文档库 最新最全的文档下载
当前位置:文档库 › 静电纺丝实验指导

静电纺丝实验指导

静电纺丝实验指导
静电纺丝实验指导

静电纺丝设备及工艺试验

一、实验目的

1、掌握静电纺丝工艺原理;

2、通过实验加深对静电纺丝设备结构特点、作用的理解

3、熟悉静电纺丝法制备非织造布的一般工艺;

4、熟悉工艺参数对纺丝液静电纺丝性能影响

二、原理

静电纺丝法是聚合物溶液或熔体在高压静电场下克服表面张力而产生带电喷射流,借助静电作用对射流体进行喷射拉伸,溶液在喷射过程中干燥、固化,最终落在接收装置上形成纤维毡或者其他形状的纤维。静电纺丝技术制得的纤维直径一般在数十纳米到数百纳米之间,且具有连续性的结构。静电纺丝装置一般由注射器(挤出泵)、喷丝头、高压静电发生器和接受装置四部分组成。

三、药品、仪器和材料

聚乙烯醇、去离子水、搅拌器

四、实验步骤

1、将聚乙烯醇和去离子水按一定比例加热搅拌溶解,冷却,制成聚乙烯醇溶液。

2、取适量配制好的聚乙烯醇溶液注入注射器中,排出气泡;固定注射器在微量挤出泵上;以导管连接注射器和喷丝头;将高压电源正极夹在喷丝头上,负极接在接受装置上。

3、打开微量挤出泵,选择合适的挤出速率。待溶液被缓慢挤出后,打开高压电源,选择合适的电压值。适当调节接收距离,观察收集装置处得到聚乙烯醇非织造布样品。

4、调节静电压值,纺丝液流量、接收距离等实验参数,观察纺丝液静电纺丝性能变化。

5、纺丝完毕后,先关闭高压电源,再关闭微量挤出泵开关。

6、清理仪器,清洗注射器和挤出导管。

五、注意事项

1、注意操作安全,将电压调至0并关闭电源后再进行样品的收集处理和挤出泵的拆卸更换样品溶液等操作。

2、注意各种参数对静电纺丝可纺性能的影响

六、思考题

分析静电纺丝工艺过程中的影响因素。

实验八 模拟法测绘静电场

实验八 模拟法测绘静电场 模拟法本质上是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的状态和过程,要求这两种状态或过程有一一对应的两组物理量,且满足相似的数学形式及边界条件。 一般情况,模拟可分为物理模拟和数学模拟,对一些物理场的研究主要采用物理模拟(物理模拟就是保持同一物理本质的模拟),数学模拟也是一种研究物理场的方法,它是把不同本质的物理现象或过程,用同一个数学方程来描绘。对一个稳定的物理场,若它的微分方程和边界条件一旦确定,其解是唯一的。两个不同本质的物理场如果描述它们的微分方程和边界条件相同,则它们的解也是一一对应的,只要对其中一种易于测量的场进行测绘,并得到结果,那么与它对应的另一个物理场的结果也就知道了。由于稳恒电流场易于实现测量,所以就用稳恒电流场来模拟与其具有相同数学形式的静电场。 我们还要明确,模拟法是在实验和测量难以直接进行,尤其是在理论难以计算时,采用的一种方法,它在工程设计中有着广泛的应用。 【实验目的】 本实验用稳恒电流场分别模拟长同轴圆形电缆的静电场、平行导线形成的静电场、劈尖形电极和聚焦。具体要求达到: 1、学习用模拟方法来测绘具有相同数学形式的物理场。 2、描绘出分布曲线及场量的分布特点。 3、加深对各物理场概念的理解。 4、初步学会用模拟法测量和研究二维静电场。 【实验仪器】 GVZ 一3型导电微晶静电场描绘仪(包括导电微晶、双层固定支架、同步探针等),如图所示,支架采用双层式结构,上层放记录纸,下层放导电微晶。电极已直接制作在导电微晶上,并将电极引线接出到外接线柱上,电极间有电导率远小于电极且各项均匀的导电介质。接通直流电源〔10v)就可进行实验。在导电微晶和记录纸上方各有一探针,通过金属探针臂把两探针固定在同一手柄座上,两探针始终保持在同一铅垂线上。移动手柄座时,可保证两探针的运动轨迹是一样的。由导电微晶上方的探针找到待测点后,按一下记录纸上方的探针,在记录纸上留下一个对应的标记。移动同步探针在导电微晶上找出若干电位相同的点,由此便可描绘出等位线。 【实验原理】 (一)模拟长同轴圆柱形电缆的静电场 稳恒电流场与静电场是两种不同性质的场,但是它们两者在一定条件下具有相似的空间分布,即两种场遵守规律在形式上相似,都可以引入电位U,电场强度U E -?=,都遵守高斯定律。 对于静电场,电场强度在无源区域内满足以下积分关系: 图1导电微晶静电场描绘仪

