文档库 最新最全的文档下载
当前位置:文档库 › 常微分方程的奇解的求法

常微分方程的奇解的求法

常微分方程的奇解的求法
常微分方程的奇解的求法

2011届本科毕业论文常微分方程的奇解的求法

学院:数学科学学院

专业班级:数学07-4(实验)班学生姓名:哈丽古丽.穆塔力菩

指导教师:伊里夏提

答辩日期:2011年5月10日

新疆师范大学教务

目录

1 引言 (1)

2 奇解的定义 (1)

3 不存在奇解的判别法 (1)

4 自然法 (2)

5 拾遗法 (2)

6 包络线及奇解的求法 (2)

6.2 C-判别曲线 (3)

6.3 P-判别曲线 (5)

6.4 C-P判别法 (7)

总结 (8)

参考文献 (1)

致谢 (2)

常微分方程的奇解的求法

摘要:该文章我们主要讨论的是常微分方程奇解的求法。一个常微分方程有没有它的奇解,有了奇解怎么求是该文章的主要目的。在这里我们讨论不存在奇解的判别法。如果方程有了它的奇解,一般有五种方法可以求它的奇解,即自然法,拾遗法,C -判别曲线(C-消去法),P-判别曲线(P-消去法),C-P判别法。我们最常用的,方便的方法是后面的三个,在这里对这三个方法进行详细的讨论。关键词:奇解,判别式,包络线。

1 引言

我们看到对某些微分方程,存在一条特殊的积分曲线,它并不属于这方程的积分曲线族。 但是,在这条特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和它在此点相切。在几何学上,这条特殊的积分曲线称为上述积分曲线族的包络。在微分方程里,这条特殊的积分曲线所对应的解称为方程的奇解。若一个微分方程它有奇解,那我们怎么求它的奇解是该文章主要讨论的问题。

2 奇解的定义

定义 如果方程存在某一节,在它所对应的积分曲线上每一点处,解的唯一性都被破坏,则称此解为微分方程的奇解。奇解对应的积分曲线称为奇积分曲线。

3 不存在奇解的判别法

每一个微分方程都有它的奇解吗?答案是:不一定。那我们怎么知道,微分方程有没有它的奇解呢?

下面我们介绍不存在奇解的两种判别法。 方法1 假设方程

(,)dy

f x y dx

= (1) 的右端函数2),(R D y x f ?在区域上有定义,如果),(y x f 在D 上连续且),(y x f y '在

D 上有界(或连续),那么由解的存在唯一性定理,方程的任一解是唯一的,从

而在D 内一定不存在奇解。

例1 判断方程 22y x dx

dy

+= 是否存在奇解。

解:方程

22y x dx

dy

+= 右端函数22(,)f x y x y =+,(,)2y f x y y '=均在全平面上连续,故该方程在全平面上无奇解。

方法2

如果存在唯一性定理条件不是整个),(y x f 有定义的区域D 内成立,那么奇解只能存在于不满足解的存在唯一性定理条件的区域上,若能进一步表明在这样的区域上不存在方程的解,那么我们也可以断定该方程无奇解。

例2 判断方程 2+-=x y dx

dy

是否存在奇解。 解:方程

2+-=

x y dx

dy

的右端函数(,)2f x y = 在区域x y ≥上有定义且连续,x

y f y -=

12

1'在

y x >上有定义且连续,故不满足解的存在唯一性定理条件的点集只有x y =,即

若该方程有奇解必定是x y =,然而x y =不是该方程的解,从而该方程无奇解。

4 自然法

找出方程不满足唯一性条件的点集合L ,例如,{(,)|}f

L x y y

?==∞?,再验证它是否是奇解。

5 拾遗法

在求通解过程中,方程两边约去的不含导数的因式,令其为零,可能得到奇解。

6 包络线及奇解的求法

6.1 包络线的定义

定义 设给定单参数曲线族

():(,,)0C x y c Φ= (2)

