文档库 最新最全的文档下载
当前位置:文档库 › 1 分类讨论的思想方法

1 分类讨论的思想方法

1 分类讨论的思想方法
1 分类讨论的思想方法

分类讨论思想方法

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:

①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。

③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

例4. 设函数f(x)=ax2-2x+2,对于满足10,

求实数a的取值范围。

【分析】含参数的一元二次函数在有界区间上的

最大值、最小值等值域问题,需要先对开口方向讨论,

再对其抛物线对称轴的位置与闭区间的关系进行分

类讨论,最后综合得解。

【解】当a>0时,f(x)=a(x-1

a

)2+2-

1

a

1

1

1220

a

f a

=≥

()-+

?

?

?

??

1

1

4

1

2

1

<<

->

?

?

??

?

?

?

a

f

a a

()=

1

4

416820 a

f a

=≥()-+

?

?

?

??

∴ a≥1或1

2

1

2

1 4

x

1 4

x

当a<0时,

f a

f a

()

()

1220

416820

=≥

=≥

-+

-+

?

?

?

,解得φ;

当a=0时,f(x)=-2x+2, f(1)=0,f(4)=-6,∴不合题意

由上而得,实数a的取值范围是a>1

2

【注】本题分两级讨论,先对决定开口方向的二次项系数a分a>0、a<0、a =0三种情况,再每种情况结合二次函数的图像,在a>0时将对称轴与闭区间的关系分三种,即在闭区间左边、右边、中间。本题的解答,关键是分析符合条件的二次函数的图像,也可以看成是“数形结合法”的运用。

例5. 解不等式()()

x a x a

a

+-

+

46

21

>0 (a为常数,a≠-

1

2

)

【分析】含参数的不等式,参数a决定了2a+1的符号和两根-4a、6a的

大小,故对参数a分四种情况a>0、a=0、-1

2

1

2

分别加以讨论。

【解】 2a+1>0时,a>-1

2

;-4a<6a时,a>0 。所以分以下四种情

况讨论:

当a>0时,(x+4a)(x-6a)>0,解得:x<-4a或x>6a;

当a=0时,x2>0,解得:x≠0;

当-1

2

0,解得: x<6a或x>-4a;

当a>-1

2

时,(x+4a)(x-6a)<0,解得: 6a

综上所述,当a>0时,x<-4a或x>6a;当a=0时,x≠0;当-1

2

x<6a或x>-4a;当a>-1

2

时,6a

【注】本题的关键是确定对参数a分四种情况进行讨论,做到不重不漏。一般地,遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响而进行分类讨论,此种题型为含参型。

专题四:分类讨论思想在解题中的应用

专题四:分类讨论思想在解题中的应用 一.知识探究: 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的 结果,最终综合各类结果得到整个问题的解答。 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类 讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的;如绝对值|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 (2)运用的数学定理、公式、或运算性质、法则是分类给出的;如等 比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可 以称为性质型。 (3)求解的数学问题的结论有多种情况或多种可能性; (4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 (5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解 决的。 2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不 同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏,包含各种情况,同时要有利于问题研究; 3.分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级; 4.分类方法:(1)概念和性质是分类的依据(2)按区域(定义域或值域)进行分类是基本方法(3)不定因素(条件或结论不唯一,数值大小的不确定,图形位置的不确定)是分类的突破口(4)二分发是分类讨论的利器(4)层次分明是分类讨论的基本要求; 5.讨论的基本步骤:(1)确定讨论的对象和讨论的范围(全域)(2)确定分类的标准,进行合理的分类(3)逐步讨论(必要时还得进行多级分类)