模拟法测静电场示范实验报告

实验七:模拟法测静电场 示范实验报告 【实验目的】 1. 理解模拟实验法的适用条件。 2. 对于给定的电极,能用模拟法求出其电场分布。 3. 加深对电场强度和电势概念的理解。 【实验仪器】 YJ-MJ-Ⅲ型激光描点模拟静电场描绘仪、白纸、夹子 【实验原理】 直接测量静电场,是非常困难的,因为: ① 静电场是没有电流的,测量静电场中各点的电势需要静电式仪表。而教学实验室只有磁电式仪表。任何磁电式电表都需要有电流通过才能偏转,所以想利用磁电式电压表直接测定静电场中各点的电势,是不可能的。 ② 任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,会使场源电荷的分布发生变化。 人们在实践中发现:两个物理量之间,只要具有相同的物理模型或相同的数学表达式,就可以用一个物理量去定量或定性地去模拟另一个物理量,这种测量方法称为模拟法。本实验用稳恒电流场模拟静电场进行测量。 从电磁学理论知道,稳恒电流场与静电场满足相同的场方程: 0E dl ?=? (静电场的环路定理) , 0E dS ?=?? (闭合面内无电荷时静电场的高斯定理); 0j dl ?=? (由?=?0l d E ,得?=?0l d E σ,又E j σ=,故?=?0l d j ) , 0j ds ?=?? (电流场的稳恒条件); 如果二者有相同的边界条件,则场分布必定相同,故可用稳恒电流场模拟静电场。 1.长直同轴圆柱面电极间的电场分布 在真空中有一个半径为r 1的长圆柱导体A 和一个内半径为r 2的长圆筒导体B ,其中心轴重合且均匀带电,设A 、B 各带等量异种电荷,沿轴线每单位长度上内外柱面各带电荷σ+和

静电纺丝法简介

CENTRAL SOUTH UNIVERSITY 硕士生课程论文 题目静电纺丝法简介 学生姓名张辉华 学号133511018 指导教师秦毅红 学院冶金与环境学院专业冶金工程 完成时间2014.5.27

静电纺丝法简介 摘要:静电纺丝法是聚合物溶液或熔体在静电作用下进行喷射拉伸而获得纳米级纤维的纺丝,作为一种新颖的纳米纤维制备方法,具有许多一般纳米纤维制备法没有的优点,在国内外一直引起广泛的关注。本文主要是介绍了静电纺丝的基本原理以及研究重点,同时简要地介绍了此方法在电池材料一起其他材料上的应用。 前言 静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,最终固化成纤维。静电纺丝技术在1934年首先由Formhals[1]提出, 随后的相当长一段时间又有多项专利出现。近年来,随着纳米材料研究的兴起,人们发现由电纺制得的纤维的直径可以达到纳米级,使得这种技术重新受到重视并出现了大量的文献[2]。目前, 主要是从事材料、化工和高分子领域的科学家在研究静电纺丝。 1 静电纺丝实验装置与基本原理 1.1 电纺过程 所需设备高压电源,溶液储存装置,喷射装置( 如内径 1 mm 的毛细管) 和收集装置( 如金属平板、铝箔等) 。图1为传统的单纺装置。 图1 经典的静电纺丝装置示意图

