对压力钢管焊接的影响1
线能量对压力钢管焊接的影响1

浅谈线能量对压力钢管焊接的影响

摘要:系统地概括了线能量对压力钢管焊接的影响,并阐述了影响线能量的主要因素。

【关键词】:线能量;压力钢管;焊接;影响

1 引言

压力钢管是水电站重要的组成部分。苗尾水电站工程属一等工程,永久性主要水工建筑物为Ⅰ级建筑物。枢纽建筑物主要由砾质土心墙堆石坝、左岸溢洪道、冲沙兼放空洞、引水系统、地面厂房及灌溉取水口等组成。苗尾水电站引水隧洞、冲沙兼放空洞内分别布置压力钢管,引水隧洞压力钢管主要由上平段、上弯段、竖井段、下弯段、下平段、厂前渐变段、明管段组成。冲沙兼放空洞主要由闸门井段钢衬、方变圆段、圆管段、圆变方段、弧门钢衬段组成。共计632节,15000余吨,主要材料为600MPa级和Q345R钢板,板厚由24mm到44mm 不等。

由于涉及的材料种类较多,手工焊接占的比例高,焊接位置变化多样,特别是现场安装,受施工环境的影响较大,点多面广,导致焊接难度十分大。因此,在开展焊接工作前要充分做好施工准备,严格控制施工中的各类影响因素。

2 概述

2.1 线能量

线能量是指熔焊时,由焊接热源输入给单位长度焊缝上的能量(J/cm或J /mm),亦称热输入,计算公式为:Q=IU/V。

I-焊接电流,A;

U-电弧电压,V;

V-焊接速度,cm/s或mm/ s。

3 线能量对压力钢管焊接的影响

材料在焊接过程中由于高度集中的瞬时热输入和随后的快速冷却,必会在焊接材料上产生相当大的焊接残余应力。焊接线能量是焊接过程中各种热现象的重要影响因素,它不但影响峰值温度的分布和冷却速度,还影响凝固时间,从而影响金属焊接的冶金特性和力学性能。

焊接是一个局部的不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。与金属材料一般热处理相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。焊接过程中母材因受热影响(未熔化),而发生金相组织变化和力学性能变化。温度过高,将使晶粒严重长大,不易淬火钢焊接热影响区中的过热区,由于奥氏体晶粒长得非常粗大,这种粗大的奥氏体在较快的冷却速度下会形成一种特殊的过热组织,其组织特征为在一个粗大的奥氏体晶粒内会形成许多平行的铁素体针片,在铁素体针片之间的剩余奥氏体最后转变为珠光体,这种过热组

织称为魏氏体组织。魏氏组织不仅晶粒粗大,而且由于大量铁素体针片形成的脆弱面,使金属的的柔韧性急速下降,这是不易淬火钢焊接接头变脆的一个主要原因。

现已被证实,线能量过大时除了容易引起焊接缺陷(过烧、咬边、热影响区晶粒粗大,产生淬火组织,韧性降低等缺陷)外,还会增大焊接残余应力或变形;即使是低碳钢,对接头冲击值也有影响。而线能量过小容易出现未焊透、裂纹等缺陷,即使未产生裂纹,也可能产生脆性组织,尤其是调质钢,对线能量变化更加敏感。因此,必须借助于对焊接线能量和焊接工艺参数的控制来达到所要求的机械性能。

4 影响线能量的因素

以焊条电弧焊为例,其焊接线能量的计算过程如下:

焊接线能量:E=IU/V

其中:I——焊接电流(A)

U——电弧电压(V)

V——焊接速度(cm/min)

4.1 焊接电流

焊接电流过小会使电弧不稳,造成未熔合、夹渣及焊缝成形不良等缺陷。焊接电流过大,容易烧穿焊件,易产生咬边、焊穿、增加焊件变形和金属飞溅量,也会使焊接接头的组织由于过热而发生变化。

4.2 电弧电压

焊条电弧焊的电弧电压主要由电弧长度来决定:电弧长度越长,电弧电压越高,降低保护效果,易产生电弧偏吹等。在焊接过程中,应尽量使用短弧焊接。

焊条电弧焊的焊接线能量与焊接电流、电弧电压及焊接速度有关,在保证不焊穿和成形良好的条件下,应尽量采用较大的焊接电流,并适当提高焊接速度,以提高焊接生成率。

4.3 焊接速度

焊接速度过快,熔化温度不够,易造成未熔合、夹杂药皮、焊缝成形不良等缺陷;若焊接速度过慢,高温停留时间增长,热影响区宽度增加,焊接接头的晶粒变粗,力学性能降低,同时也使焊瘤太多和焊件变形量增大。当焊接较薄焊件时,容易造成焊件局部温度太高使焊件烧穿。

5 线能量的确定

焊接线能量除了与钢材材质有关外,还取决于钢板厚度、接头形式、焊接位置、焊接材料、预热、后热及环境温度等,因此,焊接线能量应由现场实验确定,现场焊接人员应及时准确记录并控制线能量大小。

