文档库 最新最全的文档下载
当前位置:文档库 › 抓包定位故障

抓包定位故障

抓包定位故障
抓包定位故障

下面抓包中,客户端源地址为168.36.126.1 MAP地址为209.136.47.12 服务器真实地址为

11.68.21.12

对于目的地址转换,天融信也俗称为MAP转换。

例1、如果业务、ping都不通,抓包时只有第一个请求报文,没有匹配MAP转换,说明: A: 防火墙没有到真实服务器的路由,而导致不能匹配MAP策略。

B: 或者是防火墙上没有开放对应的访问策略。

TOS# system tcpdump -i any host 168.36.126.1 -n

04:19:03.400000 IP 168.36.126.1 > 209.136.47.12: ICMP echo request, id 10706, seq 4161, length 64

例2、如果业务、ping都不通,抓包是匹配了MAP转换策略,说明:

A: 对方的服务没有回应。

B: 或者对方回应了但是路由错误,回应数据包没有到防火墙。

TOS# system tcpdump -i any host 168.36.126.1 -n

04:19:03.400000 IP 168.36.126.1 > 209.136.47.12: ICMP echo request, id 10706, seq 4161, length 64

04:19:03.404216 IP 168.36.126.1 > 11.68.21.12: ICMP echo request, id 10706, seq 4161, length 64

例3、如果业务、ping都不通,抓包显示最后一个报文没有正常转换,说明:

A: 防火墙上没有回指路由,而导致最后的报文没有发出。

TOS# system tcpdump -i any host 168.36.126.1 -n

04:19:03.400000 IP 168.36.126.1 >209.136.47.12: ICMP echo request, id 10706, seq 4161, length 64

04:19:03.404216 IP 168.36.126.1 > 11.68.21.12: ICMP echo request, id 10706, seq 4161, length 64

04:19:03.400000 IP 11.68.21.12 > 168.36.126.1: ICMP echo reply, id 10706, seq 4161, length 64

例4、如果业务、ping都不通,抓包显示报文正常转发,说明

A: TOS发出了数据包,但是匹配了错误的回指路由。

TOS# system tcpdump -i any host 168.36.126.1 -n

04:19:03.400000 IP 168.36.126.1 > 209.136.47.12: ICMP echo request, id 10706, seq 4161, length 64

04:19:03.404216 IP 168.36.126.1 > 11.68.21.12: ICMP echo request, id 10706, seq 4161, length 64

04:19:03.400000 IP 11.68.21.12 > 168.36.126.1: ICMP echo reply, id 10706, seq 4161, length 64 04:19:03.404365 IP 209.136.47.12 > 168.36.126.1: ICMP echo reply, id 10706, seq 4161, length 64

最全的网络故障案例分析及解决方案

第一部:网络经脉篇2 [故事之一]三类线仿冒5类线,加上网卡出错,升级后比升级前速度反而慢2 [故事之二]UPS电源滤波质量下降,接地通路故障,谐波大量涌入系统,导致网络变慢、数据出错4 [故事之三]光纤链路造侵蚀损坏6 [故事之四]水晶头损坏引起大型网络故障7 [故事之五] 雏菊链效应引起得网络不能进行数据交换9 [故事之六]网线制作不标准,引起干扰,发生错误11 [故事之七]插头故障13 [故事之八]5类线Cat5勉强运行千兆以太网15 [故事之九]电缆超长,LAN可用,WAN不可用17 [故事之十]线缆连接错误,误用3类插头,致使网络升级到100BaseTX网络后无法上网18 [故事之十一]网线共用,升级100Mbps后干扰服务器21 [故事之十二]电梯动力线干扰,占用带宽,整个楼层速度降低24 [故事之十三]“水漫金山”,始发现用错光纤接头类型,网络不能联通27 [故事之十四]千兆网升级工程,主服务器不可用,自制跳线RL参数不合格29 [故事之十五]用错链路器件,超五类线系统工程验收,合格率仅76%32 [故事之十六]六类线作跳线,打线错误造成100M链路高额碰撞,速度缓慢,验收余量达不到合同规定的40%;34 [故事之十七]六类线工艺要求高,一次验收合格率仅80%36 第二部:网络脏腑篇39 [故事之一] 服务器网卡损坏引起广播风暴39 [故事之二]交换机软故障:电路板接触不良41 [故事之三]防火墙设置错误,合法用户进入受限44 [故事之四]路由器工作不稳定,自生垃圾太多,通道受阻47 [故事之五]PC机开关电源故障,导致网卡工作不正常,干扰系统运行49 [故事之六]私自运行Proxy发生冲突,服务器响应速度“变慢”,网虫太“勤快” 52 [故事之七]供电质量差,路由器工作不稳定,造成路由漂移和备份路由器拥塞54 [故事之八]中心DNS服务器主板“失常”,占用带宽资源并攻击其它子网的服务器57 [故事之九]网卡故障,用户变“狂人”,网络运行速度变慢60 [故事之十]PC机网卡故障,攻击服务器,速度下降62 [故事之十一]多协议使用,设置不良,服务器超流量工作65 [故事之十二]交换机设置不良,加之雏菊链效应和接头问题,100M升级失败67 [故事之十三]交换机端口低效,不能全部识别数据包,访问速度慢70 [故事之十四]服务器、交换机、工作站工作状态不匹配,访问速度慢72 第三部:网络免疫篇75 [故事之一]网络黑客程序激活,内部服务器攻击路由器,封闭网络75 [故事之二]局域网最常见十大错误及解决(转载)78 [故事之三] 浅谈局域网故障排除81 网络医院的故事 时间:2003/04/24 10:03am来源:sliuy0 整理人:蓝天(QQ:) [引言]网络正以空前的速度走进我们每个人的生活。网络的规模越来越大,结构越来越复杂,新的设备越来越多。一个正常工作的网络给人们带来方便和快捷是不言而喻的,但一个带病

第3章--故障定位的基本思路与方法

第3章故障定位的基本思路与方法 本章介绍常见故障的基本处理思路和方法。包括: ●对维护人员的要求 ●故障定位的基本原则 ●故障判断与定位的常用方法 ●故障处理的过程示例 3.1 对维护人员的要求 快速定位和及时排除光传送系统的故障,对维护人员的业务技能、操作规等都 有很高要求。维护人员应做到以下应知应会。 3.1.1 专业技能 1. 熟练掌握SDH的基本原理 参见《光同步数字传送网》主编:韦乐平人民邮电。 2. 熟练掌握传输系统告警信号流及告警产生的机理 参见《OptiX OSN 3500/2500/1500智能光传输系统维护手册告警及性能事 件分册》。 3. 熟练掌握以下常见告警信号的处理 (1)线路告警 ●R_LOS ●R_LOF ●R_OOF ●AU_AIS ●AU_LOP ●MS_AIS ●MS_RDI ●B1_EXC ●B2_EXC ●HP_LOM ●HP_SLM ●HP_TIM