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

分类讨论思想的应用

分类讨论思想的应用 摘要:“分类”源于生活用于生活,分类思想是自然科学乃至社会科学中的基本逻 辑方法,也是研究数学问题的重要思想方法,它应贯穿于整个数学教学中。在解 题中正确、合理、严谨的分类,可将一个复杂的问题大大的简化,达到化繁就简,化难为易,分而治之的目的。 关键词:分类讨论思想三角形四边形方程 中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982 (2019)11-095-02 分类讨论思想在初中数学中经常用来探究和解决问题,帮助学生更好地理解 和解决问题,并能帮助学生把握解题的思路和技巧,做到举一反三,从而有利于 培养学生的学习兴趣,使他们从数学学习中获得乐趣,所以本文主要从几何图形、代数、函数等方面的内容进行分类讨论。 分类讨论的数学思想,也称分情况讨论,当一个数学问题在一定的题设下, 其结论并不唯一时,我们就需要对这一问题进行必要的分类。将一个数学问题根 据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下 得到的答案进行归纳综合。在解题中正确、合理、严谨的分类,可将一个复杂的 问题大大的简化,达到化繁就简,化难为易,分而治之的目的。 一、在几何图形中的分类讨论思想 (一)在三角形中的分类讨论 与等腰三角形有关的分类讨论:在等腰三角形中无论边还是顶角底角,不确 定的情况下要分类,分情况求解,有时要分钝角三角形,直角三角形,锐角三角形,分别讨论解决 1、在等腰三角形中求角:等腰三角形的一个角可能指底角,也可能指顶角, 所以必须分情况讨论。 例1、若等腰三角形中有一个角为50°,则这个等腰三角形的顶角的度数为【】(A)(B) (C)或(D)或 分析:等腰三角形有一个顶角、两个底角,并且两个底角相等.题目所给的角由 于不知道是顶角还是底角,所以要分为两种情况进行讨论. 解:分为两种情况:(1)当角为顶角时,它的两个底角为 ; (2)当角为底角时,顶角为 . 综上所述,该等腰三角形的顶角为或 ,选择(D). 拓展:若把题目中的角改为角,则本题的答案是什么?还需要讨论吗? 2、在等腰三角形中求边: 等腰三角形中,对给出的边可能是腰,也可能是底边,所以我们要进行分类 讨论。 例2.若等腰三角形的两条边长分别为3cm、6cm,则它的周长为【】 (A)9cm (B)12cm (C)15cm (D)12cm或15cm 分析:两条边长分别为3cm、6cm,其中必有一条边长为腰长,另一条边长为底边长,究竟哪一条边长是腰长,要分为两种情况讨论.注意,并不是每一种情况都符合题意,最后还要根据三角形三条边之间的关系作出取舍.

初中数学分类讨论思想在教学中的应用

初中数学分类讨论思想在教学中的应用 新课标指出:“通过义务教育阶段的数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能”。所以在数学教学中有效地渗透,培养数学思想方法,已逐渐成为数学、课改的热点。所谓数学思想,是指人们对数学科学研究的本质及规律的理性认识。数学思想是数学的精髓。初中阶段常见的数学思想包括:函数与方程思想,化归思杨,分类讨论思想、数形结合思想等。其中分类讨论思想是初中数学中最常见、最重要的一种数学思想,它贯穿于整个初中数学,它有利于考查学生的综合数学基础知识和灵活运用能力。 本文从分类讨论思想的概念和特点,引起分类讨论的原因,以及分类讨论思想在数学教学中的应用举例等内容展开,比较系统全面地介绍了分类讨论思想。 一、分类讨论思想的概念 分类讨论思想是一种最基本的解决问题的思维策略,就是把要研究的数学对象按照标准划分为若干不同的类别,然后逐类进行研究,求解的一种数学解题思想。它是问题不能以统一的同一种方法处理或同一形式来表述、概括时,根据数学对象的本质属性的相同点和不同点,再按照一定的原则或某一确定的标准,在比较的基础上,将对象划分为若干个既有

联系又有区别的部分,进行逐类讨论,最后把几类结论汇总,从而得出问题的答案。分类讨论的实质是化繁为简,将一个复杂的问题分为几个简单的问题,分而治之。 二、引起分类讨论的原因 分类讨论思想贯穿于整个中学数学的全部内容中。初中阶段数学运用分类讨论思想解决的数学问题,其引起分类的原因主要可以归结为以下几个方面: 1.概念本身是分类定义的。如绝对值等。 2.问题中涉及的数学定理、公式或运算性质、法则是有条件或范围是限制的,或者是分类给出的。 3.含有字母系数(参数)的问题,有时需对该字母的不同取值范围进行讨论。 4.某些不确定的数量、不确定的图形的形状或位置,不确定的结论等都要进行分类讨论。 三、解答分类讨论型问题的步骤 分类讨论型问题常与开放探究型问题综合在一起,不论是在分类中探究,还是在探究中分类,都需要具备扎实的基础知识,和灵活的思维方式,对问题进行全面衡量、统筹兼顾,切忌以偏概全。解答分类讨论型问题的关键是要有分类讨论的意识,克服想当然的错误习惯。 通常解答分类讨论型问题的一般步骤是: 1.确定分类对象。