焊接线能量的控制

焊接线能量的控制 对某些材料的焊接,为保证其焊接质量,除应正确选择焊接方法和焊接材料外,执行焊接工艺的一个共同特点就是控制焊接线能量。 1、不同的材料对焊接线能量控制的目的和要求: 不同的材料对焊接线能量控制的目的和要求不一样。如: (1)焊接低合金高强钢时,为防止冷裂纹倾向,应限定焊接线能量的最低值;为保证接头冲击性能,应规定焊接线能量的上限值。 (2)焊接低温钢时,为防止因焊缝过热出现粗大的铁素体或粗大的马氏体组织,保证接头的低温冲击性能,焊接线能量应控制为较小值。 (3)焊接奥氏体不锈钢时,为防止合金元素烧损,降低焊接应力,减少熔池在敏化温度区的停留时间,避免晶间腐蚀,应采用较小的焊接线能量。 (4)焊接耐热耐蚀高合金钢时,为减少合金元素烧损,避免焊接熔池过热而形成粗晶组织降低高温塑性和疲劳强度,防止热裂纹,获得较好“等强度”的接头,应采用较小的焊接线能量。 (5)珠光体钢与奥氏体钢异种钢焊接时,应采用较小的线能量以降低熔合比,避免接头珠光体钢一侧产生淬硬组织,防止扩散层。如果珠光体钢淬硬倾向较大,则焊前应预热,预热事实上是提高了焊接热输入。 (6)铝及铝合金焊接时,为防止气孔,应采用大的焊接电流配合较高的焊接速度应是焊接工艺参数的最佳匹配,即采用适中的焊接线能量。 (7)工业纯钛焊接时,为保证接头既不过热,又不产生淬硬组织,应采用小电流、快焊速,即采用较小的焊接线能量。 (8)镍及镍合金焊接时,为防止热裂纹,应采用小线能量。等等。 本人认为:当设计文件、相关标准提出的性能指标如冲击韧性、耐腐蚀性能等对线能量及其相关的焊接层次、层间温度有严格要求时,应在焊接作业指导书规定焊接线能量、焊接层次(含焊道尺寸)和层间温度的控制要求,施焊中通过对这些参数的记录来检查和证实焊接线能量及其相关的焊接层次、层间温度的要求是否得到满足。 2、焊接线能量的测量方法: 通常焊接线能量采用下列公式进行计算(适用于单电弧焊接方法,针对于每条焊道,并且不考虑累积): 线能量Q=60IV/v (J/mm)

压力管道的焊接工艺及检验

压力管道的焊接工艺及检验 1、焊接施工程序 2、焊接准备 ⑴ 对焊工和无损检测人员的要求 ① 对焊工的要求: A 、凡参加钢管焊接的焊工,必须持有有效合格证书。 B 、焊接方法和焊接位置等均应与焊工本人考试合格的项目相符。 工中断焊接工作6个月以上者,应重新进行考试。 ② 对无损检测人员的要求: 无损检测人员应经过专业培训,通过考试取得无损检测资格证书。 ⑵ 对焊接环境的要求 焊接环境出现下列情况时,采取有效的防护措施: ① 风速:气体保护焊大于2m /s ,手工电弧焊大于8m /s 。 ② 相对湿度大于90% ③ 环境温度低于-5℃。 ④ 雨天和雪天的露天施焊。 ⑶ 焊接材料预处理 ① 焊条放置于通风、干燥和室温不低于5℃的专设库房内,并及时作好实测温度、焊条烘焙记录和焊条发放记录。烘焙温度和时间严格按厂家说明书的规定进行。烘焙后的焊条保存在100~150℃的恒温箱内。 ② 场使用的焊条装入保温筒,随用随取。焊条在保温筒内的时间不超过4h ,超过后重新烘焙,重复烘焙的次数不宜超过2次。 ③ 丝在使用前清除铁锈和油污。 ④ 焊接气体保证具有足够的纯度二氧化碳气体纯度不低于99.5%。 ⑷ 焊接工艺规程编制 ① 焊缝分类 一类焊缝:钢管管壁纵缝、明管环缝、凑合节合拢环缝;