其中c 为参数,Φ对所有变量连续可微,如果存在连续可微曲线L ,在其上任一点均有()C 中某一曲线与L 相切,且在L 上不同点,L 与()C 中不同曲线相切,那 么称此曲线L 为曲线族()C 的包络线或简称包络。

l (c)

定理1 方程(1)的积分曲线族()C 的包络线L 是(1)的奇积分曲线。 证明:只需证明()C 的包络线L 是方程(1)的积分曲线即可。 设),(y x p 为L 上任一点,由包络线定义,必有()C 中一曲线l 过p 点,且与L 相切,即l 与L 在p 点有公共切线。由于l 是积分曲线,它在p 点的切线应与方程(1)所定义的线素场在该点的方向一致,所以L 在p 点的切线也就与方程(1)在该点的方向一致了。这就表明L 在其上任一点的切线与方程(1)的线素场的方向一致。从而L 是(1)的积分曲线。证毕。

6.2 C-判别曲线

定理 若L 是曲线族(2)的包络线,则它满足如下的C-判别式

(,,)0

(,,)0c

x y c x y c Φ=??

'Φ=? (3) 反之,若从(3)解得连续可微曲线:(),()x c y c ?ψΓ==且满足非蜕化条件:

0)()(22≠'+'c c ψ?

0)),(),(()),(),((22≠Φ'+Φ'c c c c c c y x ψ?ψ?

则Γ是曲线族的包络线。

证明:在L 上任取一点),(y x p ,由包络线的定义,有(C )中一条曲线l 在p

点与L 相切,设l 所对应的参数为c ,故L 上的点坐标x 和y 均是c 的连续可微函数,设为

)(),(c y c x ψ?== 又因为),(y x p 在l 上,故有恒等式

0)),(),((=Φc c y c x (4)

L 在p 点的切线斜率为

)

()

(c x c y k L ''=

l 在p 点的切线斜率为

)

),(),(()

),(),((c c y c x c c y c x k y x l Φ'Φ'-

=

因为l 为L 在p 点相切,故有l L k k =,即有关系式

0)()),(),(()()),(),((='Φ'+'Φ'c y c c y c x c x c c y c x y x (5)

另一方面,在(4)式两端对C 求导得

0)),(),(()()),(),(()()),(),((=Φ'+'Φ'+'Φ'c c y c x c y c c y c x c x c c y c x c y x 此式与(5)式比较,无论是在)(),(c y c x ''和y x Φ'Φ',同时为零还是不同时为零的情况下,均有下式

)),(),((=Φ'c c y c x c

成立。即包络线满足C-判别式(3)。

反之,在Γ上任取一点))(),(()(c c c q ψ?=则有

((),(),)0

((),(),)0c

c c c c c c φψφψΦ=??'Φ=?

成立。

因为y x Φ'Φ',不同时为零,所以对(2)在q 点利用隐函数定理可确定一条连续可微曲线)(:x h y =γ(或)(x k x =)它在q 点的斜率为:

)

),(),(()

),(),((c c c c c c k y x ψ?ψ?γΦ'Φ'-

= (8)

另一方面,Γ在q 点的斜率为: )

()

(c c k ψ?''=

Γ (9) 现在,由(7)式的第一式对C 求导得

0)()),(),(()()),(),((=ψ'Φ'+'Φ'c c c c c c c c y x ψ??ψ? (10) 因为)(),(c c ψ?''和y x Φ'Φ',分别不同时为零,所以,由(10),(9)和(8)推出

Γ=k k γ,即曲线族(2)中有曲线γ在q 点与曲线Γ相切。因此,Γ是曲线族(2)的包络线。

例3 求方程 21y dx

dy

-= 的奇解。

解:

21y dx

dy

-=

dx = ? ??

=-dx dy y

2

11

∴ 该方程的通解为)sin(c x y +=。 由C-判别式

sin()

0cos()y x c x c =+??

=+?