●HP_UNEQ (2)支路告警 ●TU_AIS ●TU_LOP ●T_ALOS ●P_LOS ●EXT_LOS ●UP_E1_AIS ●LP_RDI ●LP_SLM ●LP_TIM ●LP_UNEQ ●B3_EXC (3)保护倒换告警 ●PS (4)时钟告警 ●LTI ●SYNC_C_LOS ●SYN_BAD (5)设备告警 ●POWER_FAIL ●FAN_FAIL ●BD_STATUS 告警信号的处理方法,参见《OptiX OSN 3500/2500/1500智能光传输系统维 护手册告警及性能事件分册》。 4. 熟练掌握传输设备和网管的基本操作 参见网管操作手册和网管的联机帮助。 5. 熟练掌握传输常用仪表的基本操作 传输设备在维护中常用的仪表包括:2M误码仪、光功率计、SDH分析仪、示 波器、万用表等,使用方法参见各仪表的使用手册。 3.1.2 工程组网信息 ●熟悉组网情况。 ●熟悉业务配置。 ●熟悉设备运行状况。

配电线路故障定位的实用方法分析

配电线路故障定位的实用方法分析 发表时间:2016-07-01T14:35:35.050Z 来源:《电力设备》2016年第9期作者:李勇吴斌李新坤 [导读] 配电线路在运行过程中往往会受到多方面因素的影响,一旦出现故障情况,电力工作人员往往很难及时对配电线路进行维护。李勇吴斌李新坤 (国网山东省电力公司巨野县供电公司 274900) 摘要:配电线路是电力系统中应用最为普及的一种供电重要部件,在实践应用过程中极大的促进了我国电力系统的运作与发展,对于我国电力企业具有不可忽视的重要意义。在常见的配电线路故障处理过程中,一旦出现故障隐患情况,电力维修人员往往很难进行彻底的排查与维护,致使电力网络在运行过程中频频出现故障,给社会造成极大的经济损失。对此,本文详细分析配电线路中故障定位的使用方法。 关键词:配电线路;故障定位;方法 引言 配电线路在运行过程中往往会受到多方面因素的影响,一旦出现故障情况,电力工作人员往往很难及时对配电线路进行维护。现阶段,随着我国科学技术与生产技术的不断完善,配电线路在运行过程中也变得更加安全和稳定,全新的故障定位检测技术为配电线路提供了切实可靠的保障,有效避免了配电线路在运行过程中频繁出现故障情况。 1 传统故障定位技术及其弊端 1.1传统故障定位技术 配电线路的传统故障定位技术主要包含两种:1、根据工作人员经验判断故障点[1]。传统的故障定位技术主要由经验丰富的配电管理人员,凭借自身长期的工作经验以及线路历史故障状况,判断该线路中是否有存在故障可能性较高的点,并对可疑点进行详细的检查[2];2、以线路分段法判断故障定位[3]。通过多次断开、闭合断路器或者打开开关等等方式,按照闭合前后线路的故障是否小时等现象判断故障是否在该范围之内,从而缩小故障定位的排查范围,从而使故障位置更快被发现。 1.2传统故障定位技术的弊端 传统故障定位技术在查询配电线路故障时主要有三个弊端:1、传统故障定位技术仅仅能够粗略的判断故障线路的范围,并不能够准确的端盘故障点[4]。同时,传统方式判断故障点需要较长的时间,几乎不能在两小时以内准确判断故障位置,这也可能导致故障扩散,形成大范围故障,特别是配电线路相对较为复杂、地质条件恶劣、交通不便利的偏远地区,其故障定位所需时间更长,形成的损失与危害更大;2、如果发生的故障是接地故障,如果太阳照射较为强烈,极有可能导致覆盖性弧光放电,如果管理、检修人员没有注意,将会造成严重的生命安全威胁;3、传统故障定位技术需要检修人员、配电管理人员有较为丰富的理论知识以及大量的实际工作经验,并且还需要熟悉大量的历史记录,对操作人员的技术水平的要求非常高。 2 配电线路安全运行维护策略 2.1MODS技术 MODS是一种基于计算机技术、现代通信技术的配电线路故障定位系统,能够准确、快速的定位配电线路的故障位置,解决传统故障定位技术存在的各种问题,其工作原理有以下几方面组成。1、配电线路智能监控系统。该系统主要是由软件装置、信号接收装置、网络计算监控等多部分构成,监控系统的主要任务是显示配电线路的详细运行状况,当信号接收器发现电路网络问题时便会将检查装置发送的故障信息进行处理,然后将故障信息发送至计算监控系统当中,由软件装置对故障信号进行详细的分析,并将故障信息显示在显示器中,从而快速定位故障位置;2、故障电路在线监控系统。故障线路在线监控系统能够实现对配电线路故障的实时监测,然后依靠智能监控系统对故障进行准确的定位,其工作原理主要为:如果配电线路出现接地类故障,问题电路在线监控系统会随时对线路的电流、电压等相位进行对比,当检测出的电流、电压处于异常时,便会判断故障,从而显示故障;3、故障电路显示系统。故障电路显示系统的工作原理为:电流在流过线路中的导体时,会对电路磁场形成一定的影响,指示器能够根据磁场的变化状况进行分析,如果线路当中的电流流量出现变化,那么指示器将会产生相应的提示信息,智能监控系统便会对该信号进行分析,从而判断线路是否处于故障状态。 2.2实际应用效果 MODS系统在配电线路当中的应用优势非常多,例如能够明显提升电力企业配电线路的检修工作效率,准确显示出配电线路所存在的各类型故障,例如电压异常、电流异常或有回路等,通过这些检测能够极大程度的控制配电线路的故障危害性,从而提升电力企业的社会效益与经济效益[5]。例如,将MODS系统安装于电缆分支箱或者高压柜当中,便可以判断故障是发于在该段线路上;将MODS系统安装于电缆线路或者架空线路的连接处中,便可以判断故障是否产生于电缆之上;将MODS系统安装于配电线路的终端或分支处,便可以判断故障是否发生在线路或分支处上;将MODS系统安装于高压引落线处,便可以判断故障是否发生于用户家中等等。 短路故障会形成较大的电流,借助“过电法”能够准确的定位并监察配电线路的故障区域。MODS系统下,使用“过电法”需要借助故障显示器以及馈线终端装置实现,以馈线终端装置为例,原理图为图1。由图1可以发现,当配电线路出现短路故障时,馈线终端装置便会将检测出的配电线路短路故障路段通过信息传递至馈线自动化控制中心处,通过故障信息的分析,并确定故障的现象以及位置,同时通过变电所动作保护开关的跳闸,将故障路段隔离出整个供电线路当中,并恢复非故障区域的供电情况。“过电流”方式故障定位技术的原理非常简单,并且使用的非接触式测量故障检测方式相对于传统故障检测方式而言也有十分明显的优势。同时,这一种方式的检测结果的可靠性较高,检测方式的灵敏度也非常高,是一种非常安全、有效、环保的配电线路故障定位及技术,值得广泛的推广与应用。