二类焊缝:管壁环缝,加劲环、阻水环的对接焊缝和阻水环角焊缝。 三类焊缝:不属于一、二类的其他焊缝。 ②焊接工艺评定 600kg级钢板我局在多个电站使用,具有现成的焊接工艺评定和成熟的焊接水平,因此采用现有的焊接工艺评定,并在现场按照经监理人批准的焊接程序和工艺,通过生产性焊接试验加以修定并完善制造订出用于工程实际的焊接规范。试板与实际使用的焊件相同,试验在监理监督下进行。 ③编制焊接工艺规程 钢管施焊前,根据已批准的焊接工艺评定(PQR)报告,结合本工程的实际情况,编制压力钢管焊接工艺规程(WPS)。 3、生产性焊接工艺 ⑴焊接方法 焊接包含环缝的焊接、纵缝的焊接、加劲环的焊接、灌浆孔的补强板的焊接,其他附件的焊接。焊接的方法主要采用手工焊和CO2保护气体焊接,全部的纵缝、环缝、附件焊接采用手工焊;加劲环采用CO2保护气体焊接。 ⑵焊接坡口及焊前清理 所有拟焊面和离焊接边缘至少50mm内钢板面的氧化皮、铁锈、油污或其杂质全部清理干净,每一层焊接金属表面焊渣均将彻底清理干净。 ⑶定位焊 焊接采用已批准的方法进行组装和定位焊。对构成焊接构件的部分,可暂留在环缝焊和附件、管壁之间的焊缝内。 定位焊位置距焊缝端部30mm以上,厚度不超过正式焊缝的1/2,最高不超过8mm。 ⑷焊缝坡口间隙 焊接根部缝隙时,焊件边缘固定,保证焊接时使间隙保持在允许公差内。 ⑸焊前预热 按照规范要求需要预热的焊件在焊接前采取预热措施,焊接预热温度按照工艺评定进行。 ①对焊接工艺要求需要预热的焊件,定位焊缝和主缝均进行预热(定位焊缝

公称压力(MPa)管道壁厚对照表编辑整理

(2010年)最新公称压力(MPa)管道壁厚对照表 (一)无缝碳钢管壁厚m m

(二)无缝不锈钢管壁厚mm

(三)焊接钢管壁厚mm

内压金属直管的壁厚 根据SH 3059-2001《石油化工管道设计器材选用通则》确定:当S0< Do /6时,直管的计算壁厚为: S0 = P D0/(2[σ]tΦ+2PY) 直管的选用壁厚为: S = S0 + C 式中S0―― 直管的计算壁厚, mm; P――设计压力, MPa; D0――直管外径, mm; [σ]t―― 设计温度下直管材料的许用应力, MPa; Φ――焊缝系数,对无缝钢管,Φ=1; S――包括附加裕量在内的直管壁厚, mm; C―― 直管壁厚的附加裕量, mm;

Y――温度修正系数,按下表选取。 温度修整系数表 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 1)是以管子表号"Sch"表示壁厚。 管子表号是管子设计压力与设计温度下材料许用应力的比值乘1000,并经圆整后的数值。即: Sch=P/[σ]t×1000 ANSI B36.10壁厚等级:Sch10、Sch20、Sch30、Sch40、Sch60、Sch80、Sch100、Sch120、Sch140、Sch160十个等级; ANSI B36.19壁厚等级:Sch5s、Sch10s、Sch40s、S 2)以钢管壁厚尺寸表示中国、ISO、日本部分钢管标准采用 ch80s四个等级; 表示英制管壁厚系列: Sch.20----全称:Schedule 20 Sch.10s--带s的系列为不锈钢专用,碳钢不用。 举个例子: 2" sch.10s 表示2”接管的壁厚为2.9mm,材质为不锈钢; 2" sch.40 表示2”接管的壁厚为4.0mm。 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种:

压力管道焊接施工工艺标准

压力管道焊接施工 工艺标准 酒店群工程部 2014年3月

目录 目录 (1) 一、不锈钢焊接工艺标准 (3) 1、施工准备 (3) 2、焊接操作要点 (4) 3、质量标准 (10) 二、碳钢焊接工艺标准 (11) 1、施工准备 (11) 2、焊接操作要点 (12) 3、质量标准 (16)

一、不锈钢焊接工艺标准 1、施工准备 1.1材料要求: 1.1.1 施工现场必须配有符合要求的固定焊条库或流动焊条库。1.1.2焊材必须具有质量证明书或材质合格证,焊材的保管、烘干、发放、回收严格按《压力管道质保手册》中有关规定执行,焊条的烘干工艺按生产厂家说明书提供的参数进行,如无则按以下参数进行烘干: 1.1.3焊丝使用前,必须去除表面的油脂、锈等杂物。 1.1.4保温材料性能必须符合预热及其热处理要求。 1.2 机具要求: 1.2.1 焊机为直流焊机,焊机完好、性能可靠、双表指示灵敏且在校准周期内。 1.2.2 预热及热处理的设备完好,性能可靠,检测仪表在校准周期

内。 1.2.3 焊工所用的焊条保温筒,刨锤、钢丝刷齐全。 1.3 作业条件 1.3.1 人员资格:焊工必须持有相必须施焊对象的合格证。 1.3.2环境条件: 施焊前必须确认环境符合下列要求: 1)风速:焊条电弧焊小于8m/S;氩弧焊小于2m/S 2)相对湿度:相对湿度小于90% 3)坏境温度:当环境温度小于0℃时,对不预热的管道焊接前必须在始焊处预热15℃以上,当环境温度低于-20℃时,必须采取保暖措施。 当坏境条件不符合上述要求时,必须采取挡风、防雨等有效保护措施。 2、焊接操作要点 2.1焊接坡口形式及对口要求见:QDICC/QB126-2002。 2.2组对时质量要求:内壁整齐,其错口量不超过下列规定:SHA 级管道小于O.5mm;SHB级管道不超过1mm;其它管道小于 1.5mm。 组对前必须打磨坡口及两侧各20mm范围内油污、铁锈等,直至露出金属光泽,且于焊前在坡口两侧100mm范围内必须涂上防飞溅涂料。 2.3焊接方法:

钢管Sch S S STD 壁厚及压力对照表

公称直径管外 径 ANSI B36.10 B36.19 mm in mm Sch5s Sch10s Sch10Sch20Sch30Sch40s STD Sch40Sch60Sch80XS Sch80s Sch100Sch120Sch140Sch160XXS 61/810.29- 1.24--- 1.73 1.73 1.73- 2.41 2.41 2.41-----81/413.7- 1.65--- 1.73 1.73 1.73- 3.02 3.02 3.02-----103/817.1- 1.65--- 2.31 2.31 2.31- 3.2 3.2 3.2-----151/22134 1.65 2.11--- 2.77 2.77 2.77- 3.73 3.73 3.73--- 4.787.47 203/426.7 1.65 2.11--- 2.87 2.87 2.87- 3.91 3.91 3.91--- 5.567.82 25133.4 1.65 2.77--- 3.38 3.38 3.38- 4.55 4.55 4.55--- 6.359.09 32 1 1/442.2 1.65 2.77--- 3.56 3.56 3.56- 4.85 4.85 4.85--- 6.359.7 40 1 1/248.3 1.65 2.77--- 3.68 3.68 3.68- 5.08 5.08 5.08---7.1410.16 50260.3 1.65 2.77--- 3.91 3.91 3.91- 5.54 5.54 5.54---8.1411.07 65 2 1/273 2.11 3.05--- 5.16 5.16 5.16-7.017.017.01---9.5214.02 80388.9 2.11 3.05--- 5.49 5.49 5.49-7.627.627.62---11.1215.24 90 3 1/2102 2.11 3.05--- 5.74 5.74 5.74-8.088.088.08-----1004114.3 2.11 3.05--- 6.02 6.02 6.02-8.568.568.56-11.12-13.4917.12 1255141.3 2.77 3.4--- 6.55 6.55 6.55-9.539.539.53-12.7-15.8819.05 1506168.3 2.77 3.4---7.117.117.11-10.9710.9710.97-14.27-18.2621.94 2008219.1 2.77 3.4- 6.357.048.188.188.1810.3112.712.712.715.0918.2620.6223.0122.22 25010273.1 3.4 3.76- 6.357.89.279.279.2712.712.712.715.0918.2621.4425.428.5825.4 30012323.9 3.96 4.57- 6.358.389.529.5210.314.2712.712.717.4821.4425.428.5833.32-35014356.6 3.96 4.78 6.357.929.52*9.529.5211.1315.0912.712.719.0523.8327.7931.7535.71-40016406.4 4.19 4.78 6.357.929.52*9.529.5212.716.6612.712.721.4426.1930.9636.5240.49-45018457 4.19 4.78 6.357.9211.12*9.529.5214.2719.0512.712.723.8229.3634.9239.4745.24-50020508 4.78 5.54 6.357.9212.7*9.529.5215.0920.6212.712.726.1932.5438.144.4550.01-55022559 4.78 5.54 6.357.9212.7*9.529.52-22.2212.712.728.5834.9241.2847.6253.98-60024610 5.54 6.35 6.357.9214.27*9.529.5217.4824.6112.712.730.9638.8946.0252.3759.54-