的第二式解出 2

x c k π

π=-++

, ,2,1,0±±=k

代入第一式,得到1±=y .因为01≠=Φ'y ,01)(≠-='c ?,故1±=y 为方程的奇解。

6.3 P-判别曲线

由存在唯一性定理可知,如果),,(y y x F '关于y y x ',,连续可微,则只要

0≠'??y

F

就能保证解的唯一性,因此,奇解(存在的话)必须同时满足下列方程 0),,(='y y x F , 0)

,,(='

?'?y y y x F

于是我们有下面的结论: 方程

0),,(=??x

y

y x F (11) 的奇解包含在由方程组

(,,)0

(,,)0P

F x y P F x y p =??'=? (12)

消去p 而得到的曲线中,这里),,(P y x F 是P y x ,,的连续可微函数。此曲线称为方程(11)的判别曲线,P-判别曲线是否是方程的奇解,尚需进一步验证。

例4 求方程

01)(22

=-+y dx

dy 的奇解。

解:从

2210

20

p y p ?+-=?=?

消去p ,得到P -判别曲线

1±=y ;

下面验证,1±=y 是不是该方程的解。 该微分方程的通解为

);sin(c x y +=

而1±=y 也是该微分方程的解,且正好是通解的包络。

例5 求方程

2)(2dx

dy dx dy x y -= 的奇解。

解:从

2

2022y px p x p

?=-?

=-? 消去p ,得到P -判别曲线 2x y =

但2x y =不是方程的解,故此方程没有奇解。

6.4 C-P 判别法

对方程(3),(11),(12)而得的0),(,0),(==y x y x ψ?中,寻得公共的 单因式,令其为零,一般就是(3)得奇解。

例 6 求3

227

894y y y x '-

'=-的奇解。 解:方程即 3

227

894p p y x -

=-, 从 23248927

80()9x y p p p p ?

-=-????=-??

消去p ,可得

27

4

,-

==x y x y , 原方程的通解式

32)()(c x c y -=-,

按C –消去法,从

()()()()

???--=---=-2

3

232c x c y c x c y 消去C ,得274-=x y 。因此,27

4-=x y 是两种消去法的公共因式,故它是奇解。

总结

常微分方程奇解的求法有五种,但我们最常用的方法是:C -判别曲线(C-消去法),P-判别曲线(P-消去法),C-P判别法。求奇解之前我们判断该方程到底有没有奇解,就是用不存在奇解的判别法来判断该方程有没有奇解,如果有了奇解,刚才提的三种方法中,任用一个可以求它的奇解。

参考文献

[1]王高雄,周之铭,朱思铭,王寿松。北京:高等教育出版社 1983

[2]东北师范大学微分方程教研室。北京:高等教育出版社 2005

[3]丁同仁,李承治。北京:高等教育出版社 1991

致谢

大学四年很快就要结束了,在这宝贵的四年学习过程中,我认识了数学系的各级领导、老师和我亲爱的同学们,得到了他们热心的帮助和关心,使我能够顺利的完成学业,同时我的道德修养在身边优秀的老师和同学的感染下得到了很大的提高,在此向他们表示我最衷心的感谢!

感谢我的指导老师,感谢对我毕业论文的细心指导,伊力夏提老师严谨细致、认真负责的工作态度是我学习的典范,这对我以后走上工作岗位有很大的帮助. 同时我要感谢我大学四年认识的所有好朋友,有了他们的陪伴、支持、鼓励,我的大学生活才有意义,从他们身上我学到了很多我没有的品质,我将永远珍惜这难得的友谊.

到论文的顺利完成,有很多的可敬的老师、同学、朋友给了我真挚的帮助,在这里请接受我诚挚的谢意!再次对伊力夏提老师表示最诚挚的谢意和祝福!

