文档库 最新最全的文档下载
当前位置:文档库 › 如何利用频谱分析仪测量电磁干扰

如何利用频谱分析仪测量电磁干扰

如何利用频谱分析仪测量电磁干扰
如何利用频谱分析仪测量电磁干扰

如何利用频谱分析仪测量电磁干扰

谈到测量电信号,电气工程师首先想到可能就是示波器。示波器是一种将电压幅度随时间变化规律显示出来仪器,它相当于电气工程师眼睛,使你能够看到线路中电流和电压变化规律,从而掌握电路工作状态。但是示波器并不是电磁干扰测量与诊断理想工具。这是因为:

A.所有电磁兼容标准中电磁干扰极限值都是在频域中定义,而示波器显示出时域波形。因此测试得到结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。

B.电磁干扰相对于电路工作信号往往都是较小,并且电磁干扰频率往往比信号高,而当一些幅度较低高频信号叠加在一个幅度较大低频信号时,用示波器是无法进行测量。

C.示波器灵敏度在mV级,而由天线接收到电磁干扰幅度通常为V级,因此示波器不能满足灵敏度要求。

测量电磁干扰更合适仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化规律显示出来仪器,它显示波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中缺点,它能够精确测量各个频率上干扰强度。

对于电磁干扰问题分析而言,频谱分析仪是比示波器更有用仪器。而用频谱分析仪可以直接显示出信号各个频谱分量。

1、频谱分析仪原理

频谱分析仪是一台在一定频率范围内扫描接收接收机,它原理图如图1所示。

图1 频谱分析仪原理框图

频谱分析仪采用频率扫描超外差工作方式。混频器将天线上接收到信号与本振产生信号混频,当混频频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。检波后信号被视频放大器进行放大,然后显示出来。由于本振电路振荡频率随着时间变化,因此频谱分析仪在不同时间接收频率是不同。当本振振荡器频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上幅度,将不同频率上信号幅度记录下来,就得到了被测信号频谱。

根据这个频谱,就能够知道被测设备是否有超过标准规定干扰发射,或产生干扰信号频率是多少。

2、频谱分析仪使用方法

要获得正确测量结果,必须正确地操作频谱分析仪。本节简单介绍频谱分析仪使用方法。正确使用频谱分析仪关键是正确设置频谱分析仪各个参数。下面解释频谱分析仪中主要参数意义和设置方法。

扫描时间:

仪器接收信号从扫描频率范围最低端扫描到最高端所使用时间叫做扫描时间。扫描时间与扫描频率范围是相匹配。如果扫描时间过短,测量到信号幅度比实际信号幅度要小。

频率扫描范围:

规定了频谱分析仪扫描频率上限和下限。通过调整扫描频率范围,可以对感兴趣频率进行细致观察。扫描频率范围越宽,则扫描一遍所需要时间越长,频谱上各点测量精度越低,因此,在可能情况下,尽量使用较小频率范围。在设置这个参数时,可以通过设置扫描开始频率和终止频率来确定,例如:start frequency = 1MHz, stop frequency = 11MHz。也可以通过设置扫描中心频率和频率范围来确定,例如:center frequency = 6MHz, span = 10MHz。这两种设置结果是一样。

中频分辨带宽:

规定了频谱分析仪中频带宽,这项指标决定了仪器选择性和扫描时间。调整分辨带宽可以达到两个目,一个是提高仪器选择性,以便对频率相距很近两个信号进行区别。另一个目是提高仪器灵敏度。因为任何电路都有热噪声,这些噪声会将微弱信号淹没,而使仪器无法观察微弱信号。噪声幅度与仪器通频带宽成正比,带宽越宽,则噪声越大。因此减小仪器分辨带宽可以减小仪器本身噪声,从而增强对微弱信号检测能力。

分辨带宽一般以3dB带宽来表示。当分辨带宽变化时,屏幕上显示信号幅度可能会发变化。若测量信号带宽大于通频带带宽,则当带宽增加时,由于通过中频放大器信号总能量增加,显示幅度会有所增加。若测量信号带宽小于通频带宽,如对于单根谱线信号,则不管分辨带宽怎样变化,显示信号幅度都不会发生变化。信号带宽超过中频带宽信号称为宽带信号,信号带宽小于中频带宽信号称为窄带信号。根据信号是宽带信号还是窄带信号能够有效地定位干扰源。