高压静电场(一般在几千到几万伏) 在毛细喷丝头和接地极间瞬时产生一个电位差,使毛细管内聚合物溶液或者熔融体(一般为非牛顿流体) 克服自身的表面张力和粘弹性力,在喷丝头末断呈现半球状的液滴。随着电场强度增加,液滴被拉成圆锥状即Taylor锥。当电场强度超过一临界值后,将克服液滴的表面张力形成射流(一般流速数m/s),在电场中进一步加速,直径减小,拉伸成一直线至一定距离后弯曲,进而循环或者循螺旋形路径行走,伴随溶剂挥发或熔融体冷却固化,终落在收集板上形成纤维,直径一般在几十纳米到几微米之间。 除去传统的单纺丝还有其他的一些纺丝方式,如同轴静电纺丝,共轴复合纺丝就是将两种不同聚合物溶液预先不经混合, 而是各自在电场力的驱动下共轴 喷射经过同一个毛细管或注射器针头出口,得到连续的复合纤维的方法,该纤维具有核-壳结构。共轴复合纺丝设备如图2(a)所示,核-壳结构纤维如图2(b)所示。 图2 同轴纺丝和复合纤维形貌 同轴纺丝能直接接一步制备复合微/纳米线,可以制备医用复合纳米线、空心纳米管,这种方法制备出来的材料品质要明显优于涂覆法制备的材料。此外可以将碳纳米管与挥发性溶剂混合液用作内纺液, 将聚合物溶液用作外纺液, 利用溶剂的挥发性就可以携带碳纳米管渗透到外层聚合物中, 形成连续的碳纳米管增强 的复合纳米纤维。

静电纺丝技术的研究

TiO2纳米纤维薄膜的制备及其光催化研究杭州师范大学材料与化学化工学院应化081班 应用化学专业林洁指导老师:叶映雪 摘要二氧化钛是对光催化非常有用的最好半导体光催化剂中的一种。在这篇文献中,我们通过快速淬灭的静电纺丝处理过程来制备二氧化钛纳米纤维薄膜。制备的薄膜由连续的并且多孔的锐钛矿二氧化钛纳米纤维组成,该纳米纤维的直径大小为60-115nm。同时,我们得到了一种最佳的淬灭方法。光催化测量研究表明,锐钛矿TiO2纳米纤维薄膜的光催化效率为72%,这远远高于锐钛矿TiO2薄膜的光催化效率(44%)。我们认为,大的而且特殊的表面积大大地提高了光催化反应性能,同时,较好的形状保留特性使其具有了很好的恢复性和实用性能。在这里,我们将讨论其对环境净化的潜在应用。 关键词纤维技术静电纺丝纳米材料纳米纤维光催化活性 1.引言 由于二氧化钛具有很高的光活性、久耐光性、化学和生物惰性、机械稳固性和价格低廉等优点,其过去常常被认为是可作为光催化[1]的最好半导体光催化剂中的一种。由于光催化反应主要发生在催化剂的表面,高的表面积和体积比对于增加分解速率具有非常重要的意义。TiO2纳米粒子和纳米晶状薄膜已经展示了非常高的光催化活性[2,3]。就这些形式的TiO2而言,虽然已经取得了很大进展,但是纳米粉末具有很低的恢复性和回收利用性限制,纳米薄膜具有很小的接触面积,故此将其用于商业用途还存在着很大瓶颈。纳米纤维有望解决这些问题,因为其结合了纳米粉末和薄膜两者的特点,如连续性和容易制备成多孔透气的纳米纤维薄膜,同时又是由纳米晶体构成的[4]。然而,据我们所知,先前的研究主要聚焦于利用静电纺丝制备技术制备TiO2纳米纤维[5,6],虽然在250nm TiO2纤维[16]方面已经做了很多工作,但是对于直径小于100nm的TiO2纳米纤维的光催化性质却只有非常少的经验研究。 制备TiO2纳米粉末[7,8]\、纳米管[9]和纳米线[10]的方法有很多种,但是用于制备TiO2纳米纤维却仅仅只有几种,如静电纺丝技术[5]\、水热法[11]等等。其中,静电纺丝技术可用于制备直径从几十到几百纳米[12]连续变化的纤维方面,而且已经成为了一种成熟的方法,从而很容易得到用于水净化的多孔透水纳米纤维薄膜。 在这篇文献中,通过使用快速淬灭过程的静电纺丝处理技术以制备TiO2纳米纤维纤维