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

常微分方程作业欧拉法与改进欧拉法

P77 31.利用改进欧拉方法计算下列初值问题,并画出近似解的草图:dy + =t = t y y ≤ ≤ ,2 ;5.0 0,3 )0( )1(= ,1 ? dt 代码: %改进欧拉法 function Euler(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y+1; 调用:Euler(0,3,[0,2],0.5) 得到解析解:hold on; y=dsolve('Dy=y+1','(y(0)=3)','t'); ezplot(y,[0,2]) 图像:

dy y =t - t y ;2.0 t = ≤ )0( 0,5.0 ,4 )2(2= ≤ ? ,2 dt 代码: function Euler1(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y^2-4*t; 调用: Euler1(0,0.5,[0,2],0.2) 图像:

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法

四川师范大学本科毕业论文 微分方程常用的两种数值解法:欧拉方法与龙 格—库塔法 学生姓名XXX 院系名称数学与软件科学学院 专业名称信息与计算科学 班级2006级 4 班 学号20060640XX 指导教师Xxx 四川师范大学教务处 二○一○年五月

微分方程常用的两种数值解法:欧拉方法与龙格—库塔法 学生姓名:xxx 指导教师:xx 【内容摘要】微分方程是最有生命力的数学分支,在自然科学的许多领域中,都 会遇到常微分方程的求解问题。当前计算机的发展为常微分方程的应用及理论研究提供了非常有力的工具,利用计算机解微分方程主要使用数值方法,欧拉方法和龙格——库塔方法是求解微分方程最典型常用的数值方法。本文详细研究了这两类数值计算方法的构造过程,分析了它们的优缺点,以及它们的收敛性,相容性,及稳定性。讨论了步长的变化对数值方法的影响和系数不同的同阶龙格—库塔方法的差别。通过编制C程序在计算机上实现这两类方法及对一些典型算例的结果分析比较,能更深切体会它们的功能,优缺点及适用场合,从而在实际应用中能对不同类型和不同要求的常微分方程会选取适当的求解方法。 关键词:显式单步法欧拉(Euler)方法龙格—库塔(Runge—Kutta)方法截断误差收敛性 Two commonly used numerical solution of differential equations:Euler method and Runge - Kutta method Student Name: Xiong Shiying Tutor:Zhang Li 【Abstract】The differential equation is the most vitality branch in mathematics. In many domains of natural science, we can meet the ordinary differential equation solution question. Currently, the development of computer has provided the extremely powerful tool for the ordinary differential equation application and the fundamental research, the computer solving differential equation mainly uses value method. The Euler method and the Runge—Kutta method are the most typical commonly value method to solve the differential equation. This article dissects the structure process of these two kinds of values commonly value method to solve the analyses their good and bad points, to their astringency, the compatibility, and the stability has made the proof. At the same time, the article discuss the length of stride to the numerical method changing influence and the difference of the coefficient different same step Runge—kutta method. Through establishing C program on the computer can realize these two kind of methods, Anglicizing some models of calculate example result can sincerely realize their function, the advantage and disadvantage points and the suitable situation, thus the suitable solution method can be selected to solve the different type and the

欧拉及改进的欧拉法求解常微分方程

生物信息技术0801 徐聪U200812594 #include #include void f1(double *y,double *x,double *yy) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); yy[i]=x[i]+1+exp(x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f2(double *y,double *x,double *yy) { y[0]=1.0; x[0]=0.0; yy[0]=1.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(2*y[i-1]+x[i-1]*x[i-1]); yy[i]=-0.5*(x[i]*x[i]+x[i]+0.5)+1.25*exp(2*x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f3(double *y,double *x,double *yy,double *y0) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y0[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); y[i]=y[i-1]+0.1*(y[i-1]-x[i-1]+y0[i-1]-x[i-1]);