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

频谱分析仪使用指南

Spectrum Analyzer Basics 频谱分析仪是通用的多功能测量仪器。例如:频谱分析仪可以对普通发射机进行多项测量,如频率、功率、失真、增益和噪声特性。 功能范围(Functional Areas ) 频谱分析仪的前面板控制分成几组,包含下列功能:频率扫描宽度和幅度(FREQUENCY,SPAN&LITUDE)键以及与此有关的软件菜单可设置频谱仪的三个基本功能。 仪器状态(INSTRUMENT STATE ):功能通常影响整个频谱仪的状态,而不仅是一个功能。 标记(MARKER)功能:根据频谱仪的显示迹线读出频率和幅度 提供信号分析的能力。 控制(CONTRIL)功能:允许调节频谱分析的带宽,扫描时间和 显示。 数字(DATA)键:允许变更激活功能的数值。 窗口(WINDOWS)键:打开窗口显示模式,允许窗口转换,控 制区域扫宽和区域位置。 基本功能(Fundamental Function) 频谱分析仪上有三种基本功能。通过设置中心频率,频率扫宽或者起始和终止频率,操作者可控制信号在频幕上的水平位置。信号的垂直位置由参考电平控制。一旦按下某个键,其

功能就变成了激活功能。与这些功能有关的量值可通过数据输入控制进行改变。 Sets the Center Frequency Adjusts the Span Peaks Signal Amplitude to 频率键(FREQUENCY) 按下频率( FREQUENCY)键,在频幕左侧显示CENTER 表示中心频率功能有效。中心频率(CENTERFREQ)软键标记发亮表示中心频率功能有效。激活功能框为荧屏上的长方形空间,其内部显示中心频率信息。出现在功能框中的数值可通过旋钮,步进键或数字/单位键改变。 频率扫宽键(SPAN) 按下频率扫宽 (SPAN)键, (SPAN)显示在活动功能框中,(SPAN)软键标记发亮,表明频率扫宽功能有效。频率扫宽的大小可通过旋钮,步进键或数字键/单位键改变。 幅度键(AMPLITUDE)按下 按下幅度键(AMPLITUDE)参考电平(REFLEVEL)0dbm显示在 激活功能框中,( REFLEVEL)软键标记发亮,表明参考电平功

电子产品的电磁干扰测试标准解析

电子产品的电磁干扰测试标准解析 随着科学技术的发展,越来越多的数字化,高速化的电气和电子设备在社会各个领域广泛使用,在推动社会发展的同时,伴随着电气和电子设备应用而产生的电磁干扰也给社会带来了电磁污染问题。而电磁污染与水污染,空气污染被称为当今社会的三大污染源。随着电磁干扰问题的日益突出,国际电工技术委员会(IEC)相应出台了IEC61000-4-4,IEC61000-4-5,IEC61000-4-11,CISPR -16,CISPR-15等。这些措施和标准旨在规范点电子产品的电磁干扰限制和其它规范,以减少电磁干扰带来的社会问题。 众所周知,EMC的测试目标是电子电器设备,而照明设备作为其中重要的一块,自然也有相应的约束。如美国的FCC认证,欧盟的CE认证等都对LED照明设备提出了相关的测试项目。当谈论到电磁干扰时,一般来将有两种干扰源;一种是传导干扰(EMS),主要是电子设备产生的干扰信号通过导电介质或公共电源线互相产生干扰,LED灯具的FCC 认证传导干扰扫瞄测试频率从0.15MHz开始至30MHz结束,CE认证中的传导干扰扫瞄测试频率从9KHz开始至30MHz结束。另外一种干扰是辐射干扰(EMI),主要是指电子设备产生的干扰信号通过空间耦合把干扰信号传给另一个电网络或电子设备,LED灯具的FCC认证空间辐射干扰扫瞄测试频率从30MHz开始至1GHz结束,CE认证中的空间辐射干扰扫瞄测试频率从30KHz开始至300MHz结束。 对于EMI的测试,国际无线电干扰特别委员会(CISPR)出台了CISPR-16 无线电干扰及抗干扰测量器具规范,而对于照明行业,国际无线电干扰特别委员会还提出了CISPR-15 电子照明及相关设备无线电干扰特性限制及测量方法,并且各国也根据本国情况出台了各类的EMI照明检测规范,如欧盟出来的EN55015-2007,中国出台的GB17743-1999等。对于欧盟国家来说,EN55015标准(引用CISPR-15)适用于灯具频率超过100Hz传统照明设备,如白炽灯,荧光灯,自整流节能灯等。通常此类设备频率不超过30MHz, 相应的辐射干扰限值表1。但是对于新兴的LED照明行业,通常频率都超过30MHz,在CE认证中明确提出扫描频率是从30MHz到300MHz.