[精品]新高三数学第二轮专题复习分类讨论思想优质课教案

高三数学第二轮专题复习:分类讨论思想 高考要求 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论” 重难点归纳 分类讨论思想就是依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则分类讨论常见的依据是 1由概念内涵分类如绝对值、直线的斜率、指数对数函数、直线与平面的夹角等定义包含了分类 2由公式条件分类如等比数列的前n项和公式、极限的计算、圆锥曲线的统一定义中图形的分类等 3由实际意义分类如排列、组合、概率中较常见,但不明显、有些应用问题也需分类讨论 在学习中也要注意优化策略,有时利用转化策略,如反证法、补集法、变更多元法、数形结合法等简化甚至避开讨论 典型题例示范讲解

例1已知{a n }是首项为2,公比为2 1的等比数列,S n 为它的前n 项和 (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立 命题意图 本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力 知识依托 解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质 错解分析 第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-223 技巧与方法 本题属于探索性题型,是高考试题的热点题型 在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想 即对双参数k ,c 轮流分类讨论,从而获得答案 解 (1)由S n =4(1–n 21),得221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>-=--k k k S S S ,(k ∈N *)故只要23S k –2<c <S k ,(k ∈N *) 因为S k +1>S k ,(k ∈N *) ① 所以23S k –2≥2 3S 1–2=1 又S k <4,故要使①成立,c 只能取2或3 当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

分类讨论思想的应用

分类讨论思想的应用 李增旺 例1 一组数据:2,3,4,x 中,若中位数与平均数相等,则数x 不. 可能是( ) A.1 B.2 C.3 D.5 解析:因为x 的值不确定,所以中位数也不确定,必须分类求解.结合中位数的确 定方法,可知x 的取值分为三种情况: (1)当x ≤2时,中位数为5.2232=+,平均数为4 432+++x ,所以5.24 432=+++x ,解得x =1; (2)当2<x <4时,中位数为23+x ,平均数为4 432+++x ,所以234342 x x ++++=,解得x =3; (3)当x ≥4时,中位数为5.3234=+,平均数为4 432+++x ,所以234 3.54 x +++=,解得x =5. 故选B . 例 2 为了从甲、乙两名同学中选拔一人参加数学竞赛,在同等的条件下,老师查看了平时两名同学10次测验的成绩记录,下面是甲、乙两人的测验情况统计记录(其中乙得分为98分、99分的得分次数被墨水污染看不清楚,但是老师仍有印象乙得98分、99分的次数均不为0): (1)求甲同学在前10次测验中的平均成绩. (2)根据前10次测验的情况,如果你是该班的数学老师,你认为选谁参加比赛比较合适,并说明理由.(结果保留到小数点后第1位) 解:(1)甲同学在前10次测验中的平均成绩是 94195296197398299110 ??????+++++=96.6(分). (2)①若乙同学得98分的次数为1,得99分的次数为2,则乙同学前10次测验中的平均成绩是94095496097398199210 ??????+++++=96.7(分). 在前10次测验中的平均成绩乙比甲好,这时应该选择乙参加数学竞赛. ②若乙同学得98分的次数为2,得99分的次数为1,则乙同学前10次测验中的平均成绩是94095496097398299110 ??????+++++=96.6(分). 甲同学在前10次测验中的方差2s 甲= 10 1×[(94-96.6)2+2×(95-96.6)2+(96-96.6)2+3×(97-96.6)2+2×(98-96.6)2+ (99-96.6)2]=2.24, 乙同学在前10次测验中的方差2s 乙=101×[4×(95-96.6)2+3×(97-96.6)2+2×(98