基于10kv架空线路单相接地故障定位方法

基于10kv架空线路单相接地故障定位方法 发表时间:2019-06-21T16:49:42.283Z 来源:《河南电力》2018年22期作者:梁庆斌 [导读] 笔者在本文中先是阐述了故障定位的必要性,再分析了当前一些常用的故障定位措施。 (广东电网有限责任公司肇庆广宁供电局 526300) 摘要:在电网系统中,10KV架空线路具有十分重要的意义。一旦发生故障,便会带来许多问题,除了会严重影响供电系统的安全之外,还会带来一系列其他部件的故障,以及带来多线路故障的发生,所以相关研究人员应该加大力度,对10KV架空线路单相接地故障定位方法进行深入研究和探索。笔者在本文中先是阐述了故障定位的必要性,再分析了当前一些常用的故障定位措施。 关键词:架空线路;故障定位;解决措施;电网 前言 由于10KV架空线路的特殊性,发生单相接地故障的次数相对较多,而且会导致故障跳闸,从而使得电器装置发生故障、继电保护设备失效,更严重的时候甚至会发生配电线路大面积断电。一旦这些问题产生,便会给配网造成大量损失,以及引起用掉事故,造成人员伤亡[1]。在引发架空线路故障的原因中,最常见也是最主要的原因,便是单相接地故障。 1、10KV架空线路单相接地故障定位的意义 在电网系统中,当单相接地故障时,会产生许多危害,具体如下: 1.1首先,由于当下10KV输电线变压器基本上采用的都是三角形连接方式,所有都没有设置消弧线圈,当其中一个线路发生单相接地故障的时候,剩下的线路电压便会发生跳动,从而用电设备进入过电压模式,导致两点甚至多点的故障短路,由此带来大范围的跳闸停电,有时候也会造成电缆的烧毁,带来巨大的经济损失。 1.2此外,由于配电网一般会采取中性点接地模式,当线路发生单相接地故障的时候,由于低阻抗短路回路不能够正常形成,所以接地短路电流会比常规情况要小很多,从而出现小电流接地的情况,此外,由于电网结构一般是单端电源供电的树形结构,所以当出现单相接地故障的时候,不能迅速找出故障所在具体位置以及相应相位,从而找不出故障具体发生位置[2]。当前,普遍使用的方法是拉路法,通过单相接地选线,以及人工排查的方式,去不断测试出故障接地的方位,这种方法不仅影响了供电恢复的时间,也会给供电部门的经济成本带来一定的影响。 1.3从以上两点可以得知,对于10KV架空线路单相接地故障来说,一方面会影响架空线路自身的运转和运行情况,从而导致供电质量不够,另外,还会因此而带来其他比较严重的供电系统的损坏,增加设备使用风险。同时,由于当前故障定位技术比较落后,不能够满足先进的电力系统的需要,因此定位技术需要引起足够的重视和研究,确保电网平稳运行。 2、10kV架空线路单相接地故障的定位方法 2.1原始故障定位方式 一般来说,当10KV架空线路配电网单相接地故障发生时,供电企业会使用人为巡检的方式对故障线路进行依次摸排、巡查,一点一点地发现故障点,并予以解决。这种人工方法不仅耽误的时间长,而且投入的人力物力巨大,除了用户不能正常用电之外,也会给供电公司带来一定的经济损失。因此传统的单相接地故障定位方法已不适用于当下,应该针对常见故障研究出新的定位方法。 2.2现代故障定位方法 2.2.1阻抗法。在10KV架空线路配电网单相接地故障发生的时候,检修人员可以对故障线路进行电流、电压进行检测,从而得知故障回路的阻抗,接着假设架空线路是均匀的,因此长度和阻抗是正比关系,这样算来,就能得知故障线路的大概位置。这种阻抗法花费成本低,而且操作简洁安全,与此同时,它的不足之处在于容易受到路径阻抗等因素的影响从而数据存在误差。一般来说,阻抗法常用于结构比较基础以及线路清晰的架空线路上[3]。由于阻抗法的局限性,不能够真正排查出故障的发生位置,所以进行具体排查还需要一定的时间,因此不适用于结构复杂,支线多的电路网中。阻抗法一般不会单独使用,仅作为附加的辅助性方法去进行故障定位。 2.2.2注入法。所谓注入法,也就是交流注入法,实际操作方式为:借助重合器,隔离出发生故障的线路,接着输入高压信号,并控制线路电流在一百到两百毫安之间,接着使用检测器对架空线路进行逐级检查,检查顺序为隔离段的初始位置,一直到隔离段末尾,在这过程中,如果发现某一点存在两倍的信号差,那么基本上可以判定故障发生点。电流注入法也存在一些不足,这是因为一般情况下,架空线路与地面之间有十米左右的距离,之间的电流不大。由于检测的信号与流经线路的信号是正比关系,所以检测器不需要太高的精确性,在故障点附近,检测信号的差别尤其明显,因此容易被检测出来,从而科学性地找出故障点位置,具体应用的信号源结构如下图所示: 图2:注入法结构图 当配电网处于正常工作状态的时候,AN端的电压应该与BN端以及CN端相同,如果A相发生故障,导致短路,则A端电压为零,但是此

线路故障排查和故障定位方法及措施(光、电缆)全解

1.光缆线路故障排查和故障定位方法及措施 1.1光缆线路故障的分类 根据故障光缆光纤阻断情况,可将故障类型分为光缆全断、部分束管中断、单束管中的部分光纤中断三种。 (1)光缆全断 如果现场两侧有预留,采取集中预留,增加一个接头的方式处理; 故障点附近有接头并且现场有足够的预留,采取拉预留,利用原接头的方式处理; 故障点附近既无预留、又无接头,宜采用续缆的方式解决。 (2)光缆中的部分束管中断 其修复以不影响其他在用光纤为前提,推荐采用开天窗接续方法进行故障光纤修复。 (3)单束管中的部分光纤中断 其修复以不影响其他在用光纤为前提,推荐采用开天窗接续方法进行故障光纤修复。 1.2造成光缆线路故障的原因分析 引起光缆线路故障的原因大致可以分为四类:外力因素、自然灾害、光缆自身缺陷及人为因素。 1.2.1外力因素引发的线路故障 (1)外力挖掘:处理挖机施工挖断的故障,管道光缆因打开故障点附近人手井查看光缆是否在人手井内受损,并双向测试中断光缆。 (2)车辆挂断:处理车挂故障时,应首先对故障点光缆进行双方向测试,确认光缆阻断处数,然后再有针对性地处理。 (3)枪击:这类故障一般不会使所有光纤中断,而是部分光缆部位或光纤损坏,但这类故障查找起来比较困难。 1.2.2自然灾害原因造成的线路故障 鼠咬与鸟啄、火灾、洪水、大风、冰凌、雷击、电击。 1.2.3光纤自身原因造成的线路故障 (1)自然断纤:由于光纤是由玻璃、塑料纤维拉制而成,比较脆弱,随着时间的推移会产生静态疲劳,光纤逐渐老化导致自然断纤。或者是接头盒进水,导致光纤损耗增大,甚至发生断纤。 (2)环境温度的影响:温度过低会导致接头盒内进水结冰,光缆护套纵向收缩,对光