电磁干扰的诊断步骤分析

电磁干扰的诊断步骤 1.前言 电磁干扰的观念与防制,在国内已逐渐受到重视。虽然目前国内并无严格管制电子产品的电磁干扰(EMI),但由于欧美各国多已实施电磁干扰的要求,加上数字产品的普遍使用,对电磁干扰的要求已是刻不容缓的事情。笔者由于啊作的关系,经常遇到许多产品已完成成品设计,因无法通过EMI 测试,而使设计工程师花费许多时间和精力投入EMI 的修改,由于属于事后的补救,往往投入许多时间与金钱,甚而影响了产品上市的时机 2.正确的诊断 要解决产品上的EMI 问题,若能在产品设计之初便加以考虑,则可以节省事后再投入许多时间与金钱。由于目前EMI Design-in 的观念并不是十分普遍,而且由于事先的规划并不能保证其成品可以完全符合电磁干扰的测试在,所以如何正确的诊断EMI 问题,对于设计工程师及EMI 工程师是非常重要的。 事实上,我们如果把EMI 当做一种疾病,当然平时的预防保养是很重要的,而一旦有疾病则正确的诊断,才能得到快速的痊愈,没有正确的诊断,找不到病症的源头,往往事倍功半而拖延费时。故在EMI 的问题上,常常看到一个EMI 有问题的产品,由于未能找到造成EMI 问题的关键,花了许多时间,下了许多对策,却始终无法解决,其中亦不乏专业的EMI 工程师。以往谈到EMI 往往强调对策方法,甚而视许多对策秘决或绝招,然而没有正确的诊断,而在产品上加了一大堆EMI 抑制组件,其结果往往只会使EMI 情况更糟。 笔者起初接触产品EMI 对策修改时,会听到资深EMI 工程师说把所有EMI 对策拿掉,就可以通过测试。初听以为是句玩笑话,如今回想这是很宝贵的经验谈。而后亦听到许多EMI 工程师谈到类似的经验。本文中将举出实际的例子,让读者更加了解EMI 的对策观念。 一般提到如何解决EMI问题,大多说是case by case当然从对策上而言,每 一个产品的特性及电路板布线(layout)情况不同,故无法用几套方法而解决所有EMI 的问题,但是长久以来,我们一直想要把处理EMI 问题并做适当的对策,另外也提供专业的EMI 工程师一种参考方法。在此我们把电磁干扰与对策的一些心得经验整理,希望能对读者有些帮助。

脉冲干扰抗扰度及测试技术

脉冲干扰抗扰度及测试技术 摘要:电气或电子电路和系统中所遇到的多种电磁干扰并不是连续波干扰,而是脉冲或瞬态形式的干扰。传统的连续波测试并不能在较短的时间间隙内聚集足够的能量以有效地模拟脉冲或瞬态干扰。因此,应该使用脉冲干扰的电磁抗扰度测试方法。分别介绍了ESD、EFT、Surge原理和测试方法及注意事项。 关键字:电磁干扰静电放电电快速瞬变脉冲浪涌 Abstract:Electrical or electronic circuits and systems encountered in a variety of electromagnetic interference is not continuous waves interference, but the pulse or transient forms of interference. The traditional continuous wave test can not gather enough energy in order to effectively simulate the pulse or transient interference in a short period of time. Therefore, we should use the pulsed electromagnetic interference immunity test methods. Introduced the ESD, EFT, Surge principles and testing methods and precautions. Keywords: EMI ESD EFT/burst Surge 电磁骚扰是指可能引起一个器件、一台设备或一个系统性能下降的任何一种电磁现象。电磁骚扰可以是自然界的电磁噪声、无用信号或在媒质中传播时自身发生的改变。 电磁干扰(EMI)是电磁骚扰造成的器件、设备或系统的性能下降现象,从它的源到达接收机的主要机制是传导和辐射,如图1所示。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络,在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。 图1 电磁干扰耦合机制 1静电放电 静电放电(ESD)即累积的静电电荷放电,是一种自然现象,这种放电产生电磁干扰。当两种不同介电常数的材料互相摩擦时、加热或与带电物体接触将产生静电。静电放电是把累积的电荷泄放给具有较低对地电阻的另一个物体,这