大线能量焊接

Materials Science Forum Vols. 783-786 (2014) pp 1046-1052 ? (2014) Trans Tech Publications, Switzerland doi:10.4028/https://www.wendangku.net/doc/a217241315.html,/MSF.783-786.1046
Research and development of a yield strength 400 MPa class structural steel plate with enhanced weldability Yu Zhang*, Xiaobao Li, Xin Pan
(Institute of Research of Iron and Steel, Shasteel, Jinfeng, Zhangjiagang, Jiangsu, 215625, China) *Corresponding author: zhangyu02@https://www.wendangku.net/doc/a217241315.html, Keywords: Structural steel plate, high heat input welding, heat-affected zone, intra-granular nucleated ferrite, impact property;
Abstract: A 400 MPa yield strength structural steel plate with enhanced weldability was produced by using advanced steel making technology and thermo-mechanical controlled processing technique. A microstructure consisting of acicular ferrite (3~8 ?m) and polygonal ferrite was observed in the rolled plate, which exhibits a yield strength ≥ 420 MPa, tensile strength ≥ 560 MPa, elongation ≥ 26 % and charpy impact toughness ≥ 300 J at -40 °C. Three-wire flux copper backing submerged arc welding with heat input of 230 kJ/cm was applied to butt weld the 36 mm thick plate, and defect-free joint with satisfactory mechanical properties were produced. The coarse grain heat affected zone (CGHAZ) contains mostly intra-granular nucleated ferrite plus a few grain boundary ferrite and ferrite side plate, and shows charpy impact toughness ≥ 90 J at -40 °C. The enhancement impact toughness of CGHAZ resultant from high heat input welding is due to improvement of intra-granular ferrite formation induced by Ca and Ti containing oxides and sulphides. 1. Introduction Steels with yield strength over 400 MPs are getting increased application for shipbuilding and offshore platform construction for increasing capacity [1-3]. Welding heat input for on-site fabrication is strictly controlled below 50 kJ/cm for ensuring low temperature impact property of the weld joint. For conventional steel grades, the impact property of the heat affected zone (HAZ) will deteriorate with increasing heat input due to the formation of brittle bainitic structure [4-7]. Welding methods with high heat input of 80~200 kJ/cm, such as electro-gas welding and multi-wire submerged arc welding which enable one-pass welding of 40 mm thick plate, were employed by the industry for improving construction efficiency and cost reduction [8-10]. It is obvious that the lack of high quality steel plate limits the efficiency improvement of shipbuilding. There are some activities aiming to develop the steel plate with enhanced weldability, and some promising results were reported [11-13]. However most of them are laboratory trial results and lack of verification of mill facilities. In this paper, microstrucrtural characteristics, mechanical property and weldability of a 400 MPa yield strength class steel plate produced by industrial mill facilities were reported. 2. Experimental procedure 2.1 Industrial production of the steel plate The alloy design is basically low carbon and low carbon equivalent type. Steel-making is conducted on a 180t converter-ladle fining-RH, and finally continuous casted into a with a thickness of 220 mm, and the measured composition includes 0.05%C, 0.15%Si, 1.45%Mn, 0.006%P, 0.004%S, 0.001%B, and minor Ti and Ca.
All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, https://www.wendangku.net/doc/a217241315.html,. (ID: 112.25.149.196-25/04/14,11:07:47)

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

压力钢管焊接指导书.doc

xxxx电站工程 xxxx电站钢管焊接作业指导书 一、工程简介 电站主压力钢管( DN7200)桩号为 99+596.861m,主压力钢管下游侧分成 6 根钢支管,右侧二根 DN4400 经渐变后分别接 DN2400 调流消能阀、中间两根 DN4400 经渐变后分别接轴流式水轮机 DN3800 进口阀、左侧两根 DN3200 经渐变后分别接混流式水轮机 DN2600 进口阀。调流消能阀厂房内为明管段外其余压力钢管均为外包混凝土埋地敷设。 二、编制依据 1、招投标文件; 2、SL432-2008《水利工程压力钢管制造安装及验收规范》; 3、xxxx 电站工程施工图(钢管部分); 4、SL36-2006《水工金属结构焊接通用技术条件》; 5、《无损检测焊缝磁粉检测》(JB/T6061-2007); 6、《无损检测焊缝渗透检测》(JB/T6062-2007); 7、《钢熔化焊对接接头射线照相和质量分级》(GB3323-2008) 8、《钢焊缝手工超声波探伤方法和探伤结果的分级》(GB/T11345-2013) 三、焊接质量要求 1、焊缝分类: ① 一类焊缝:钢管管壁纵缝,厂房内明管环缝,凑合节合拢环缝,岔管纵缝、环缝、 加强构件与管壁接触组合焊缝。 ② 二类焊缝:其他钢管管壁环缝;加劲环、阻水环、止推环的对接缝;止推环的组合 焊缝。 ③ 三类焊缝:不属于上述一、二类焊缝的其它焊缝。 2、焊缝外观质量检验:所有焊缝均应进行100%外观检查,外观质量要求如下表。 项次检验项目允许偏差( mm) 1 裂纹不允许 主 一、二类焊缝:不允许; 2 表面夹渣三类焊缝:深不大于0.1 δ,长不大于 0. 3 δ,且不大 控 于 10 项 目 3 咬边一、二类焊缝:深不大于0.5 ;三类焊缝:深不大于 1

焊接线能量的范围与计算方法

焊接线能量的范围与计算方法 q = IU/υ式中:I电弧电压V υ线能量 J/cm 例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝 ф4mm,I=650A,U=38V,υ=0、9cm/s。,则焊接线能量q为: q= IU/υ=65038/0、9 =27444 J/cm 线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西焊接线能量熔焊时,由焊接热源输入给单位长度焊缝的能量。焊接线能量的计算过程如下:有效热功率:P=ηPo=ηUI其中:Po电弧功率(J/s)U电弧电压(V)I焊接电流(A)η 功率有效系数,焊条电弧焊为0、74~0、

87、埋弧焊为0、77~0、 90、交流钨极氩弧焊为0、68~0、 85、直流钨极氩弧焊为0、78~0、85。无特别说明时,取中间值。焊接线能量:E=P/v其中:v焊接速度(cm/min)列: Q345E板焊接线能量经验数值小于等于39J/cm。当今,他们在计算熔焊热输入时,不管电极是摆动还是不摆动,都使用同一公式,这是不适宜的。在摆动焊时,焊道宽、焊速慢,用传统公式计算出的线能量就会比实际值大。建议在计算摆动焊接的线能量时添加折减系数;或者,重新定义热输入。