静电纺丝技术的工艺原理及应用

静电纺丝技术的工艺原理及应用 静电纺丝技术是目前制备纳米纤维最重要的基本方法。这一技术的核心是使带电荷流体在静电场中流动与变形,最终得到纤维状物质,从而为高分子成为纳米功能材料提供了一种新的加工方法。由于纳米纤维具有许多特性,例如纤维纤度细、比表面积大、孔隙率高,因而具有广泛的应用。 1、静电纺技术 静电纺是一项简单方便、廉价而且对环境无污染的纺丝技术。早在20世纪30年代,Formals A就已经在其专利中报道了利用高压静电纺丝,但是直到近些年,由于对纳米科技研究的迅速升温,激起了人们对这种可制备纳米尺寸纤维的纺丝技术进行深入研究的浓厚兴趣。 1.1 静电纺技术的基本原理 静电纺丝技术(Electrospinning fiber technique)是使带电的高分子溶液(或熔体)在静电场中流动变形,经溶剂蒸发或熔体冷却而固化,从而得到纤维状物质的一种方法。对聚合物纤维电纺过程的图式说明见图1。 静电纺丝机的基本组成主要有3个部分:静电高压电源、液体供给装置、纤维收集装置。静电高压电源根据电流变换方式可以分成DC/DC和AC/DC两种类型,实验中多用IX;/DC电源。液体供给装置是一端带有毛细管的容器(如注射器),其中盛 有高分子溶液或熔体,将一金属线的一端伸进容器中,使液体与高压电发生器的正极相连。纤维收集装置是在毛细管相对端设置的技术收集板,可以是金属类平面(如锡纸)或者是旋转的滚轮等。收集板用导线接地,作为负极,并与高压电源负极相连。另外随着对实验要求的提高,液体流量控制系统也被渐渐的采用,这样可以将液体的流速控制得更准确。电场的大小与毛细管口聚合物溶液的表面张力有关。由于电场的作用,聚合物溶液表面会产生电荷。电荷相互排斥和相反电荷电极对表面电荷的压缩,均会直接产生一种与表面张力相反的力。当电场强度增加时,毛细管口的流体半球表面会被拉成锥形,称为Taylor锥。进一步增加电场强度,是用来克服表面张力的静电排斥力到达一个临界值,此时带电射流从Taylor锥尖喷射出来。带电后的聚合物射流经过不稳定拉伸过程,

用模拟法测绘静电场

用模拟法测绘静电场实验示范报告 物理实验中心 鲁晓东 【实验目的】 1.懂得模拟实验法的适用条件。 2.对于给定的电极,能用模拟法求出其电场分布。 3.加深对电场强度和电势概念的理解 【实验仪器】 双层静电场测试仪、模拟装置(同轴电缆和电子枪聚焦电极)、JDY 型静电场描绘电源。 [实验原理] 【实验原理】 1、静电场的描述 电场强度E 是一个矢量。因此,在电场的计算或测试中往往是先研究电位的分布情况,因为电位是标量。我们可以先测得等位面,再根据电力线与等位面处处正交的特点,作出电力线,整个电场的分布就可以用几何图形清楚地表示出来了。有了电位U 值的分布,由 U E -?= 便可求出E 的大小和方向,整个电场就算确定了。 2、实验中的困难 实验上想利用磁电式电压表直接测定静电场的电位,是不可能的,因为任何磁电式电表都需要有电流通过才能偏转,而静电场是无电流的。再则任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,使原场源电荷的分布发生变化。人们在实践中发现,有些测量在实际情况下难于进行时,可以通过一定的方法,模拟实际情况而进行测量,这种方法称为“模拟法”。 3、模拟法理由 两场服从的规律的数学形式相同,如又满足相同的边界条件,则电场、电位分布完全相类似,所以可用电流场模拟静电场。这种模拟属于数学模拟。 静电场(无电荷区) 稳恒电流场(无电流区) ??? ???????==?=?=???b a ab l d E U 0l d E 0S d D E D ε ??????????==?=?=?? ?b a ab l d E U 0l d E 0S d j E j σ 4、讨论同轴圆柱面的电场、电势分布 (1)静电场 根据理论计算,A 、B 两电极间半径为r 处的电场强度大小为 r E 02πετ = A 、 B 两电极间任一半径为r 的柱面的电势为