电磁干扰诊断技巧实例分析上

电磁干扰诊断技巧实例 分析上 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

电磁干扰诊断技巧实例分析(上) 一.前言 关于电磁干扰的对策,许多刚接触的工程师往往面临一个问题,虽然看了不少对策的书籍,但是却不知要用书中的那些方法来解决产品的EMI问题。这是一个很实际的问题,看别人修改似乎没什么困难,对策加了噪声便能适当的降低,而自己修改时下了一大堆对策,找了一大堆的问题点,却总不能有效地降低噪声。 事实上,这往往也是EMI修改最耗时间的地方,笔者把一些基本的判断方法做详细的介绍,以提供刚入门或正面临EMI困扰问题的读者参考,整理了一些原则与判断技巧,希望能够对读者有帮助。 二. 水平、垂直判断技巧 EMI的测试接收天线分为水平与垂直二个极化,亦即要分别测试记录此二个天线方向的最大读值,噪声必须要在天线为水平及垂直测量时皆能符合规格,测量天线要测量量水平及垂直二个方向,除了要记录到噪声最大时的读值外,也能显示出噪声的特性,由这个特性的显示,我们可初步判断造成EMI问题的重点,对于细部的诊断是很有帮助的,通常这个方法是很容易为修改对策人员所忽略。在本期的分析中,笔者要介绍几种EMI的判图技巧,也就是如何从静态的频谱分析仪所得到的 噪声频谱图做初步的分析,另外也会介绍一般对策修改人员最常用的一些动态分析技巧。 许多工程师常常花了许多时间与精神,却感觉无法掌握到重点,可能就是缺乏基本分析的技巧,在噪声的判断上有一些混淆,如果能够掌握一些分析方法,可以节省不少对策的时间。这里所提的一些方法,一直被不少资深的EMI 工程师视为秘诀,因为其中往往是累积了多年的心得与经验才体悟出来的方法,而这些方法通常都是非常有效的。 实例一水平与垂直读值的差异 1.这是Modem&Telephone的产品,读者可以很明显地看出来,天线水平 时的噪声和垂直时的噪声有很大的差异,那么这其中代表了什么意义 呢? 分析讨论 要清楚的认识这个问题,首先必须要了解天线的基本理论,我们先假设发射与接收天线皆为偶极天线。 发射天线接收天线 上图为当发射天线与接收天线同方向时,由于所产生的电磁波极化相同,故此时接收天线可得到最大的共振接收强度 发射天线接收天线 当发射天线与接收天线不同方向时,则由于发射天线的电磁波为水平极化,而接收 天线的电磁波为垂直极化,故在共振接收的强度上最小。 以上述这个观念来分析水平与垂直噪声的强度差异,当接收天线为水平时噪声强度较高,可以推测此噪声来源主要是由产品内或外的水平线所造成,而

电磁干扰的诊断步骤(20210118095612)

电磁干扰的诊断步骤 1. 前言 电磁干扰的观念与防制,在国内已逐渐受到重视。虽然目前国内并无严格管制电子产品 的电磁干扰(EMI),但由于欧美各国多已实施电磁干扰的要求,加上数字产品的普遍使用,对电磁干扰的要求已是刻不容缓的事情。笔者由于啊作的关系,经常遇到许多产品已完成成品设计,因无法通过EMI 测试,而使设计工程师花费许多时间和精力投入EMI 的修改,由于属于事后的补救,往往投入许多时间与金钱,甚而影响了产品上市的时机 2. 正确的诊断 要解决产品上的EMI 问题,若能在产品设计之初便加以考虑,则可以节省事后再投入许多时间与金钱。由于目前EMI Design-in 的观念并不是十分普遍,而且由于事先的规划并不能保证其成品可以完全符合电磁干扰的测试在,所以如何正确的诊断EMI 问题,对于设 计工程师及EMI 工程师是非常重要的。 事实上,我们如果把EMI 当做一种疾病,当然平时的预防保养是很重要的,而一旦有疾病则正确的诊断,才能得到快速的痊愈,没有正确的诊断,找不到病症的源头,往往事倍功半而拖延费时。故在EMI 的问题上,常常看到一个EMI 有问题的产品,由于未能找到造成EMI 问题的关键,花了许多时间,下了许多对策,却始终无法解决,其中亦不乏专业的EMI 工程师。以往谈到EMI 往往强调对策方法,甚而视许多对策秘决或绝招,然而没有正确的诊断,而在产品上加了一大堆EMI 抑制组件,其结果往往只会使EMI 情况更糟。 笔者起初接触产品EMI 对策修改时,会听到资深EMI 工程师说把所有EMI 对策拿掉,就可以通过测试。初听以为是句玩笑话,如今回想这是很宝贵的经验谈。而后亦听到许多EMI 工程师谈到类似的经验。本文中将举出实际的例子,让读者更加了解EMI 的对策观念。 一般提到如何解决EMI问题,大多说是case by case当然从对策上而言,每一个产品的特性及电路板布线(layout)情况不同,故无法用几套方法而解决所有EMI的问题,但是长 久以来,我们一直想要把处理EMI 问题并做适当的对策,另外也提供专业的EMI 工程师一种参考方法。在此我们把电磁干扰与对策的一些心得经验整理,希望能对读者有些帮助。 3. EMI 初步诊断步骤 我们提出一套EMI 诊断上的参考骤,希望用有系统的方式,快速的找出EMI 的问题。我们并不准备探讨一些理论计算或公式推演,将从实务上说明。 当一个产品无法通过EMI 测试,首先就要有一个观念,找出无法通过的问题点,此时