压力钢管焊接工艺实验方案

压力钢管焊接方案 1、工程概况 本标段为河南省南水北调受水区焦作供水配套工程施工4标,为26号输水管线,设计流量1 m3/s,管径DN1400,管材PCCP,管线桩号WZ14+500~WZ22+190,全长7.69km。管道全程单管供水,直埋方式敷设。其主要工作内容有管沟开挖、管道安装、管道回填、阀井和镇墩的砼浇筑、硅芯管埋设等。 本标段需焊接部位为阀井、镇墩处已形成掩口的管件、 接缝对口焊接等,焊缝为环缝,为Ⅰ类焊缝。 2、编制依据 (1)河南省南水北调受水区焦作供水配套工程施工4标招标文件、合同文件、图纸 (2)《水利水电工程压力钢管制造、安装及验收规范》(SL432-2008)(3)《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式及尺寸》GB985-1988 (4)《钢结构超声波探伤及质量分级法》(JG/T203-2007) (5)《钢焊缝手工超声波探伤方法和探伤结果分级》(GB11345-1989)(6)《气体保护电弧焊用碳钢、低合金钢焊丝》GB/T8110-2008 (7)《碳钢焊条》GB/T5117-1995 3、焊接 3.1施工准备 3.1.1材料、人员、设备配臵 (1)材料:

a、焊条的性能与焊机的型号相匹配。CO2气体保护焊机采用H08Mn2SiA焊丝,电弧焊采用H08Mn焊条,焊剂HJ431。 焊接材料须是有质量保证的生产厂家生产的合格产品,附有出厂材质证明书和质量保证书。焊材进库前,应按相应的标准检查验收。对材.0质有怀疑时,应进行复验,合格后方可使用。焊接材料仓库管理严格按有关制度规定执行。 b、钢材切割采用气体割刀,切割用的氧气和乙炔要求纯度≥ 99.5%。 (2)人员:详见人员配臵表 人员配臵表 参加钢管环缝焊接施工的焊工必须具有相应的理论知识和实际操作技能。并取得了相应的合格证书。所有参加施焊的焊工都必须接受焊前施工技术交底和安全技术交底,并应认真学习和掌握工艺方案所要求的各项技术要求。焊接时采用2名焊工对称施焊。 (3)设备配臵:详见设备配臵表 设备配臵表

焊接接头问题汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 咬边的预防:矫正操作姿势,选用合理的规,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子部的焊瘤减小了它的径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规,收弧时让焊条在熔池短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

焊接参数规范

焊接参数规范 不同的板厚,应采用不同的焊接线能量进行焊接(焊接线能量过大会使焊缝热影响区软化以及接头冲击韧性降低,线能量过小又易导致产生冷裂纹)。输入线能量计算: Q=0.85×U×I×60/1000V 其中Q=输入线能量(KJ/mm),U=电压(V),I=电流(A),V=焊接速度(m/min)。 所示。 焊接电流和焊接电压相匹配焊丝直径为0.8~1.2mm时,焊接电流与焊接电压的关系如图3 Q235和含碳量偏下限的Q345(16Mn)钢的过热敏感性不大,淬硬倾向亦较小,故焊接热输入一般不予限制,而含碳量偏高的Q345(16Mn)钢其淬硬倾向增加。为防止冷裂纹,焊接时,宜选用偏大一些的焊接热输入。由于Q235焊接性能良好,本规范对于Q235和Q345采用相同的焊接参数规范。 3.5. 4.1.1采用混合气体保护焊接角焊缝所推荐的工艺参数见表7(考虑到电缆电压损失和电流电压表不准的影响,电弧电压可根据焊缝成形和飞溅情况作微调)。 表7 角焊推荐工艺参数

3.5. 4.1.2对接焊一般应开坡口,采用Ф1.2mm焊丝、混合气体保护焊所推荐的工艺参数见表8(考虑到电缆电压损失和电流电压表不准的影响,电弧电压可根据焊缝成形和飞溅情况作微调)。 表8 不同板厚的对接焊推荐工艺 表9 对接焊推荐工艺参数 3.6焊接典型接头焊接 3.6.1Q235钢及Q345钢典型接头推荐规范: 对接焊:对接焊坡口如图5所示,每层不超过4mm,δ≤8的开V型坡口,焊接参数规范参见表10,

表10 6mm板开V型坡口对接焊规范 表11 12mm板开X型坡口对接焊规范 对接焊,δ>10 表12 12mm板开K型坡口对接焊规范 焊角>8时,盖面层需多道焊,后道焊缝必须覆盖前道焊缝一半以上,具体层数根据焊角高决定。轴套与腹板的角焊缝成形应平缓过渡。