10kV架空线路单相接地故障的定位方法分析

10kV架空线路单相接地故障的定位方法分析 发表时间:2018-11-14T16:04:50.920Z 来源:《防护工程》2018年第20期作者:张雄标 [导读] 近年来,经常出现10kV架空线路单相接地故障,影响了配网系统的正常运转,降低了供电质量,必须找准故障线路,科学定位故障线路区段 广东电网有限责任公司清远供电局 511500 摘要:近年来,经常出现10kV架空线路单相接地故障,影响了配网系统的正常运转,降低了供电质量,必须找准故障线路,科学定位故障线路区段,明确故障点,借助新的信息技术科学定位故障点。文章首先分析了10kV架空线路单相接地故障定位与选线的必要性,然后探究了具体的故障定位方法。 关键词:10kV架空线路;单相接地故障;供电系统;故障定位;故障选线 1 10kV架空线路单相接地故障定位的意义 10kV架空线路发生单相接地故障频率较高,故障发生后可能造成故障跳闸,电气装置损坏、继电保护性设备不动作,配电线路大规模断电等问题。这些故障问题的出现会为配网带来巨大的经济损失,引发较为复杂的事故与伤亡问题。引发架空线路故障问题的原因十分复杂,其中单相接地故障就是主要原因之一。单相接地故障会引发多方面的危害性问题,具体体现在:第一,因为现阶段大多数10kV输电线变压器一端选择三角形接法,尚未设置消弧线圈,某一线路出现单相接地故障,其他线路对地工频电压就会相对上升,使得用电设备走向过电压运行模式,从而形成两点、多点的故障短路以及相间短路问题,造成严重的跳闸停电问题,也可能导致电缆烧毁,引发严重的经济损失性问题。第二,通常的配电网都选择中性点接地模式。一旦线路出现单相接地故障,因为无法形成低阻抗短路回路,就会导致接地短路电流变小,出现小电流接地的问题,更重要的是电网结构一般呈现出树形结构,单端电源供电。因此,一旦出现单相接地故障,则很难判断究竟故障所在的具体相路、方位,也就是无法准确定位故障位置。现阶段,针对这一问题依然选择拉路法,依靠这一方法来实施单相接地选线,或者通过人工巡视的方法来目测故障接地的具体位置,这无疑会加剧供电部门故障排除的成本投入,也影响供电恢复的时间,从而引发更为严重的单相接地问题。从以上分析能够看出,10kV架空线路单相接地故障问题不仅会影响架空线路自身的运转与运行,影响供电质量,还可能造成其他较为严重的供电系统危害和风险,而且当前的故障定位技术也相对落后,无法同现代化自动化的电力系统相适应,亟待改进和发展。因此,必须加强10kV架空线路单相接地故障的定位技术和方法的研究,发挥这些方法的积极作用。 2 10kV架空线路单相接地故障的定位方法 2.1 以往的故障定位模式 10kV架空线路配电网单相接地故障定位通常采用人为的巡检的方法,故障查找工作者要围绕故障线路来巡查、寻找,逐渐排除发现故障点,最终解决故障。这样的方法往往会延长时间,也会加大人力、物力等的投入与消耗,而且会影响用户的正常用电,影响供电服务质量。由此可见,传统的单相接地故障定位方法具有一定的局限性,需要改进和优化。2.2 改进后的故障定位模式 2.2.1 阻抗法。当故障发生时,可以通过测量故障线路的电流、电压,来计算故障回路的阻抗,再假设架空线路为均匀性,其长度与阻抗则成正比,根据这一关系,就能大致计算得出故障线路的位置。这一故障定位法最明显的优势体现在:成本低、简便安全;然而其也存在缺陷,那就是很容易受到路径阻抗、电源参数等因素的影响。通常阻抗法适合应用在结构相对基础、线路较为清晰、简单的架空线路中。同时,阻抗法还存在一些弱点,那就是不能有效识别真正的故障点,也无法及时排除伪故障点。因此,阻抗法不适合用在分支较多、结构复杂的配网线路中,一般来说,阻抗法只作为一种附加的辅助性方法用在架空线路单相接地故障定位,将阻抗法同S注入法、行波法等有效配合起来,能够更加有效地定位故障。 2.2.2 注入法。交流注入法的具体工作过程为:依靠重合器将发生故障的线路隔离出来,再输入高压信号,并使电流控制在100~200mA。再利用检测器顺着架空线路来逐级检查,自隔离部位的初始位置开始到末尾慢慢检查,一旦发现被检测区段的前后存在两倍以上的信号差,就能初步断定故障点大概在这一位置。这种检测方法也存在一些缺点和弊端,这是由于通常情况下,架空线路和地面之间存在一定距离,更长的距离达到10米,期间电流也相对较小。然而,因为所测算的信号同流经线路的信号之间成正比。这种定位检测方法无需过高的精度,对于故障点附近较为明显、强度较高的信号,检测器就能将其准确地检测出,进而科学定位故障点。 2.2.3 行波法。架空线路出现故障问题时,会对应出现行波,可以根据行波在母线与故障点间来回往返所花费的时间来对应测算故障的实际距离,或者通过分析行波抵达线路两侧的时间差来对应测算出故障距离。这种故障定位法就是行波法,主要的行波法包括四大类。A 类行波定位:就是通过依靠故障发生时出现的行波来具体分析单端故障所在的位置。B类行波定位:就是通过依靠故障发生时出现的行波来具体分析双端故障所在的位置。C类行波定位:当线路发生故障后,认为地把脉冲信号输入。E型行波定位:当单线接地故障出现后,在开关重合闸的一刹那来输入电流脉冲。同时,行波的运行会受到故障点的干扰,因为位于故障点之前和之后的波形会差异较大,位于故障点的相位差也会发生畸变,在已经定位故障区域的基础上,凭借行波能量对应发现故障点。由于10kV配网拓扑结构相对简单、稳定,根据S、V的关系,能够知道行波达到故障点的时长,对应算出行波能量。假设故障区域的行波能量忽然上升,则意味着能量较高的点为故障点,具体可以运用以下公式计算: 式中:i为节点行波;j为频带;x为离散点个数。行波法的故障检测法其构造相对简单,便于操作,而且不容易受到各种变化性因素的影响,行波法在实际运用中,要想切实发挥故障定位的功能,就要重点捕捉行波波头,明确波头抵达的具体时间来明确故障的位置。行波法在故障定位中也存在一些弱点和问题,那就是由于行波信号属于传播性质的混合信号,这些信号可能会对行波定位故障的精准度带来影响,因为不同的传播方式,有不同的频率分量,对应的传播速度也不同,最终造成行波畸变现象的出现,这样就会影响行波法定位故障的精准度。 3 结语 10kV架空线路结构相对复杂,且存在较多的分支线路与节点,这就使得其故障判断难免出现困难,必须加大对单相接地故障定位方法