浅谈数学解题中的分类讨论思想

浅谈数学解题中的分类讨论思想 洪湖市第一中学 付志刚 分类讨论的数学思想方法就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着重要帮助,因此有关分类讨论的数学命题在高考试题中占有重要位置。本文想就分类讨论的原则、方法和步骤等作一些阐述,不妥之处,敬请斧正。 一、科学合理的分类 把一个集合分成若干个非空真子集(、、? ? ?)(≥,∈),使集合中的每一个元素属于且仅属于某一个子集。即 ①∪∪∪?? ? ?∪= ②∩=φ(∈,且≠)。 则称对集进行了一次科学的分类(或称一次逻辑划分) 科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。 二、确定分类标准 在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种: ()根据数学概念来确定分类标准 例如:绝对值的定义是: 所以在解含有绝对值的不等式 (-)≥时,就必须根据确定 , (-)正负的值和将定义域(,)分成三个区间进行讨论,即<<, ≤<,≤<三种情形分类讨论。 例、 已知动点到原点的距离为,到直线:=的距离为,且= ()求点的轨迹方程。 ()过原点作倾斜角为α的直线与点的轨迹曲线交于两点,求弦长||的最大值及对应的倾斜角α。 解:()设点的坐标为(),依题意可得: 根据绝对值的概念,轨迹方程取决于>还是≤,所以以为标准进行分类讨论可 得轨迹方程为: 解()如图,由于,的位置变化, 弦长||的表达式不同,故必须分点, 都在曲线()以及一点 在曲线() 上而另一点在曲线-(-)上可求得: 从而知当 或 时 ()根据数学中的定理,公式和性质确定分类标准。 数学中的某些公式,定理,性质在不同条件下有不同的结论,在运用它们时,就要分类讨论,分类的依据是公式中的条件。 ()()()?????-==0000< >a a a a a a 3131 314 222=-++x y x ???()() 3221<

中考数学专题复习专题三大数学思想方法第一节分类讨论思想训练

专题三 5大数学思想方法 第一节 分类讨论思想 类型一 由概念内涵分类 (2018·山东潍坊中考)如图1,抛物线y 1=ax 2 -12x +c 与x 轴交于点A 和点B(1,0),与y 轴交于 点C(0,3 4),抛物线y 1的顶点为G ,GM⊥x 轴于点M.将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的 抛物线y 2. (1)求抛物线y 2的表达式; (2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由; (3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R.若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的表达式. 【分析】(1)应用待定系数法求表达式; (2)设出点T 坐标,表示出△TAC 三边,进行分类讨论; (3)设出点P 坐标,表示出Q ,R 坐标及PQ ,QR ,根据以P ,Q ,R 为顶点的三角形与△AMG 全等,分类讨论对应边相等的可能性即可. 【自主解答】

此类题型与概念的条件有关,如等腰三角形有两条边相等(没有明确哪两条边相等)、直角三角形有一个角是直角(没有明确哪个角是直角)等,解决这类问题的关键是对概念内涵的理解,而且在分类讨论后还要判断是否符合概念本身的要求(如能否组成三角形). 1.(2018·安徽中考改编)若一个数的绝对值是8,则这个数是( ) A .-8 B .8 C .±8 D .-18 类型二 由公式条件分类 (2018·浙江嘉兴中考)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫

数学思想与方法作业

数学思想与方法作业一 一、简答题 1、分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。 答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。 代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。 它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。 2、比较决定性现象和随机现象的特点,简单叙述确定数学的局限。 二、论述题 1.论述社会科学数学化的主要原因。 2、论述数学的三次危机对数学发展的作用。 答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。 第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。 第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。 由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的 历史,斗争的结果就是数学领域的发展。 三、分析题 1.分析《几何原本》思想方法的特点,为什么? 2、分析《九章算术》思想方法的特点,为什么? 答:(1)开放的归纳体系 从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。 在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综 合起来,就得到整个《九章算术》。 另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。因此,《九章算术》是一个开放的归纳体系。 (2)算法化的内容 《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。因此,内容的算法化是《九章算术》思想方法上的特点之一。 (3)模型化的方法 《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。