大线能量焊接用结构钢的研究进展资料讲解

大线能量焊接用结构钢的研究进展 宋凤明李自刚钱余海沈凯 钢板被广泛用于诸如建筑、桥梁、压力容器、储罐、管线和船舶等基础建设和大型建筑中。建筑构件的大型化和高层化发展趋势要求钢板的厚度增加,同时具有更高的综合性能,包括更高的力学性能、高效的加工性能以及优良的抗腐蚀性能和抗疲劳破坏性能等。 但是,随着钢板强度的提高,其冲击韧度和焊接性能显著下降,焊接裂纹敏感性增加。特别是随着焊接线能量的提高,传统低合金高强钢的焊接热影响区性能(强度、韧性) 恶化,易产生焊接冷裂纹问题,给大型钢结构的制造带来困难。由于焊接为厚板加工的主要方式,满足大线能量焊接性能也逐步成为各种钢种所具备的一种性能。所以,在追求高强度的同时,改善钢板的韧性以提高钢板的焊接性能越来越迫切。 本文综述了大线能量焊接用结构钢的研究进展。 提高钢大线能量焊接性能的主要技术手段 钢大线能量焊接的主要难点在于其热影响区(HAZ) 的强度和韧性随着输入线能量的增大而降低。 因此,HAZ的韧性成为制约钢大线能量焊接的关键因素。为了解决HAZ的韧性问题,国内外相继 开展了大线能量焊接用钢的研究工作,提岀的改善韧性的方法主要有降低C含量和Ceq利用微 合金元素和氧化物夹杂细化奥氏体晶粒、获得韧性好的组织如针状铁素体以及贝氏体组织的超低碳钢、通过改进生产工艺提高韧性等。 1 奥氏体晶粒的细化 晶粒细化是同时提高钢的强度和韧性的唯一途径。通过降低奥氏体的晶粒尺寸来增加形核点密度以细化铁素体晶粒的方法已经被广泛研究。原奥氏体晶粒越细小,HAZ的晶粒也就越小,韧性也 就会越好。 在钢中引入微量的合金元素,形成弥散分布的高熔点颗粒。这些颗粒一方面以“钉轧”的形式阻碍奥氏体晶界的迁移,限制奥氏体晶粒的长大,同时增加了相变过程中的形核点,从而使钢的组织更加细小。目前研究较多的是Ti 元素对高温奥氏体的细化作用。研究发现,Ti 在钢中形成细小弥散的TiN 粒子,在焊接热循环过程中有效阻止奥氏体晶粒的长大,促进针状铁素体析岀,从 而改善HAZ的韧性。 研究人员发现,Nb可以加强Ti的细化作用。Nb在钢中与N也有着强烈的亲和力,可以取代部分Ti,与N形成(Ti,Nb)N颗粒,其溶解温度在1350C以上,可以钉轧、拖拽高温奥氏体晶界的迁移。进一步的研究发现,Ti-Nb 微合金钢中含有大量尺寸细小的TixNb1-x(CyN1-x) 粒子,粒子中Nb的相对含量在0.25?0.82之间,形状接近球形。这些粒子具有很高的稳定性,在焊接过程中这些粒子不仅能有效地阻止奥氏体晶粒长大、抑制粗大贝氏体的形成、还能够促进针状铁素体的析岀和M-A组元的分解,从而显著改善低合金高强钢HAZ粗晶区的韧性。

焊接线能量

焊接线能量 在焊接过程中热源沿焊件的某一方向移动,焊件上任一点的温度都经历由低到高的升温阶段,当温度达到最大值后又经历由高到低的降温阶段。在焊缝两侧不同距离的各点,所经历的这种热循环是不同的,如图3,12所示。焊接是一个不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。与金属材料一般热处理相比,或与塑性成形或凝固成形相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。 焊接热循环的主要参数是加热速度,峰值温度 max,高温停留时间,冷却速度 (或冷 TtH却时间或)如图3,13所示 tt8/58/3 (1)加热速度 采用不同的焊接方法和不同的线能量,焊接不同厚度的低碳钢或低合金结构钢,根据实测结果加热速度如表3,4所示