安立频谱仪使用说明

安立频谱仪介绍

安立频谱仪使用章程 频谱分析仪的正面图如下: 下面介绍这些按键的功能: 第三章按键功能 硬键 硬键是指在面板上用黑色和蓝色标注的按键,他们有着特殊的功能。功能硬键有四种,他们位于下端,而右端则有17个硬键,这17个硬键中有12个硬键有着双重的功能,这就要看当前所使用的模式而决定它们的功能了。 功能硬键 模式 按一下“MODE(模式)”键,然后用“UP/DOWN(上下)”键来选 择所要操作的模式,然后再按“ENTER(回车)”键来确认所选的模 式。 FREQ/SPAN (频率/频宽)

按一下“FREQ/SPAN(频率/频宽)”键后便会出现“CENTER(中心)、 FREQUENCY(频率)、SPAN(频宽)、START(开始频率)和STOP(截 至频率)的选项。我们可以通过相应的软键来选择相应的功能。AMPLITUDE (幅度) 按一下“AMPLITUDE(幅度)”键后便会出现“REFLEVEL(参考电平)、 SCALE(刻度)、ATTEN(衰减)、REF LEVEL OFFSET(参考电平偏移)、 和UNITS(单位)”选项,我们可以通过相应的软键来选择相应的功能。BW/SWEEP (带宽/扫描) 按一下“BW/SWEEP(带宽/扫描)”键后便会出现“RBW、VBW、 MAXHOLD(保持最大值)、A VERAGE(平均值)和DETECTION(检 测)”选项,我们可以通过相应的软键来选择相应的功能。KEYPAD HARD KEYS (面板上的硬键) 下面的这些按键是用黑色字体标注的 0~9 是当需要进行测量或修改数据时用来输入数据的。 +/- 这个键可以使被操作的数值的符号发生变化即正负变化。 . 入小数点。 ESCAPE CLEAR 这个键的功能是退出当前操作或清楚显示。如果您在进行参数修改时 按一下这个键,则该参数值只保存最后一次操作的有效值,如果再按 一次该键则关闭该参数的设置窗口。再正常的前向移动(就是进入下 层目录)中,按一下这个键则返回上层目录。如果在开该仪器的时候 一直按下该键则仪器将恢复出厂时的设置。 UP/DOWN ARROWS

电磁兼容标准与测试

电磁兼容作业 电磁兼容标准与测试 班级:电气工程及其自动化0703班 姓名:贾震 学号:070301091

电磁兼容标准及测试 一.概述 随着科学技术的发展,特别是微电子、信息、通讯等高科技的迅速进步与发展,对电磁骚扰的控制与防护提出了繁多而又复杂的问题。在世界各国,特别是欧洲的一些先进国家,经过几十年对电磁干扰和抗干扰等问题的研究和控制,已将这些技术研究形成了一门新兴的学科——电磁兼容(Electromagnetic Compatibility)。 电磁兼容就是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统,系统、广义的还包括生物体),可以共存并不致引起降级的一门科学,国家标准GB/T 4365-1995《电磁兼容术语》对电磁兼容所下的定义为:“设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力”。就是说在规定的电磁环境中,任何设备、系统都不因受电磁干扰而降低工作性能,并且其本身所发射的电磁能量也不大于规定的极限值,以免影响其它设备或系统的正常工作,从而达到互不干扰而共存的目地。 国际无线电干扰特别委员会(法文缩写是CISPR)是国际电工委员会(IEC)的一个特别委员会,它成立于1934年,是最早开始系统地对电磁兼容进行研究的国际性的标准化组织。该委员会成立的初衷主要是保护广播、通讯不受电磁干扰的影响。围绕这方面的问题,对车辆、

家电、电动工具、工科医射频设备、高压架空线路等提出了一系列骚扰限值(包括射频辐射和传导两方面,工作频率多在9kHz~18GHz)和测试方法的标准。近几年来随着它的业务范围不断扩大,也开展了一些抗扰度标准的研究。它更主要的重点还是研究电磁骚扰限值及其测量方法。 二、电磁兼容标准 早在一九三四年国际电工委员会就成立了无线电干扰特别委员会简称CISPR,专门研究无线电干扰问题,制定有关标准,旨在保护广播接收效果。当初只有少数国家参加该委员会,如比利时、法国、荷兰和英国等。经过多年的发展人们对电磁兼容的认识发生了深刻的变化,1989年欧洲共同体委员会颁发了89/336/EEC指令,明确规定,自1996年1月1日起,所有电子、电器产品须经过EMC性能的认证,否则将禁止其在欧共体市场销售。此举在世界范围内引起较大反响,EMC已成影响国际贸易的一项重要指标。随着技术的发展CISPR工作范围也由当初保护广播接收业务扩展到涉及保护无线电接收的所有业务。国际电工委员会IEC有两个专们从事电磁兼容标准化工作的技术委员会:一个就是CISPR成立于1934年;另一个是电磁兼容委员会TC77,成立于1981年。CISPR最初关心的主要是广播接收频段的无线电骚扰问题,之后在EMC标准化工作方面进行了不懈的努力。 CISPR已基本上将工业和民用产品的EMC考虑在其标准中。CISPR 还起草了通用射频骚扰限额值国际标准草案,这样,对那些新开发的以及暂时还不能与现有CISPR产品标准相对应的产品,可以用射频骚扰