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

微分方程数值解

微 分方程数值解及其应用 绪论 自然界中的许多事物的运动和变化规律都可以用微分方程来描述,因此对工程和科学技术中的实际问题的研究中, 常常需要求解微分方程.但往往只有少数较简单和典型的微分方程可求出其解析解,在大多数情况下,只能用近似法求解,数值解法是一类重要的近似方法.本文主要讨论一阶常微分方程的初值问题的数值解法,探讨这些算法在处理来自生活实际问题中的应用,并结合MATLAB 软件,动手编程予以解决. 1 微分方程的初值问题[1] 1.1 预备知识 在对生活实际问题的研究中,通常需要考虑一阶微分方程的初值问题 00(,)()dy f x y dx y x y ?=???=? (1) 这里(),f x y 是矩形区域R :00,x x a y y b -≤-≤上的连续函数. 对初值问题(1)需要考虑以下问题:方程是否一定有解呢?若有解,有多少个解呢?下面给出相关的概念与定理. 定义1 Lipschitz 条件[1][2]:矩形区域R :00,x x a y y b -≤-≤上的连续函数(),f x y 若满足:存在常数0L >,使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立,则称(),f x y 在R 上关于y 满足Lipschitz 条件. 定理 1 解的存在唯一性定理[1][3]:设f 在区域()}{,,D x y a x b y R =≤≤∈上连续,关于y 满足Lipschitz 条件,则对任意的[]00,,∈∈x a b y R ,常微分方程初值问题(1)当[],x a b ∈时存在唯一的连续解()y x . 该定理保证若一个函数(),f x y 关于y 满足Lipschitz 条件,它所对应的微分方程的初值问题就有唯一解.在解的存在唯一性得到保证的前提下,自然要考虑方程的求

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

微分方程数值解欧拉法

1.1、求解初值问题()?????=-=-1 0y y xe dx dy x ,已知精确解为 ()()x x x x y -+=22 12 当h=0.1时,解为: n x n y ()n x y ()n n y x y - 0 1 1 0 0.1 0.900000 0.909362 9.3616E-03 0.2 0.819048 0.835105 1.6057E-02 0.3 0.753518 0.774155 2.0637E-02 0.4 0.700391 0.723946 2.3555E-02 0.5 0.657165 0.682347 2.5182E-02 0.6 0.621775 0.647598 2.5823E-02 0.7 0.592526 0.618249 2.5723E-02 0.8 0.568034 0.593114 2.5080E-02 0.9 0.547177 0.571230 2.4053E-02 1.0 0.529051 0.551819 2.2768E-02 0.1 0.2 0.30.40.50.60.70.80.91 当h=0.05时,解为:

n x n y ()n x y ()n n y x y - 0 1 1 0 0.05 0.950000 0.952418 2.4185E-03 0.10 0.904878 0.909362 4.4835E-03 0.15 0.864158 0.870391 6.2326E-03 0.20 0.827406 0.835105 7.6996E-03 0.25 0.794223 0.803138 8.9155E-03 0.30 0.764247 0.774155 9.9084E-03 0.35 0.737147 0.747850 1.0704E-02 0.40 0.712621 0.723946 1.1324E-02 0.45 0.690397 0.702188 1.1791E-02 0.50 0.670223 0.682347 1.2124E-02 0.55 0.651876 0.664213 1.2338E-02 0.60 0.635148 0.647598 1.2450E-02 0.65 0.619855 0.632328 1.2473E-02 0.70 0.605829 0.618249 1.2420E-02 0.75 0.592918 0.605220 1.2302E-02 0.80 0.580985 0.593114 1.2129E-02 0.85 0.569909 0.581819 1.1909E-02 0.90 0.559579 0.571230 1.1651E-02 0.95 0.549896 0.561258 1.1362E-02 1.00 0.540771 0.551819 1.1048E-02 0.1 0.2 0.30.40.50.60.70.80.91

一阶常微分方程的奇解

摘要 (4) 1.何谓奇解 (5) 2.奇解的产生 (5) 3.包络跟奇解的关系 (6) 4.理论上证明C-判别曲线与P-判别曲线方法 (7) 4.1 克莱罗微分方程 (11) 5.奇解的基本性质 (14) 5.1 定理1 (14) 5.2 定理2 (16) 5.3 定理3 (16) 6.小结 (17) 参考文献: (17)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式

1.何谓奇解 设一阶隐式方程) x F=0有一特解 y , , (,y

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域内,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域内都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

fortran下欧拉法求解常微分方程(实例)