通常随着加热速度的提高,钢的固态相变温度Ac1和Ac3也相应的提高,而且Ac1和Ac3之间的温差也变大,如表3,5所示。随着钢中碳化元素的增多(例如 18Cr2Wv钢),这一效果更为显著。 (2)峰值温度Tmax 峰值温度Tmax将直接影响到焊接热影响区 焊接或切割过程中母材因受热的影响(未熔化),而发生金相组织变化和力学性能变化的区域。的组织和性能。峰值温度过高,将使晶粒严重长大,甚至产生过热的魏氏体组织不易淬火钢焊接热影响区中的过热区,由于奥氏体晶粒长得非常粗大,这种粗大的奥氏体在较快的冷却速度下会形成一种特殊的过热组织,其组织特征为在一个粗大的奥氏体晶粒内会形成许多平行的铁素体针片,在铁素体针片之间的剩余奥氏体最后转变为珠光体,这种过热组织称 为魏氏组织。 ,造成晶粒脆化;同时还影响到焊接接头的应力应变, 应力为焊接过程中焊件内产生的应力。(按作用时间可分为焊接瞬时应力和焊接残余应力)。应变为焊接过程中在焊件中所产生的变形。 形成较大的焊接残余应力或变形。峰值温度Tmax与焊件的初始温度T,焊接线能量E,被焊金0 属的板厚h及离热源中心距离有关。 (3)高温停留时间t H 所谓高温停留时间是指在相变温度Ac1以上停留时间。如图3,13所示,它包含加热过程高温停留时间'和冷却过程高温停留时间t"。 t 在相变温度以上停留时间,对于相的溶解、奥氏体的扩散均匀化以及晶粒度都有很大影响。对于钢来说越长,越有利于奥氏体的均匀化,但温度太高,例如在1100?以上的停留时间过长,tH

常见的焊接问题

常见的焊接缺陷(内部缺陷): (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 原因分析 造成未焊透的主要原因是:对口间隙过小、坡口角度偏小、钝边厚、焊接线能量小、焊接速度快、焊接操作手法不当。 防治措施 ⑴对口间隙严格执行标准要求,最好间隙不小于2㎜。 ⑵对口坡口角度,按照壁厚和DL/T869-2004《火力发电厂焊接技术规程》的要求,或者按照图纸的设计要求。一般壁厚小于20㎜的焊口采用V型坡口,单边角度不小于30°,不小于20㎜的焊口采用双V型或U型等综合性坡口。 ⑶钝边厚度一般在1㎜左右,如果钝边过厚,采用机械打磨的方式修整,对于单V型坡口,可不留钝边。 ⑷根据自己的操作技能,选择合适的线能量、焊接速度和操作手法。 ⑸使用短弧焊接,以增加熔透能力。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 原因分析 造成未熔合的主要原因是焊接线能量小,焊接速度快或操作手法不恰当。 防治措施 ⑴适当加大焊接电流,提高焊接线能量; ⑵焊接速度适当,不能过快; ⑶熟练操作技能,焊条(枪)角度正确。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特

激光焊接体能量及其对焊缝熔深的影响讲解

激光焊接体能量及其对焊缝熔深的影响 定义焊接体能量用来综合评价激光焊接过程中激光功率、焊接速度、离焦量及焦点尺寸等焊接规范参数对激光焊接过程的影响,焊接体能量与激光功率呈正比、焊接速度呈反比、与离焦量呈指数关系。研究结果表明,随着焊接体能量的增大,焊缝熔深近似呈线性增大。前言激光焊接,特别是激光深熔焊接是一个非常复杂的物理化学过程,涉及到激光—材料—等离子体之间的相互作用。但是在激光焊接过程中影响并决定焊缝熔深等焊缝成型状况的是激光 定义焊接体能量用来综合评价激光焊接过程中激光功率、焊接速度、离焦量及焦点尺寸等焊接规范参数对激光焊接过程的影响,焊接体能量与激光功率呈正比、焊接速度呈反比、与离焦量呈指数关系。研究结果表明,随着焊接体能量的增大,焊缝熔深近似呈线性增大。 前言 激光焊接,特别是激光深熔焊接是一个非常复杂的物理化学过程,涉及到激光—材料—等离子体之间的相互作用。但是在激光焊接过程中影响并决定焊缝熔深等焊缝成型状况的是激光功率、焊接速度、离焦量及焦点尺寸等焊接规范参数,其中离焦量(在激光焊接中,一般用离焦量来表征激光光斑及焦点尺寸)是焊缝熔深的重要影响因素之一。 在电弧焊中,人们常采用焊接线能量或热输入(二者的单位均为J·m-1)来描述和评价焊接过程中电弧电压、焊接电流和焊接速度等焊接规范参数对焊缝熔深的影响,但是这两个参数都没有考虑电弧作用面积对焊缝熔深的影响。 如果用电弧焊中的焊接线能量或热输入来综合评价激光焊接过程中焊接规范参数对焊缝熔深的影响,则不能反映离焦量及焦点尺寸对焊缝熔深的影响。若考虑离焦量的影响,用热输入来评价激光焊接过程中焊接规范参数对焊缝熔深的影响,则容易和电弧焊中的热输入在物理意义上混淆。 目前,在激光焊接的研究中,还没有一个参数能够综合体现焊接规范参数对焊接过程的影响。为了综合评价激光焊接过程中焊接规范参数对焊缝熔深的影响以及区别电弧焊中的热输入,本文定义了焊接体能量,并研究了Nd:YAG 激光深熔焊接过程中焊接体能量对焊缝熔深的影响。 1、焊接体能量的定义 为了能够综合评价激光功率、焊接速度、激光辐照面积(离焦量)以及焦点尺寸等焊接规范参数对焊缝熔深的影响,引入焊接体能量的概念,并将焊接体能量qV的定义。

相关文档