配电线路故障特征分析及定位

配电线路故障特征分析及定位 摘要:供电系统的稳定性,极易受到自然条件、地理环境等因素的影响,从而导致配电线路出现故障,影响人们的用电质量,为人们的工作、生活带来极大地不便。如果无法保障配电线路的平稳运行,就无法有效保证供电安全,增大供电压力。因此,如何进行配电线路的故障定位,高效开展故障维修工作,已经成为当前供电工作中一个亟待解决的问题。运用高效的故障定位技术,能够最大程度的保证供电系统的稳定性,为电路维修人员准确定位配电线路的故障位置提供保障,提高我国的供电质量。 关键词:配电线路;故障定位;方法分析 1.传统模式下配电线路故障定位技术分析 1.1根据工作经验进行定位在对配电线路进行维修时,常见的一种故障定位方法是,由那些工作经验丰富的员工,根据电路的工作状况,对配电线路的故障进行分析和判断,然后再检查疑似故障点。这一方法的应用对工作人员的专业技术水平有着较高的要求,需要浪费大量的人力、物力对配电线路的工作资料进行收集,以保证故障定位工作的高效开展。除此以外,这种过多依靠人力的故障检查方法,只能确定故障发生的范围,而无法准确定位故障点,尤其是在地质环境复杂,气候条件恶劣的地区,更是需要投入大量的精力和时间进行故障维修。这种维修方法的应用,十分容易扩大故障发生的范围,为配电线路故障维修工作的高效开展带来不便。 1.2对配电线路进行分段检测这一方法的应用原理是,将一定范围内的电路进行分段,然后对该段电路进行断开、闭合等操作,来有针对性的判断配电线路是否发生故障。这一故障定位方法的应用,需要消耗大量的人力、物力,无法保障配电线路故障定位工作的高效开展。同时,在进行故障检查时,极易出现由于自然光线较强而无法及时发现电路接地故障这一问题,从而对配电线路故障维修人员的人身安全造成威胁。 2.配电线路故障定位的方法分析 随着我国对供电需求量的逐渐增大,提高配电线路故障定位工作的有效性,保证供电的稳定性以及安全性,已经成为当前供电工作中的一项重要工作内容。 2.1实时故障定位系统的应用随着我国科技水平的不断进步,电子信息技术、网络技术等在工业生产和人们日常生活中的应用范围越来越大,极大地推动了我国社会自动化、智能化的发展进程,为各项工作的高效开展提供了保障。 2.1.1监控系统在配电线路中的应用监控系统主要是通过计算机、感应装置、接收信号设备以及相应的软件控制程序共同组成的。通过这一系统的应用,能够将配电线路的工作状态实时的呈现在计算机设备中,当接收信号装置接收到配电线路反馈回来的故障信号时,就可以通过计算机中安装的软件,智能的对故障信号的类型进行分析,然后通过相应指示灯颜色的变化,提示配电线路出现故障,这时,故障维修人员就可以有针对性的电路故障进行维修。 2.1.2监控系统在故障电路中的应用将监控系统应用在故障电路中,能够最大程度的保证供电线路故障定位的准确性。这一系统在故障定位系统中的应用原理是,当配电线路出现故障时,计算机通过对相关数据的分析,来判定配电线路是否出现了接地问题。当配电线路出现接地故障时,电路中的电流会瞬间增大,监控系统能够实现对配电线路的实时监测,准确定位故障的发生点,而当配电线路短路时,电路就会自动断电,使配电线路中的电流量变为零,并将相

网络故障分析报告

网络故障分析报告 网络故障分析报告 网络故障分析报告 一、1XXXX转5故障现象描述 该网络有9台计算机,采用一台S3XXX通过迎宾苑S8XXX接入DCN网络,在今天出现个别机器断网的现象,具体现象为隔一段时间就有一台或几台机器DCN网络中断,重启或者拔掉网线再接上恢复正常。 二、网络故障分析及定位 从上面描述的故障现象来看,问题似乎与S3XXX下9台计算机有关(在此前联系马晓伟从高科技机房测试无丢包、断线等现象,网络正常)。 为了首先恢复业务的正常使用,对S3XXX做了如下操作。 1、因为昨天刚从此S3XXX上21口开LAN业务供9XXXX做互联星空测试使用,所以怀疑是否21口上网有病毒感染到局域网。首先对S3XXX各个端口做了端口隔离,做完之后故障现象依旧。 2、由于做端口隔离故障依旧,而计算机都是上一会就断,重启后又可以上网,和马晓伟联系后怀疑为ARP地址欺骗攻击,建议做端口绑定操作。随后对4号机1号机做端口绑定(做完这两个笔记本没电了,在给笔记本充电过程中对网络进行观察)。

3、从19:00-20:00计算机网络使用正常没有发生过断线情况,同时对4号机进行病毒查杀,通过卡巴斯基查到两个病毒,一个是木马程序Trojan_Downloader.JSIstBar.aj,另一个是蠕虫病毒。 三、对故障现象的解释 S3XXX下计算机刚开机上网正常,一段时间后发生断线情况,重启或重新拔插网线后正常。 现象解释:“ARP欺骗”类病毒在局域网中屡有发现,具体表现为,当局域网中一台计算机感染了这类ARP病毒或木马后,会不定期的发送伪造的ARP响应数据报文和广播报文。受感染的电脑发出的'这种报文会欺骗所在网段的其他电脑,对其他电脑宣称自己的mac就是网关的mac,对实际的网关说其他电脑ip的mac 就是自己的mac,这样网关(交换机或路由器)无法学习到上网主机的mac,更新不了网关arp表,就无法转发数据帧。电脑中毒后会向同网段内所有计算机发送ARP欺骗包,导致网络内其他电脑因网关物理地址被更改而无法上网,被欺骗电脑的典型症状就是刚开机能上网,几分钟后断网,过一会又能上,或者重启一遍电脑就可以上网,一会又不好了,如此重复不断,影响正常使用。