静电纺丝技术及其研究进展_杨恩龙

静电纺丝技术及其研究进展*杨恩龙 王善元 李 妮 赵丛涛 (东华大学纺织学院,上海,201620) 摘 要:静电纺丝是目前唯一能够直接、连续制备聚合物纳米纤维的方法。概述了静电纺丝技术及其发展历程,静电纺丝射流的稳态和非稳态的研究成果。介绍了静电纺丝机、静电纺丝技术的新进展及静电纺纳米纤维膜的应用。最后指出静电纺丝的研究方向。 关键词:静电纺丝,纳米纤维,进展 中图分类号:TQ340.6;TS176 文献标识码:A 文章编号:1004-7093(2007)08-0007-05 近几年来,由于纳米材料研究的迅速升温,激起了人们对静电纺丝(又称电纺)进行深入研究的浓厚兴趣。和拉伸、相分离等方法相比,静电纺丝已成为制取纳米纤维最重要、最有效的方法。静电纺纳米纤维的发展历程见表1。 1 静电纺丝技术 1.1 静电纺丝的基本原理 使聚合物溶液或熔体带上高压静电,当电场力足够大时,聚合物液滴可克服表面张力形成喷射细流。带电的聚合物射流拉伸细化,同时弯曲、劈裂,溶剂蒸发或固化,沉积于基布上形成纳米纤维膜。 1.2 静电纺丝的影响因素 静电纺丝的影响因素列于表2。 1.3 静电纺丝的优缺点 静电纺丝法简单、易操作。但是有如下缺点:第一,静电纺丝难以得到彼此分离的纳米纤维长丝或短纤维;第二,目前静电纺丝机的产量很低;第三,静电纺纳米纤维的强度较低。 2 静电纺丝机 2.1 喷丝头与收集板垂直排布的静电纺丝机 喷丝头与收集板垂直排布(立式)的静电纺丝 *国家自然科学基金资助项目(10602014) 收稿日期:2006-10-26 作者简介:杨恩龙,男,1980年生,在读博士研究生。主要从事静电纺纳米纤维的研究工作。 表1 静电纺丝的发展历程 年 份发 展 历 程 1934 Fo r mha ls申请了制备聚合物超细纤维的 静电纺丝装置专利[1] 1966 S i m ons申请了由静电纺丝法制备超薄、 超细非织造膜的专利[2] 1981 L arrondo等对聚乙烯和聚丙烯进行了熔 融静电纺丝的研究[3] 1995 R eneker研究组开始对静电纺丝进行研 究。静电纺丝迅速发展[4] 1999 Fong等对静电纺丝纳米纤维串珠现象及 微观结构作了研究[5~6] 2000 Spivak等首次采用流体动力学描述静电 纺丝过程,并且提出了静电纺丝的工艺 参数。R eneker等研究了静电纺丝过程 的不稳定性[7~8] 2003 全面系统地研究静电纺丝超细纤维微观 形貌的影响因素、表征、过程参数的改 进,以及静电纺丝制取纳米纤维后通过 煅烧制备无机氧化物超细纤维等 2004~2006 开发静电纺纳米纤维的原料。多组分聚 合物的静电纺丝。静电纺丝和其他方法 结合开发新型纳米纤维。捷克利贝雷茨 技术大学与爱勒马可(EL M ARCO)公司 合作生产的纳米纤维纺丝机 纳米蜘蛛 问世 机[9],主要用于静电纺丝的基础研究。 2.2 喷丝头与收集板水平排布的静电纺丝机 喷丝头与收集板水平排布的静电纺丝机(卧