ZN3950C电磁干扰测量接收机

ZN3950C电磁干扰测量接收机

1、仪器的使用条件 使用的基准条件和额定条件为: 基准条件额定条件 (1)环境温度 20±5℃ 0~40℃ (2)相对湿度 (45~75)%RH 40℃(20~90)%RH (3)大气压 86~106KPa 86~106KPa (4)交流供电电压 220V±2% 220V±10% (5)交流供电频率 50Hz±1% 50Hz±5% 2、主要技术特性及误差 2.1 频率 测量范围: 9KHz~30MHz 显示: LCD五位数字,最低1KHz 调谐步级: 10MHz、1MHz、100KHz、10KHz、1KHz 细调范围:约±1KHz 频率准确度:固有误差<±1KHz,工作误差<±2KHz 2.2 电压 测量范围: 0~120dB (S/N=6dB. 0dB=1 μV) 误差: (30dB) 固有误差≤±2dB 工作误差≤±3dB 2.3 衰减器 输入衰减器: 0~100dB 10dB步级 中频衰减器: 0~20dB 5dB步级

误差:≤1dB 2.4 表头指示 刻度:+5dB~-6dB 误差:<±1dB (0~+5dB范围) 2.5 场强 测量范围: (环状天线) 20~145dB (S/N=6dB 0dB=1μV/m) 误差: (80dB) 固有误差≤±3dB 工作误差≤5dB 2.6 选择性 整机通带(-6dB): 9KHz±1KHz 中频抑制:≥ 50dB 镜频抑制:≥ 70dB 2.7 过载系数 检波前:≥30dB 检波后:≥12dB 2.8 检波器时间常数 平均值:充放电时间常数小于100μS 准峰值:充电时间常数1ms±0.5ms 放电时间常数160ms±80ms 2.9 表头机械时间常数: 160ms±80ms 2.10 脉冲特性

电磁干扰诊断技巧实例分析

电磁干扰诊断技巧实例分析 一.前言 关于电磁干扰的对策,许多刚接触的工程师往往面临一个问题,虽然看了不少对策的书籍,但是却不知要用书中的那些方法来解决产品的EMI问题。这是一个很实际的问题,看别人修改似乎没什么困难,对策加了噪声便能适当的降低,而自己修改时下了一大堆对策,找了一大堆的问题点,却总不能有效地降低噪声。 事实上,这往往也是EMI修改最耗时间的地方,笔者把一些基本的判断方法做详细的介绍,以提供刚入门或正面临EMI困扰问题的读者参考,整理了一些原则与判断技巧,希望能够对读者有帮助。 二. 水平、垂直判断技巧 EMI的测试接收天线分为水平与垂直二个极化,亦即要分别测试记录此二个天线方向的最大读值,噪声必须要在天线为水平及垂直测量时皆能符合规格,测量天线要测量量水平及垂直二个方向,除了要记录到噪声最大时的读值外,也能显示出噪声的特性,由这个特性的显示,我们可初步判断造成EMI问题的重点,对于细部的诊断是很有帮助的,通常这个方法是很容易为修改对策人员所忽略。在本期的分析中,笔者要介绍几种EMI的判图技巧,也就是如何从静态的频谱分析仪所得到的 噪声频谱图做初步的分析,另外也会介绍一般对策修改人员最常用的一些动态分析技巧。 许多工程师常常花了许多时间与精神,却感觉无法掌握到重点,可能就是缺乏基本分析的技巧,在噪声的判断上有一些混淆,如果能够掌握一些分析方法,可以节省不少对策的时间。这里所提的一些方法,一直被不少资深的EMI工程师视为秘诀,因为其中往往是累积了多年的心得与经验才体悟出来的方法,而这些方法通常都是非常有效的。 实例一水平与垂直读值的差异 说明:

1.这是Modem&Telephone的产品,读者可以很明显地看出来,天线水平时的噪 声和垂直时的噪声有很大的差异,那么这其中代表了什么意义呢? 分析讨论 要清楚的认识这个问题,首先必须要了解天线的基本理论,我们先假设发射与接收天线皆为偶极天线。 发射天线接收天线 上图为当发射天线与接收天线同方向时,由于所产生的电磁波极化相同,故此时接收天线可得到最大的共振接收强度 发射天线接收天线 当发射天线与接收天线不同方向时,则由于发射天线的电磁波为水平极化,而接收 天线的电磁波为垂直极化,故在共振接收的强度上最小。 以上述这个观念来分析水平与垂直噪声的强度差异,当接收天线为水平时噪声强度较高,可以推测此噪声来源主要是由产品内或外的水平线所造成,而当接收天线为垂直时噪声强度较高,可以推测此噪声来源主要是由产品内或外的垂直线所造成,也就是从天线共振的角度去思考问题,把产品的辐射源也想象成一假想的天线,那么在相同方向其所造成的共振效应会最大。 以这个观点来看问题有时往往很快能找到问题的重点,尤其是一些比较复杂的产品其内部及外部皆有许多导线、连接线的产品,如果能先以水平、垂直的读值做初步的分析,则比较不容易误判造成噪声的机制。 实例二水平与垂直读值的差异