【2020年高考必备】导数中分类讨论思想的应用及分类

导数中分类讨论思想的应用及分类 导数之所以难是因为加入了参数使得确定的函数变的不确定,因此对参数进行讨论进而确定出函数的单调区间、极值、最值、趋势图像是高考中每年必考的内容,分类讨论思想在任何专题中都可能出现,很多老师反复提醒要做到不重不漏,可是要做到不重不漏的前提是在做题之前就应该知道该题目分类讨论的依据是什么,今天我们重点来看看如何把握导数中常见的分类讨论依据。如果没有参数,我们队复杂函数求最值的程序是: 那么既然设置参数了,导函数也必定含有参数,则分类讨论就出现了,因为导函数含有参数,那么对导函数求根的时候有没有根?有几个根?如果有两个根,则两根大小如何确定?如果题目的参数设置不是在函数上而是在定义域上,则函数是能够准确作出趋势图像的,但是定义域有参数就意味着可以左右移动,在移动的过程中单调区间和最值都会发生变化。因此在导数中分类讨论题目主要分成这两大类,第一:参数在函数上,第二:参数在定义域上,若函数和定义域都有参数,如果是相同的参数还好说,如果是不同的参数,题目就麻烦了。 根据高考出题形式,今天主要讨论参数在函数上的类型,在复杂函数形式设置上有两种常见的方向,一种是导函数可以转化为二次函数或者类二次函数的形式,另一种是非二次函数的形式,可能里面涉及了三角函数,指数对数等。 题型一:导函数是二次函数或者类二次函数形式的 既然是二次函数的形式,那么必须考虑二次函数参数的设置,若参数在二次项的系数上则若系数

为零,则导函数就可以转化为一次函数的形式,若不是零,则继续按照二次函数形式求根;若参数在一次项的系数上,则二次函数开口确定,对称轴不确?不确定,因此二次函数定;若参数在常数项上,则开口和对称轴都是确定的,但是是否有根也不确定,故二次函数形式的导函数讨论流程如下: ①如若二次函数或高次函数的最高次系数存在参数,则需对参数是否为零进行讨论,但是有一类除外,即如果二次函数各项符号均相同(同正同负)时则可以直接判定,例'2'0a?1?axa?y?2?y0,再例,可直接判断出当时,'2'0?a?01a2y??ax??y,此时不需要对参数是否,则可直接判断出当时,为零进行讨论,除此之外均需对参数是否为零进行讨论; ②若二次函数最高次不为零时,则需对二次函数的判别式进行讨论,讨论的目的是判断导函数是否有根,从而确定原函数极值点的个数; ③若二次函数能解出两根,但是两根有一个存在参数或两根都存在参数,则需分别讨论两根的大小关系; ④若原函数有限定的定义域,则还需要讨论极值点和定义域端点的位置关系。 例1.已知函数2?1x?ax)?(a?1)ln(fxf(x)的单调性。,讨论函数2?aax?12f(x)(0,??),的定义域为解析:函数'?)f(x x a?0时,当'(x)?0ff(x)在定义域内单调递增。,故函数a??1 时,当'(x)?f0f(x)在定义域内单调递减。,此时 a?10?1?a?时,令当'??x0?f(x),解得2a1?1aa?当 ''),??x?[]?x?(0,?(x)f0?0f(x)?时,;当时,2a2a1?a?1a)xf(在故????)(0,x]x?[?,单调递减。单调递增,在a22a注意题目中为什么没有对最高次的参数是否为零进行单独讨论?因为分子部分符a非负状态下的单调性,切记,切记。号相同,很容易判断 例2.已知函数2?x?a ln(x)?xxff(x)在定义域上的单调性。,讨论2?xx?a2解析:'a?8??1?)(x?0)(xf,

数学思想及解题策略分类讨论思想方法

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

小学数学中常见的数学思想方法有哪些.