10kV配电线路综合故障定位方法分析

10kV配电线路综合故障定位方法分析 发表时间:2017-12-06T10:07:57.823Z 来源:《电力设备》2017年第23期作者:徐晓磊[导读] 摘要:针对电网配电线路故障定位技术与方法始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行维护与故障处理的实际效率,为电网的稳定运行提供有效支持。(国网上海市电力公司浦东供电公司 200122)摘要:针对电网配电线路故障定位技术与方法始终是电力技术研究的重要内容,准确高效的线路故障定位能够提升线路运行维护与故障处理的实际效率,为电网的稳定运行提供有效支持。本文结合配电网线路故障定位的实际难点,提出了综合性行波测距方法,并以此为基础阐述了故障定位系统的实践应用,旨在提供一定的参考与借鉴。 关键词:10kV;配电线路;综合故障定位 1 10kV配电线路综合故障定位方法分析 1.1配电网线路故障定位的难点配电网故障定位主要有2大难点:一是故障接地过渡电阻比较大。这时的故障信号微弱,加上现场的噪声干扰,很多定位方法会失效,这使得许多方法不能用于配电网故障定位。二是线路分支多。分支点对暂态信号有衰减和畸变作用,返回接收端的暂态信号己经衰减得相当微弱,可能无法检测到故障信号,定位失效。 1.2行波定位法测距原理行波定位方法一般分为A型、B型、C型和E型4种。A型定位原理利用故障时产生的行波,根据测量点到故障点往返一次的时间和行波波速确定故障点距离。B型定位原理利用故障时产生的行波到达线路两端的时间差来实现定位。A、B型2种定位方法都需要检测线路故障瞬间产生的行波信号,需要在变电站的母线上线路的出线处加设检测装置,投资较大,检测的准确性与故障时间、线路状况等因素有关。C型定位原理与A型定位原理一样,不同的是,它利用的是人工注入行波信号。E型行波测距方法是利用线路故障发生后开关重合闸的瞬间,注入电流脉冲双端测距的方法。 1.3 10kV配电线路综合故障定位方法 RBF神经网络属于前向神经网络类型,网络的结构与多层前向网络类似,是一种三层的前向网络。第一层为输入层,由信号源节点组成;第二层为隐藏层,隐藏层节点数视所要描述问题的需要而定,隐藏层中神经元的变换函数即径向基函数是对中心点径向对称且衰减的非负非线性函数,该函数是局部响应函数,而以前的前向网络变换函数都是全局响应的函数;第三层为输出层它对输入模式进行响应。针对配电网定位的难题,通过对现行的定位方法进行分析,提出了利用多种信息来进行综合定位的方法,其目的是利用不同方法的互补性来提高故障定位的准确性。将特征波C型行波定位法和人工神经网络结合起来的行波-BF神经网络综合定位方法,分2步进行故障定位:第一步是在故障线路首端注入高压脉冲信号,利用C型行波法确定故障距离;第二步是利用RBF神经网络确定出故障分支。故障距离结合故障分支就可以对带分支的配电线路进行精确的故障定位。 2 10kV配电线路综合故障定位系统应用分析 2.1系统结构功能(1)故障指示器。故障指示器安装在架空线、电缆等线路或开关柜的母排上。主要由故障电流检测电路、就地指示部分、数字编码及无线调制发射单元组成。在线路发生短路故障时,故障分支上的指示器在故障后将被触发,同时将其数字编码信号通过发射单元,以无线电波的方式发射给发IPU。(2)信息处理单元(IPU)。信息处理单元((IPU)一般安装在线路分支点处,它能接收两个分支共6个故障探头的编码信息。I PU 对接收到的无线信息先进行解调解码,再与IPU的地址组合,形成一个包含综合地址码,经过一个与地址码相对应的时间延时后,通过编码电路,送给无线调制及发射单元,以无线电波方式发射出去。IPU的所有元件安装在一个可户外运行的铁箱中,内部还包括一个免维护的铅酸蓄电池。箱体外部安装一个太阳能电池板,用以给蓄电池充电,并在白天作为工作电源。在夜晚或阴雨天气时,由蓄电池供电。蓄电池在充足电后的情况下,可以维持子站连续10天工作,不需补充能量。每一个发射子站均可以通过拨码开关设定其地址号。(3)数据处理及转发系统(CM200)。数据处理及转发系统(CM200)的功能是将IPU送来的无线信息接收后进行解调、解码,并显示。数据处理及转发系统(CM200)需架设高架天线,以保证有效地接收数据,解码后的数据送用户监控信息系统做进一步处理。(4)用户监控信息系统。用户监控信息系统实现故障的指示与定位功能,并与GIS系统结合在一起,形成一个独立的软件子系统。该子系统可包括两部分:配电网图形编辑系统、故障检测与定位系统。配电网图形编辑系统用来创建和修改配电网络图;故障检测与定位系统是一个集GIS(地理信息系统)和MIS(管理信息系统)于一体的系统,它既可用来实时监测配电网络状态和故障、实时定位故障点、便于电力线路的维护和事故抢修,又可用来对配电网设施进行管理,便于设施信息的录入、查询和统计。 2.2 10kV配电线路综合故障定位系统应用 10kV配电网中性点不接地,属于小电流接地系统。配电网在实际运行过程中,通常会发生接地和相间短路故障,一般接地故障的发生较多,尤其是在雷雨、大风等恶劣自然天气情况下,发生单相接地故障的几率比较频繁。虽然单相接地后,故障相对地电压降低,非故障相电压升高电压依然对称,不影响用户供电,但是,单相接地长时间运行会严重影响变电设备和配电网安全经济运行。因此,发生单相接地后也需要将线路停电,查找故障,特别是在选线的时候,会造成无故障线路的停电,造成供电可靠性的降低。当配电网发生短路或者接地故障时,电网中存在大量的故障信息,可以利用一些量化的信息对故障点进行定位,同时,将故障或可疑线路与无故障发生的线路分开,保证其他线路的供电。通常的方法是逐步减少连接在故障或者可疑发生故障线路上正常运行设备的数量。结语 综上所述,10kV作为电网的重要组成部分,其线路运行的稳定性始终是行业工作者们关注的重点。在众多新型故障定位技术与方法的应用背景下,对现有故障定位方法进行创新优化,采用更为高效智能的故障定位与分析系统提升工作效率,对于强化电网运行管理具有重要的现实意义。参考文献:

【干货】典型网络故障案例及处理思路

【干货】典型网络故障案例及处理思路 很多朋友经常提到网络故障,其中在交换机组网时常见的故障比较多。为了便于大家排除这些故障,在此介绍一些常见的典型故障案例及处理思路。 故障1:交换机刚加电时网络无法通信 故障现象 交换机刚刚开启的时候无法连接至其他网络,需要等待一段时间才可以。另外,需要使用一段时间之后,访问其他计算机的速度才快,如果有一段时间不使用网络,再访问的时候速度又会慢下来。 故障分析 由于这台交换机是一台可网管交换机,为了避免网络中存在拓扑环,从而导致网络瘫痪,可网管交换机在默认情况下都启用生成树协议。这样即使网络中存在环路,也会只保留一条路径,而自动切断其他链路。所以,当交换机在加电启动的时候,各端口需要依次进入监听、学习和转发状态,这个过程大约需要3~5分钟时间。