1. Euler 公式 100(,)() i i i i y y hf x y y y x +=+??=? 实例: ,00(,),0,1,01f x y x y x y x =-==≤≤ 精确解为:1x y x e -=+- 程序代码: DIMENSION x(0:20),y(0:20),z(0:20),k(0:21) DOUBLE PRECISION x,y,z,k,h,x0,y0,z0,k0,n f(x,y)=x-y n=20 h=1/n x(0)=0 y(0)=0 DO i=0,n-1 y(i+1)=y(i)+f(x(i),y(i))*h x(i+1)=x(i)+h ENDDO k(0)=0 DO i=0,n z(i)=k(i)+exp(-k(i))-1 k(i+1)=k(i)+h END DO open(10,file='1.txt') WRITE(10,10) (x(i),y(i),z(i),i=0,20) WRITE(*,10) (x(i),y(i),z(i),i=0,20) 10 FORMAT(1x,f10.8,2x,f10.8,2x,f10.8/) END 输出结果: 0.00000000 0.00000000 0.00000000 0.05000000 0.00000000 0.00122942 0.10000000 0.00250000 0.00483742 0.15000000 0.00737500 0.01070798 0.20000000 0.01450625 0.01873075 0.25000000 0.02378094 0.02880078 ???=='00)(),(y x y y x f y ???=='0 0)(),(y x y y x f y

试论常微分方程的奇解

试论常微分方程的奇解 摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法. 关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法. Discussing Singular Solution about First Order Differential Equation ZHU Yong-wang (Class 1, Grade 2006, College of Mathematics and Information Science) Advisor: Professor LI Jian-min Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution, which can be solved by the P-judgment method and C-judgment method.While whether the two judgments can be applied to get every singular solution to the first order differential equation? This paper intends to illustrate this problem with several examples. Key words: Singular solution, P-judgment, C-judgment, C-P elimination method, The supplement method, Natural method. 1.引言 一般来说一阶常微分方程拥有任意常数的通解,另外还有个别不含于通解的特解.这种特解可以理解为通解的一种蜕化现象.它在几何上往往表现为解的唯一性遭到破坏.早在1649年莱布尼兹就已经观察到解族的包络也是一个解.克莱络

常微分方程欧拉算法

常微分方程欧拉算法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

常微分方程欧拉算法 摘要:本文主要论述了常微分方程的欧拉算法的算法原理,误差分析,实例,程序,以及算法比较等内容。 关键词:常微分方程 显式欧拉法 隐式欧拉法 引言:微分方程初值问题模型是常见的一类数学模型。对于一些简单而典型的微分方程模型,譬如线性方程、某些特殊的一阶非线性方程等是可以设法求出其解析解的,并有理论上的结果可资利用。但在数学建模中碰到的常微分方程初值问题模型,通常很难,甚至根本无法求出其解析解,而只能求其近似解。因此,研究其数值方法,以便快速求得数值鳃有其重大意义。 一、欧拉算法原理 对于微分方程初值问题 的解在xy 平面上是一条曲线,称为该微分方程的积分曲线。积分曲线上一点(),x y 的切线斜率等于函数f 在点(),x y 的值,从初始点()000,P x y 出发,向该点的切线方向推进到下一个点()111,P x y ,然后依次做下去,得到后面的未知点。一般地,若知道(),n n n P x y 依上述方法推进到点()111,n n n P x y +++,则两点的坐标关系为: 即 这种方法就是欧拉(Euler )方法(也叫显式欧拉法或向前欧拉法)。当初值0y 已知,则n y 可以逐步算出 对微分方程()=x y dy f dx ,从n x 到1n x +积分,那么有 现在用左矩形公式()(),n n hf x y x 代替()()1 ,n n x x f t y t dt +?,n y 代替()n y x ,1n y +代替() 1n y x +就得到了欧拉方法。如果用右矩形公式()()11,n n hf x y x ++去代替右端积分,则得到另外一 个公式,该方法就称为隐式欧拉法(或后退欧拉法),其公式为 欧拉公式与隐式欧拉公式的区别在于欧拉公式是关于1n y +的一个直接计算公式,然而隐式欧拉公式右端含有1n y +,所以它实际上是关于1n y +的一个函数方程。 二、实例 例 取h=,用Euler 方法解

相关文档
相关文档 最新文档