小学数学中常见的数学思想方法有哪些? 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化

及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

浅谈分类讨论思想及其应用

浅谈分类讨论思想及其应用 杨凌高新中学 王旭 2010-1-12 分类讨论思想方法是研究与解决数学问题的重要思想之一,在中学数学应用中十分广泛,本文从分类讨论的原则、分类讨论的步骤及应用环境出发,辅以一定例题,着重分析讨论了分类讨论思想在中学数学中应用的一般原则、方法、技巧及应用环境. 一、 分类讨论思想的概念 由于数学研究对象的属性不同,影响了研究问题的结果,从而对不同属性的对象进行研究的思想;或者由于在研究问题过程中出现了不同情况,从而对不同情况进行分类研究的思想,我们称之为分类讨论思想,其实质是一种逻辑划分的思想.从思维策略上看,它是把要解决的数学问题,分解成可能的各个部分,从而使复杂问题简单化,使“大”问题转化为“小”问题,便于求解.通过正确的分类可以使复杂的问题得到清晰、完整、严密的解答,做到正确的分类,必须遵循一定的原则,以保证分类科学、统一,不重复、不遗漏,并力求最简. 二、 分类讨论的原则 从某种意义上讲,分类讨论是不得已而为之的事情,通过协调、缓和“矛盾”,达到运用知识合理解决问题的思想方法.那如何进行分类讨论呢?分类讨论必须要遵循一定的原则,才能使分类科学、严谨,从而正确、合理地解题,分类讨论原则有同一性原则、互斥性原则、层次性原则. 1.同一性原则 同一性原则简言之即“不遗漏”,可以通过集合的思想来解释,如果把研究对象看作全集I ,()n i A i 1=是I 的子集,并以此分类,且A 1∪A 2∪…A n =I ,则称这种分类(A 1,A 2…A n )符合同一性原则.比如,我们若把实数R 分成正实数R +与负实数R ﹣,那这种分类不符合同一性原则,因为R= R +∪R ﹣∪﹛0﹜,则这种分类方法遗漏了零.在下面的例子中来讨论同一性原则的应用: 例1:已知直线l :01sin 4=+-θy x ,求它的斜率及斜率的取值范围、倾斜角的取值范围. 分析:直线l 的方程中y 的系数是θsin ,而θsin 的值域是[]1,1-,θsin 值可取零,但θsin =0时斜率不存在,故视θsin 为研究对象I []1,1-=,{}01=A ,[)(]1,00,12 -=A , A 1, A 2都是I 的子集,且A 1∪A 2=I ,满足同一性原则,作如下分类讨论:

数学总复习之数学思想第2讲《分类讨论》

数学总复习之数学思想第2讲《分类讨论》 题型一 根据数学概念分类讨论 【例题1】在△ABC 中,已知sin B =154,a =6,b =8,求边c 的长.. 题型二 根据公式、定理、性质的条件分类讨论 【例题2】数列{}n a 的前n 项和为221n S n n =+-,则其通项n a = . 题型三 根据变量或参数的取值情况分类讨论 【例题3】解关于x 的不等式01)1(2 <++-x a ax . 题型四 根据图形位置或形状变化分类讨论 【例题4】在△ABC 中,AB =(2,3),AC =(1,k ),若△ABC 是Rt △,求k 的值.

1. 等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是 ( ) A .1 B .-12 C .1或-12 D .-1或12 2.设集合A ={x |x 2+x -12=0},集合B ={x |kx +1=0},如果A ∪B =A ,则由实数 k 组成的集合中所有元素的和与积分别为 ( ) A .-112,0 B.112,-112 C.112,0 D.14,-112 3.一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这直线方程为( ) A. x y +-=70 B. 250x y -= C. x y x y +-=-=70250或 D. x y y x ++=-=70250或 4.不等式2 (2)2(2)40a x a x -+--<对一切x ∈R 恒成立,则a 的取值范围是 ( ) A .(-∞,2] B .[-2,2] C .(-2,2] D .(-∞,-2) 5.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积是 . 6.函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 . 7.已知a ∈R ,若关于x 的方程2104 x x a a ++- +=有实根,求a 的取值范围. 8. 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式; (2)设b n =(4-a n )q n -1 (q ≠0,n ∈N *),求数列{b n }的前n 项和S n .

高中数学专题练习:分类讨论思想

高中数学专题练习:分类讨论思想 [思想方法解读]分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略. 1.中学数学中可能引起分类讨论的因素: (1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等. (2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n}的前n项和公式等. (3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等. (4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等. (5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等. 2.进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论.其中最重要的一条是“不重不漏”. 3.解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论. 常考题型精析 题型一由概念、公式、法则、计算性质引起的分类讨论 例1设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若B?A,求实数a的取值范围.

小学数学思想方法有哪些整理完整版

小学数学思想方法有哪 些整理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

小学数学思想方法有哪些 《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的:基础知识、基本技能、基本思想、基本活动经验。 “基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。演绎和归纳不是矛盾的,其教学也不是矛盾的,通过归纳来预测结果,然后通过演绎来验证结果。在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想,但最上位的思想还是演绎和归纳。之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。每一个具体的方法可能是重要的,但它们是个案,不具有一般性。作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。这里所说的思想,是大的思想,是希望学生领会之后能够终生受益的那种思想方法。 史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。 就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。 借助归纳推理可以培养学生“预测结果”和“探究成因”的能力,是演绎推理不可比拟的。从方法论的角度考虑,“双基教育”缺少归纳能力的培养,对学生未来走向社会不利,对培养创新性人才不利。 一、什么是小学数学思想方法 所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。 所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。