静电纺丝纳米纤维的制备工艺及其应用

综述与专论 合成纤维工业,2009,32(4):48CH I NA SYNTHETI C FI BER I NDUSTRY 收稿日期:2008 09 17;修改稿收到日期:2009 05 27。作者简介:董晓英(1956 ),教授。从事纳米材料的教学和科研工作。 静电纺丝纳米纤维的制备工艺及其应用 董晓英1 董 鑫 2 (1.江苏技术师范学院,江苏常州 213001;2.慕尼黑大学,德国慕尼黑 80539)摘 要:简述了静电纺丝制备纳米纤维的原理;探讨了静电纺丝电压、流速、接收距离、溶剂浓度等工艺条 件;介绍了同轴静电纺丝制备皮芯结构的超细纤维及中空纤维技术以及静电纺丝纳米纤维毡在生物医药方面的应用。指出静电纺丝纳米纤维材料在生物医用方面具有广阔的应用前景,进一步实现低压纺丝、开发无毒溶剂,控制同轴静电纺丝纳米纤维的释放性能是今后静电纺丝的研发方向。 关键词:静电纺丝 纳米纤维 工艺 生物 医药 应用 中图分类号:TQ 340.64 文献识别码:A 文章编号:1001 0041(2009)04 0048 04 静电纺丝法是一种高速制备纳米纤维的有效方法,其装置简单,成本低廉,供选择的基体材料和所载药物种类众多,可通过改变电压、流速、接 收距离、溶液浓度配比等纺丝工艺控制纤维形貌,从而控制药物的释放。静电纺丝纳米纤维在生物、医药方面有着广泛的应用。1 静电纺丝及其工艺条件 静电纺丝技术最早报道于1934年的美国专利[1] ,发明人For mhals 用静电斥力的推动成功纺出醋酸纤维素纤维,溶剂为丙酮和乙醇。后来,For mha ls 改进了静电纺丝设备,通过多个针头纺丝或复合纺丝 [2] 。 1969年,英国Taylor [3] 研究了强电场作用下 水/油界面的形成。首先,从理论计算上考虑电场、重力和溶液粘度的影响,建立了锥状物模型,即在高压电场下溶液喷出前的形状称为Tay lor 锥。Tay l o r 还根据其模型计算了喷出时的临界锥角为98.6 。 静电纺丝纤维喷出针头后,在空中弯曲回转,最后落在接收器上,给人多股纤维同时喷出的印 象。阿克隆大学的Dosh i 等[4] 假设带电高分子溶液在喷出后互相排斥,克服表面张力而分裂成若干股纤维,落到接收器上形成无纺纤维毡。但是 麻省理工学院的Shin 等[5]和以色列的Yari n [6] 等通过高速成像,只有1股纤维从喷丝口喷出,然后在电场力作用下快速弯曲旋转,给人以很多股纤维的假象。1971年,杜邦公司的B au m garten [7] 研究了纺丝工艺参数对丙烯酸在N,N 二甲基甲酰(D M F)胺溶液中静电纺丝纤维直径的影响。纺 丝工艺参数主要包括喷射距离、溶液粘度、环境气体、流速和电压等。 1.1 电压 足够的电压是形成连续稳定纤维的先决条件。如果电压过小,则产生静电喷射,形成独立的珠状物。随着电压的增加,逐渐形成串珠结构,电压进一步增大,串珠逐渐减少,直至形成连续稳定 的纤维。Deitzel 等[8] 研究了聚氧化乙烯(PEO )/水体系中电压对喷丝口Tay lor 锥表面的影响。结果表明,当电压较小时,Tay lor 锥形成于针头外悬挂液滴的表面;随电压增加,液滴体积逐渐变小,直至液滴和Tay lor 锥相继消失。同时,纤维上串珠的分布密度也随电压增大而增加。因此,一般适宜电压为10~25kV 。1.2 流速 流速是影响静电纺丝纤维形貌的另一重要参数。M ege lski [9] 等研究了静电纺丝流速对聚苯乙烯/四氢呋喃(THF)体系的影响,随着流速增大,纤维直径增加,纤维表面的孔径也增大。同时,流速增大也促进了更明显的串珠结构,其原因是溶剂在到达接受装置前不能完全挥发。目前所采用的流速为1~3mL /h 。1.3 接收距离 接收距离也会在一定程度上影响静电纺丝的 纤维形貌。Jaeger [10] 等研究了PEO /水溶液的静电纺丝行为,随着接收距离由1c m 增大到3.5c m,纤维直径从19 m 下降到9 m 。根据M egel

实验十四-静电场的模拟测绘

实验十四 静电场的模拟测绘 实验目的 1.学会用模拟法测绘静电场。 2.加深对电场强度和电位概念的理解。 实验器材 静电场描绘仪,静电场描绘仪信号源(或稳压电源、电压表),滑线变阻器,万用电表、坐标纸等。 实验原理 带电体的周围存在静电场,场的分布是由电荷的分布。带电体的几何形状及周围介质所决定的。由于带电体的形状复杂,大多数情况求不出电场分布的解析解,因此只能靠数值解法求出或用实验方法测出电场分布。直接用电压表法去测量静电场的电位分布往往是困难的,因为静电场中没有电流,磁电式电表不会偏转;另外由于与仪器相接的探测头本身总是导体或电介质,若将其放入静电场中,探测头上会产生感应电荷或束缚电荷。由于这些电荷又产生电场,与被测静电场迭加起来,使被测电场产生显著的畸变。因此,实验时一般采用间接的测量方法(即模拟法)来解决。 1.用稳恒电流场模拟静电场 模拟法本质上是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的物理状态或过程,它要求这两种状态或过程有一一对应的两组物理量,而且这些物理量在两种状态或过程中满足数学形式基本相同的方程及边界条件。 本实验是用便于测量的稳恒电流场来模拟不便测量的静电场,这是因为这两种场可以用两组对应的物理量来描述,并且这两组物理量在一定条件下遵循着数学形式相同的物理规律。例如对于静电场,电场强度E 在无源区域内满足以下积分关系 ??=?S d 0S E (14-1) ?=?l d 0l E (14-2) 对于稳恒电流场,电流密度矢量j 在无源区域中也满足类似的积分关系 ??=?S d 0S j (14-3) ?=?l d 0l j (14-4) 在边界条件相同时,二者的解是相同的。 当采用稳恒电流场来模拟研究静电场时,还必须注意以下使用条件。 (1)稳恒电流场中的导电质分布必须相应于静电场中的介质分布。具体地说,如果被模拟的是真空或空气中的静电场,则要求电流场中的导电质应是均匀分布的,即导电质中各处的电阻率ρ必须相等;如果被模拟的静电场中的介质不是均匀分布的,则电流场中的导电质应有相应的电阻分布。