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

电磁干扰测量与诊断

电磁干扰测量与诊断 Document number:BGCG-0857-BTDO-0089-2022

电磁干扰测量与诊断 当你的产品由于电磁干扰发射强度超过电磁兼容标准规定而不能出厂时,或当由于电路模块之间的电磁干扰,系统不能正常工作时,我们就要解决电磁干扰的问题。要解决电磁干扰问题,首先要能够“看”到电磁干扰,了解电磁干扰的幅度和发生源。本文要介绍有关电磁干扰测量和判断干扰发生源的的方法。 1.测量仪器 谈到测量电信号,电气工程师首先想到的可能就是示波器。示波器是一种将电压幅度随时间变化的规律显示出来的仪器,它相当于电气工程师的眼睛,使你能够看到线路中电流和电压的变化规律,从而掌握电路的工作状态。但是示波器并不是电磁干扰测量与诊断的理想工具。这是因为: A. 所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的,而示波器显示出的时域波形。因此测试得到的结果无法直接与标准比较。为了将测试结果与标准相比较,必须将时域波形变换为频域频谱。 B. 电磁干扰相对于电路的工作信号往往都是较小的,并且电磁干扰的频率往往比信号高,而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时,用示波器是无法进行测量。 C. 示波器的灵敏度在mV级,而由天线接收到的电磁干扰的幅度通常为V级,因此示波器不能满足灵敏度的要求。 测量电磁干扰更合适的仪器是频谱分析仪。频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器,它显示的波形称为频谱。频谱分析仪克服了示波器在测量电磁干扰中的缺点,它能够精确测量各个频率上的干扰强度。 对于电磁干扰问题的分析而言,频谱分析仪是比示波器更有用的仪器。而用频谱分析仪可以直接显示出信号的各个频谱分量。 频谱分析仪的原理

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

频谱分析仪在电磁干扰测量中的应用

频谱分析仪在电磁干扰测量中的应用 黄扬帆 汪同庆 夏红兵 任 莉 闫 河 (重庆大学光电工程学院光电技术及系统教育部重点实验室 重庆 400030) 摘要 电磁干扰(E M I)是一种不希望存在的信号,它对电子设备或系统的正常工作会造成有害影响。为了消除E M I的影响,不但要了解有关E M I方面的问题,还要知道用何种方法和设备能得到E M I特性,从而采取相应的措施消除E M I。以往测试E M I的主要设备是E M I接收机,现在采用频谱分析仪作为E M I的测试设备,可以提高E M I测量的效率和精度,对各种E M I 特性参数的测量变得更加容易。 关键词 电磁干扰(E M I) 频谱分析仪 校 准 放射测试 Appl ica tion of Testi ng E M I w ith Spectru m Ana lyzer H uang Yangfan W ang Tongqing X ia Hongb ing R en L i Yan H e (K ey L ab of Op to2electron ic T echnology and S y ste m of M O E,Colleg e of Op to2electron ic E ng ineering, Chong qing U n iversity,Chong qing400030,Ch ina) Abstract EM I is a type of signal,w h ich is no t expected to exist because it brings negative influence to the no r2 m al functi on of electronic installati ons o r system s.In o rder to eli m inate the influence of EM I,it is necessary to understand no t only p roblem s about EM I,but also the m eans and facilities to acquire p roperty of EM I.T hus it help s to take co rresponding step s to eli m inate EM I.T he p revi ous m ain equi pm ent fo r testing EM I is EM I R eceiv2 er,w h ile at p resent ti m e,the spectrum analyzer is adop ted as EM I testing equi pm ent w h ich contributes to en2 hance efficiency and p recisi on of EM I testing and m akes easier to test vari ous param eters of EM I p roperty. Key words EM I Spectrum analyzer Calibrati on R adi o ti on test 1 引 言 电磁干扰(EM I)是一种不希望存在的信号,它对电子设备或系统的正常工作会造成有害影响;同时,每一种电子设备也都会产生不同程度的EM I信号,这些信号可能以电磁辐射的形式发射出去,也可能通过电缆或电源线进行传导。EM I的产生应具备三个因素:传导和辐射电磁波的源,电磁波借以传播的媒介,因接收到了信号而受到干扰的接收器。三者只要消除其中的任一个,EM I就不会产生。为了消除EM I的影响,各国都设立了专门的机构和测试实验室,如美国的FCC (federal comm unicati ons comm issi on)和德国的VD E (verband deutscher elek tro techniker)等。因此,不但要了解有关EM I方面的问题,还要知道用何种方法和设备能得到EM I特性,从而采取相应的措施消除EM I。以往测试EM I的主要设备是EM I接收机,现在采用频谱分析仪作为EM I的测试设备,可以提高EM I测量的效率和精度,对各种EM I特性参数的测量变得更加容易。基于此展开频谱分析仪在电磁干扰测量中的方法研究,在EM I测量工程领域具有非常重要的意义。 2 频谱分析仪的校准及其基本测量方法 在EM I测量之前和测量之中,经常用到一些基本测量方法,这些方法和步骤包括幅度校准、频率校准、过载检测和灵敏度测试、信号带宽的测量。 在幅度校准的操作方法中,一般都有关于手动幅度校准的操作步骤,测试者可以直接根据频谱分析仪的测试结果获得幅度校准,可以参阅频谱分析仪的操作手册。 第25卷第4期增刊 仪 器 仪 表 学 报 2004年8月