如果需要迅速启动交换机,可以在直接连接到计算机的端口上启动“PortFast”,使得该端口立即并且永久转换至转发状态,这样设备可以立即连接到网络,避免端口由监听和学习状态向转发状态过渡而必须的等待时间。 故障解决 如果需要在交换机加电之后迅速实现数据转发,可以禁用扩展树协议,或者将端口设置为PortFast模式。不过需要注意的是,这两种方法虽然省略了端口检测过程,但是一旦网络设备之间产生拓扑环,将导致网络通信瘫痪。 故障2:5口交换机只能使用4口 故障现象 办公室中有4台计算机,但是只有一个信息插座,于是配置了一台5口(其中一口为UpLink端口)交换机。原以为4台计算机刚好与4个接口连接,1个UpLink端口用于连接到局域网,但是接入到网络之后,与UpLink端口相邻的1号口无法正常使用。 故障分析 UpLink 端口不能被看作是一个单独的端口,这是因为它与相邻端口其实就是一个端口,只是适用的连接对象不同而已。借助UpLink端口,集线设备可以使

架空输电线路故障诊断及故障点定位

架空输电线路故障诊断及故障点定位 摘要:电网的整体输电线路对于整个电力系统的正常工作是至关重要的,它的 正常工作与否直接影响到整个供电系统的安全性和稳定性。架空输电线路的运行 和维护管理受到多种因素、多个方面的影响,因此需要加强输电线路运行维护及 管理。同时如何及时、准确的对电力系统架空输电线路中故障的位置进行确定, 最大限度的提高恢复供电的效率,降低电力企业以及电网用户的损失。 关键词:架空输电线路;故障;诊断 引言 架空输电线路作为电网的重要环节,具有点多、面广、线长等特点,长期暴 露在野外,极易遭受各种外力的损害。因而,危及到整个架空输电线路的安全隐 患时有发生,部分线路甚至存在着极大的安全不确定性。例如一些来自偶然的虫 鸟危害、雷电的击打、冰雹等,这些自然因素都会对整个供电线路带来极大的危 害和威胁,并且这样的意外灾害的破坏力是极大的。故障发生后,由于线长面广,采用以往凭经验,分段、逐段、逐基杆塔检查等传统方法进行排查,费时费力, 停电范围大、时间长,很难快速、准确的查清,隔离故障区段。同时,由于大多 线路处在山坡、沟壑之上,故查找过程中人身安全风险系数增大。 1.输电线路故障分析原因 1.1短路故障的原因 产生短路故障的基本原因是不同电位的导体之间的绝缘击穿或者相互短接而 形成的。三相线路短路一般有如下原因:倒杆造成的三相接地短路、线路带地线 合闸、线路运行时间较长绝缘性能下降、受外力破坏等。两相短路故障的原因是:线弧垂大,遇到刮大风导线摆动,两根线相碰或绞线形成短路;外力作用,如杂 物搭在两根线上造成短路;受雷击形成短路,绝缘击穿,电路中不同电位的导体 间是相互绝缘的。 1.2断路故障的原因 断路为最常见的故障,其最基本的表现形式是回路不通。在某些情况下,断 路还会引起过电压,断路点产生的电弧还可能导致电气火灾和爆炸事故。断路点 电弧故障:电路断线,尤其是那些似断非断的点,在断开瞬间往往会产生电弧, 或者在断路点产生高温,电力线路中的电弧和高温可能会酿成火灾;三相电路中,如果发生一相断路故障,一则可能使三相电路不对称,各相电压发生变化,使其 中的相电压升高,造成事故;二来会使电动机因缺相运行而被烧毁。三相电路中,如果零线(中性线)断路,则单相负荷影响性更大。线路断路一般有如下原因: 架空输电线路的一相导线因故断开;导线接头接触不良或烧断;外力作用造成一 相断线;配电低压侧一相保险丝熔断等。 1.3线路接地故障原因 线路接地一般有如下原因:导线接头处氧化腐蚀脱落,导线断开落地;外力 破坏造成导线断开落地;线路附近的树枝等碰及导线。如在线路附近伐树到在线 路上,线跨越道路时汽车碰断等;电气元件绝缘能力下降,对附近物体放电。 1.4自然灾害引起的故障 (1)雷电危害。雷电的危害是引起电力危害的主要原因之一,雷电造成的输电线路故障情况时有发生,一般情况下的故障表现方式是变电跳闸,特别是在一 些地形极其复杂的地区,雷电天气比较多,输电线路遭受到雷电的损失更为巨大,遭遇雷电的次数更加频繁,雷电产生的故障率也格外的多。

网络流量、应用性能分析、故障定位分析方案

. XX省农信社 基于产品的网络流量、应用性能分析、故障定位分析项目 测试报告 2019年6月11日

目录

1概述 随着大量新兴技术和业务趋势的推动,用户的网络架构、业务系统和数据流量日趋庞大、复杂。为了保证网络和业务系统运行的稳定和畅通,我们需要对网络及业务系统进行全方位监测,以确保网络及应用系统可以正常、持续地运行。 应用性能管理是一个新兴的市场,其解决方案通过监控应用系统的性能、用户感知,在应用出现异常故障时,帮助用户快速的定位和解决故障,其标准的需求如下: ?通过网络流量分析工具,掌握各级网络运行的趋势和规律,主动、科学地进行网络规划和策略调整,将网络管理的模式从被动变为主动: ?通过网络流量分析工具,实时监控网络中出现的非法流量,及时采取管控措施,保障应用系统的安全运行; ?应用系统出现问题(如运行缓慢或意外中断时,)通过网络流量分析工具可回溯历史网络流量,快速找出问题的根本原因并及时解决。 ?网络拥堵时,通过网络流量分析工具快速判断是正常应用系统占用了带宽还是异常流量占用了带宽,立即执行相应、有效的控制措施。 ?从最终用户感知的角度,提供多维度的应用性能监控,实时掌握应用系统的性能状况; ?7×24小时实时监控各区域用户的真实使用体验,及时发现用户体验下降,并及时作出相应的处理,提升用户满意度。 ?当故障发生时,快速定位故障域,缩短故障分析时间,降低故障对最终用户造成的影响,提高系统的运维质量。 年APM市场全球分析报告与魔力象限分析,Riverbed(OPNET)公司已经成为全球这个领域的领导者。 OPNET公司的客户群体非常广泛,国内的用户包括中国移动、中国网通、中国电信、信息产业部电信规划研究院,中国农业银行总行,民生银行,新华人寿,中国海关总署,银河证券,国信证券,电信设备供应商中包括华为、大唐电信、摩托罗拉、中兴电子及西门子等。