实验报告静电场的描绘

电子信息与机电工程学院 普通物理实验 课实验报告 级 物理(1) 班 B 2 组 实验日期 姓名: 学号 号 老师评定 实验题目: 静电场的描绘 实验目的: 1、学习用模拟法研究静电场。 2、描绘二种场结构的等位线。 仪器和用具:静电场模拟迹仪(一套) 实验原理 带电体的周围存在静电场,场的分布是由电荷的分布。带电体的几何形状及周围介质所决定的。由于带电体的形状复杂,大多数情况求不出电场分布的解析解,因此只能靠数值解法求出或用实验方法测出电场分布。直接用电压表法去测量静电场的电位分布往往是困难的,因为静电场中没有电流,磁电式电表不会偏转;另外由于与仪器相接的探测头本身总是导体或电介质,若将其放入静电场中,探测头上会产生感应电荷或束缚电荷。由于这些电荷又产生电场,与被测静电场迭加起来,使被测电场产生显着的畸变。因此,实验时一般采用间接的测量方法(即模拟法)来解决。 1.用稳恒电流场模拟静电场 模拟法本质上是用一种易于实现、便于测量的物理状态或过程模拟不易实现、不便测量的物理状态或过程,它要求这两种状态或过程有一一对应的两组物理量,而且这些物理量在两种状态或过程中满足数学形式基本相同的方程及边界条件。 本实验是用便于测量的稳恒电流场来模拟不便测量的静电场,这是因为这两种场可以用两组对应的物理量来描述,并且这两组物理量在一定条件下遵循着数学形式相同的物理规律。例如对于静电场,电场强度E 在无源区域内满足以下积分关系 ??=?S d 0S E (2-1) ?=?l d 0l E (2-2) 对于稳恒电流场,电流密度矢量j 在无源区域中也满足类似的积分关系 ??=?S d 0S j (2-3) ? =?l d 0l j (2-4) 在边界条件相同时,二者的解是相同的。 当采用稳恒电流场来模拟研究静电场时,还必须注意以下使用条件。 (1)稳恒电流场中的导电质分布必须相应于静电场中的介质分布。具体地说,如果被模拟的是真空或空气中的静电场,则要求电流场中的导电质应是均匀分布的,即导电质 中各处的电阻率ρ必须相等;如果被模拟的静电场中的介质 不是均匀分布的,则电流场中的导电质应有相应的电阻分布。 (2)如果产生静电场的带电体表面是等位面,则产生电流场的电极表面也应是等位面。为此,可采用良导体做成电流场的电极,而用电阻率远大于电极电阻率的不良导体(如石墨粉、自来水或稀硫酸铜溶液等)充当导电质。 (3)电流场中的电极形状及分布,要与静电场中的带电导体形状及分布相似。 图2-1

医学领域的静电纺丝技术

近年来,由于疾病、人口老龄化、意外事故等造成大量的人体器官和组织的损坏和功能缺失,如何实现人体组织和器官的快速修复和重建以及治疗药物在人体内的可控释放已成为生物医学研究领域面临的重要问题。 要使缺损的组织和器官得以修复和重建,其过程是构建有生物活性的细胞支架材料,这种支架可以载有生长因子或本体细胞,植入体内后支架材料逐渐被分解和吸收的同时,细胞增殖并形成新的组织,从而修复缺损组织替代器官,支架材料或作为一种体外装置,暂时替代器官功能,达到提高生命质量,延长生命的目的。 自20世纪60 年代以来,对于药物控制释放体系的研究,受到研究者的广泛关注。与传统给药模式相比药物控制释放具有显著的优点,除提高药物治疗的准确性、有效性、安全性外,还明显降低了药物的生产成本和不良反应,药物控制释放材料的研究得到迅速发展,其中制备性能优良的药物载体已成为药物控制释放技术的研究热点。 由于高分子材料的化学组成、加工工艺和性能易于调控,在一定尺度上通过调控聚合过程或加工工艺,可易于改变或调节材料的物化性能,因此把组织工程学和药物控制释放原理与高分子材料结合起来,合成具有生物相容性和刺激响应性的生物功能材料,具有重大的科学意义和广阔的应用前景。