电磁干扰量测的仪器与配备

电磁干扰量测的仪器与配备 电磁干扰量测的仪器与配备 摘自赛宝论坛 对于「必须在预算之内能将产品及时推出上市」的观念,相信对绝大多数的厂商而言,已不是什么新鲜事。但是除此之外,仍须有额外的一些新步骤的措施需要执行,方能达到上述的目的,EMC是其中相当重要的一项措施。 随着全球各地相关的EMC法规开始执行,几乎所有的电子产品在销售到市场上之前,都必须先行通过相关单位的EMC规范之后,方能放行。因此愈来愈多的厂家会自行投资一些EMI precompliance的量测设备,主要是在将开发完成的产品送到EMI实验室作EMI full compliance测试之前,能够自行先进行pre-compliance测试,以便能趁早找出问题,来加速EMI compliance测试所须耗费的时间。不管是precompliance或者是compliance测试,都会包括辐射性(radiated)干扰和传导性(conducted)干扰测试。其中辐射性干扰测试是针对待测装置透过空气传送出去的干扰信号,量测频率范围,根据不同规范的定义,约从30MHz到1GHz;而传导性干扰测试则是负责透过AC主电源缆线,由待测装置所产生的干扰信号之测试,其测试频率范围是从9KHz到30MHz不等。 直到目前,全球绝大多数的规范都是首重EMI的问题,只有欧盟除了EMI之外,也强调EMS,也就是待测装置忍受外来干扰的能力。在本文里面将不涵盖EMS测试设备的探讨。Pre-compliance V.S. Full compliance 在前述我们有提及Precompliance和Compliance两种测试,到底这两者之间有何差别呢?首先Full compliance量测所需接收机(也就是涵盖测试设备、配备和场地环境)必须符合CISPR part 16文件的规范。在CISPR part 16文件中规范了必须要拥有一个符合规范的open site测试场地,以及一根天线塔与一张旋转桌,以便能撷取到来自待测装置的最大干扰信号。如此大费周章,只有一个目的,那就是要能获致最佳的精准度和重测度。然而要符合这种规范必须花费相当昂贵的费用,因此不是一般厂家所能投资的。 至于pre-compliance量测,则只需要一部测试设备,即是EMC接收仪或者是频谱分析仪,一个LISN(电源阻抗稳定网络)、天线、闭场探棒(close field probe)和一些缆线即可,图1所示为一些典型的precompliance测试设备与配备。至于precompliance量测所需要的场地就不若compliance所要求地那么严格,用于precompliance量测的场地,我们称之为open area测试场地(简称OATS,open area test site)。 Precompliance量测流程 Precompliance量测的流程相当直接且简单,但是在执行量测试之前,有些问题仍须先弄清楚: a.产品要销往何处(例如美国、欧洲,抑或是日本...)? b.产品的等级为何(例如是属于信息产品,或者是工业/科学/医学(ISM设备),抑或是电动车或通讯产品)? c.产品的用途为何(例如是家用、商用,或是轻工业/重工业)? 当您弄清楚了上述问题的答案之后,您就可以决定出您的产品应该采用何种测试规范了,表1列举了几种常见且重要的规范供您参考。举个例子来说,如果您所生产的产品是属于信息类产品的话,同时您将此产品销往美国境内,那么您就必须让此产品通过FCC part 15规范。 EMI测试设备与配备 EMI分析仪与配备是整个量测过程当中相当重要的部份,在此我们将对这些测试设备与配备作一个扼要的介绍:

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

相关文档
相关文档 最新文档