分类讨论的思想方法

分类讨论的思想方法 慕泽刚 (重庆市龙坡区渝西中学 401326) 一、知识要点概述 1.分类讨论的思想方法的原理及作用:在研究与解决数学问题时,如果问题不能以统一的同一种方法处理或同一种形式表述、概括,可根据数学对象的本质属性的相同和不同点,按照一定的原则或某一确定的标准,在比较的基础上,将数学对象划分为若干既有联系又有区别的部分,然后逐类进行讨论,再把这几类的结论汇总,从而得出问题的答案,这种研究解决问题的思想方法就是分类讨论的思想方法.分类讨论的思想方法是中学数学的基本方法之一,在近几年的高考试题中都把分类讨论思想方法列为重要的思想方法来考查,体现出其重要的位置.分类讨论的思想方法不仅具有明显的逻辑性、题型覆盖知识点较多、综合性强等特点,而且还有利于对学生知识面的考查、需要学生有一定的分析能力、一定分类技巧,对学生能力的考查有着重要的作用.分类讨论的思想的实质就是把数学问题中的各种限制条件的制约及变动因素的影响而采取的化整为零、各个突破的解题手段. 2.引入分类讨论的主要原因 (1)由数学概念引起的分类讨论:如绝对值的定义、直线与平面所成的角、定比分点坐标公式等; (2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、对数中真数与底数的要求等; (3)由函数的性质、定理、公式的限制引起的分类讨论; (4)由图形的不确定引起的分类讨论; (5)由参数的变化引起的分类讨论; (6)按实际问题的情况而分类讨论. 二、解题方法指导 1.分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结. 2.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形; (6)数形结合;(7)缩小范围等. 3.解题时把好“四关” (1)要深刻理解基本知识与基本原理,把好“基础关”; (2)要找准划分标准,把好“分类关”; (3)要保证条理分明,层次清晰,把好“逻辑关”; (4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”. 三、范例剖析 例1解关于x 的不等式:a(x-1)x-2 >1(a ≠1) 解析:原不等式等价于:(a-1)x-(a-2)x-2>0,即(a ﹣1)(x ﹣a-2a-1 )(x ﹣2)>0 ① 若a>1,则①等价于(x ﹣a-2a-1 )(x ﹣2)>0. 又∵2﹣a-2a-1=﹣1a-1﹣1<0,∴a-2a-1 <2 ∴原不等式的解集为;(﹣∞,a-2a-1 )∪(2,+∞); 若a<1时,则①等价于(x ﹣a-2a-1)(x ﹣2)<0.由于2﹣a-2a-1=a a-1, 当02,∴原不等式的解集为(2,a-2a-1 ). 当a<0时,a-2a-1<2,∴原不等式的解集为(a-2a-1 ,2).

数学美五分类讨论思想在解题中的应用

数学欣赏五 分类讨论思想在解题中的应用 一、知识整合 1.分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想对于简化研究对象,发展人的思维有着 重要帮助,因此,有关分类讨论的数学命题在高考试题中占有重要位置。 2.所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。 3.分类原则:分类对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。 4.分类方法:明确讨论对象,确定对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合出结论。 5.含参数问题的分类讨论是常见题型。 6.注意简化或避免分类讨论。 二、例题分析 (一)对变量或参数的分类讨论 1.已知集合}2|{2o x x x A =--=,}1|{o ax x B =-=若B B A =I ,则a 的值是 . 2.若不等式o x k x k >+++-1)1(2)1(22对于R x ∈恒成立,则实数k 的取值范围是 . 3.解关于x 的不等式 o x a ax <++-1)1(2 )(R a ∈ 分析:这是一个含参数a 的不等式,一定是二次不等式吗?不一定,故首先对二次项系数a 分类:(1)a ≠0(2)a=0,对于(2),不等式易解;对于(1),又需再次分类:a>0或a<0,因为这两种情形下,不等式解集形式是不同的;不等式的解是在两根之外,还 是在两根之间。而确定这一点之后,又会遇到1与1 a 谁大谁小的问题,因而又需作一次 分类讨论。故而解题时,需要作三级分类。 解:()当时,原不等式化为10101a x x =-+<∴> ()当时,原不等式化为2011 0a a x x a ≠--<()() ①若,则原不等式化为a x x a <-->011 0()() Θ10 11a a <∴< ∴<>不等式解为或x a x 1 1

相关文档
相关文档 最新文档