基于行波法的交直流配电线路故障定位方法综述 孙永健

基于行波法的交直流配电线路故障定位方法综述孙永健 发表时间:2018-06-19T10:20:40.563Z 来源:《电力设备》2018年第4期作者:孙永健陈羽韩玘桓 [导读] 摘要:随着电力电子技术的不断发展,分布式电源大量接入,直流配电线路相较于交流配电线路效率高,交直流配电网的发展得到了重视。 (山东理工大学电气工程学院山东省淄博市 255049) 摘要:随着电力电子技术的不断发展,分布式电源大量接入,直流配电线路相较于交流配电线路效率高,交直流配电网的发展得到了重视。交直流配电网发生线路故障时,可靠、精确的故障测距方法对于保障配电系统的稳定运行具有重要意义。 关键词:直流配电网直流线路故障定位故障初始行波 0 引言 随着科学技术的不断进步,电力电子技术的不断发展,以太阳能、风能为主的新能源的普及利用,直流负荷的涌现,直流配电线路给直流负荷供电时比交流配电线路效率高,直流配电网已成为国内外研究发展的热点课题。直流配电网较交流配电网相比有以下优点:(1)供电容量大、线路损耗小;(2)供电效率高、供电稳定性好、电能质量好;(3)便于直流电源及直流负载的接入。环状直流配电网供电可靠性更高,发展前景广阔[1]。 行波法故障定位受故障距离、过渡电阻及系统运行方式小,测距精确,是输电系统最主要的故障测距方法。 1 交流配电线路定位方法 行波测距是通过测量线路发生故障时的特征电气量来实现的。对暂态电气量进行分析时,考虑到基波电压和电流波长的大小,网络大小不可做理想化处理,因此,需要对线路进行分部参数处理并在实际计算中考虑电磁波在传播过程中的速度和时间,此种在分布参数系统中的具有固定传播速度的电磁波被称为行波。行波测距法起源与19世纪60年代,如今也是非常实用的测距方法,主要利用线路故障时产生的暂态电气量—行波进行测距,一直以来,许多的研究着利用电压或电流行波的传播特点,提出了许多具有实际应用价值的观点。 行波测距法主要分为两种:一种是在故障点处产生的行波经线路传播到线路母线的时间与故障点处产生的行波经对侧母线反射到本侧母线或故障点自身反射到本册母线的时间之差进行测距,这种方法称为单端行波测距法,A性行波测距法便是利用单端行波测距法的基本原理实现的;另一按照故障点出行波达到两端母线监测点的时间差进行测距,这种方法被称为双端测距法。该方法的实现的关键是两端行波同步到达母线的测点的时间差,需要专用的同步时钟进行及时。虽然双端行波测距法会增大投资成本,但其只需要检测故障行波的第一个波头,受线路运行方式、过渡电阻以及分部电容等参数的影响较小,其测距结果更加准确。 2 直流配电线路定位方法 由于行波法测距精度高、响应速度快,并且受过渡电阻、线路阻抗、故障距离及系统运行方式影响较小,因此行波法是现如今直流系统中最主要的故障测距方法。 行波测距通过测量故障点行波波头到达母线监测点的时间实现测距,测量准确度高;具体实现又可分为单端行波法[2-5]和双端行波法[6-7]。单端行波法只需要测量故障行波波头达到其中一侧母线监测点的时间即可,不需要进行通讯,实现方式简单,精度较好,但可靠度取决于能否准确捕获故障点行波反射波和透射波。双端行波法是根据故障点行波到达两端母线监测点的时间之差确定距离的,测量准确度和可靠性更高,但对于数据采样的准确性要求更高。行波测距法能够可靠工作较为关键的环节便是波头的识别和捕获。一个很简单的方法便是导数法,即对故障行波进行一阶求导,得到导数的极大值便可得到波头。上世纪末,小波变换是应用很广泛的故障行波波头捕获方法,因其具有良好的时频局部化特征。文献[6-7]提出了基于双端行波法,并使用小波变换的模的极大值检测故障行波信号的奇异性,由此得到行波波头,从而实现故障的精准定位。随着软件和硬件水平的不断提高,不断有新的检测和数学分析方法被引入到故障测距中来。文献[8-10]应用数学形态学多分辨形态梯度理论和小波变换原理来检测波头。文献[13]将波形图映射为红率彩色模式图,将颜色变化点定为波头点。 行波测距另一重要影响因素便是行波速度,行波速度与线路参数和行波频率有很大关系,行波波速并不是恒定不变的。而在实际计算中,往往不会考虑波速变化对测距所产生的影响,因此,最终测距结果又是会超出所允许的误差范围。所以,故障行波的选取要考虑合适的行波速度,将波速对测距的影响降到最低。文献[5]总结故障波头之间的时间差,并列写了测距方程,从未消除了波速对测距的影响。 研究者们也对其他测距方法进行了探索,主要寻找故障行波变化特点与故障距离的关系,这样便可以不再对故障行波的波头进行检测,可以提高可靠性,但在具体实施过程中还有很多问题,目前该研究还在理论探索阶段。文献[3]提出利用发生故障时的电流频率来测定故障距离,测距精度有所提高,实现了无需检测故障波头的要求,但对于故障电流频率的检测和分析却面临着其他一系列问题。文献[11]提出故障行波中的高频分量衰减与故障距离的关系实现故障测距的构思,能够实现精确测距。但高频分量衰减速度受其衰减常数的。文献[12]利人工神经网络算法对文献[11]的算法进行矫正,利用其非线性拟合能力能够准确计算出行波衰减常数,满足了行波测距高可靠性要求。 3 结语 总而言之,随着行波测距系统运行经验的积累和不断完善,行波测距已成为一种主要的输电线路故障精确定位方法。 由于交直流配电网接线方式的特殊性,行波测距用于交直流配电网还有一些特殊的问题需要解决。目前,交直流配电网行波测距的研究主要还是停留在理论探讨与试验阶段,还没有获得实际的应用。 参考文献: [1] 宋强,赵彪,刘文华,等.智能直流配电网研究综述[J].中国电机工程学报,2013,33(25):9-19. [2] 张帆,潘贞存,马琳琳,等.基于模量行波传输时间差的线路接地故障测距与保护[J].中国电机工程学报,2009,29,(10):78-83. [3] 宋国兵,李德坤,斬东時,等.利用近波电压分布特征的柔性直流输电线路单端故障定位[J].电为系统自动化,2013,37(15):83-88. [4] 李德坤,宋国兵,高淑萍,等.VSC-HVDC输电线路单端行波自动化故障定位方法研究[J].电网技术,.2013,37(4):1128-1133. [5] 杨立紅,杨明玉.与波速无关的柔性直流输电线路单端行波故障测距算法[J]可电力科学与工程,2013,29(6):12-16+22.

相关文档
相关文档 最新文档