静电纺丝作为一种简单、有效、方便而经济的高分子材料加工技术,其技术核心是将具有一定粘度且带有电荷的高分子熔体或溶液在高压静电场中喷射、拉伸细化、劈裂,终固化成微纳米级纤维状物质的过程。 静电纺聚合物纳米纤维具有比表面积大、孔隙率高、良好的三维结构和各向同性的力学性能等优点,能够满足组织工程中细胞支架和药物控释载体在比表面积、多孔结构和力学性能等方面的要求,而且具有纤维孔隙结构的支架材料与细胞增殖有良好的适配性,可有效模拟细胞外基质环境,同时比膜状材料更有利于细胞粘附。 国内纳米纤维和静电纺丝技术正在蓬勃发展,科研发文数量一直位居全球首位。近年来,电纺纤维及其纤维膜由于高的比表面积,高的孔隙率以及形貌可控等优点在伤口愈合方面引起了很多关注,电纺纤维膜一方面能够物理隔绝病毒和细菌,又能够透气保湿,给伤口营造一个良好的愈合环境。 另一方面,电纺纤维的直径以及纤维膜的孔径与细胞外基质的尺寸相仿,能够促进细胞生长,加速伤口愈合速度,减少疤痕产生,因此在创伤敷料方面有独特的优势。 但大多数电纺敷料通常是经过先制备再应用的过程,容易对伤口造成二次创伤。原位电纺目前是一种较为理想制备及应用电纺敷料的方法。便携式手持静电

实验报告4-用电流场模拟静电场样本

用电流场模拟静电场 一、实验目的 1.学习用模拟方法来测绘具有相同数学形式的物理场。 2.描绘出分布曲线及场量的分布特点。 3.加深对各物理场概念的理解。 4.初步学会用模拟法测量和研究二维静电场。 二、实验原理 1.用稳恒电流场模拟静电场 静电场是真空中静止的电荷产生的电场,静电场用空间各点的电场强度E 和电位V 来描述。使用等位面和电场线的概念可以使电场的描述形象化。直接测量静电场是很困难的,而稳恒电流场与静电场在是本质上不同的,但在一定条件下导电介质中稳恒电流场与静电场的描述具有类似的数学方程,因而可以用稳恒电流场来模拟静电场。 对静电场,在无源区域内有:?=?s dS E 0,?=?l dl E 0 对稳恒电流场,在无源区域内有:?=?s dS j 0,?=?l dL j 0 2.同轴电缆的电场分布及同轴圆柱面电极间的电流分布. 在真空中有一个半径为r 1=a 的长圆柱体A (A 是导体)和一个半径为 r 2 =b 的长圆筒导体B ,它们中心轴重合,带等量异号电荷,则在两个电场间产生静电场。由静电场知识可得距轴r 处的电位为 a b r b U U r ln ln = 则r a b U E 1ln 0?= 由稳恒电流知识可得a b r b U U r ln ln 0=' r a b U E r 1 ln 0?=' 三、实验仪器 GVZ-3型导电微晶静电场描绘仪(包括导电微晶,双层固定支架,同步探针等) 四、实验内容 1. 连接电路,将电压校正为10.00V . 2. 从1V 开始,平移探针,由导电线微晶上方的探针找到等位点后,按一下记录纸上方的探针,测出一系列等位点,用相同方法分别描绘出四种不同形状电极的等位线图(7~8条)。 3. 描绘同同轴电缆的静电场分布。以每条等位线上各点到原点的平均距离r 为半径画出等位线的同心圆簇。现出电场线,指出电场强度方向,得到电场分布图。 4. 描绘同其它三种不同形状电极的静电场分布。 五、注意事项 1. 测量过程中要保持两电极间的电压不变。

静电纺丝操作说明

静电纺丝操作步骤(有粘结性的溶液) 溶液配制好后按如下步骤进行喷丝实验: 1.打开总开关,检查正负压电源的调节旋钮是否归零(左旋到底),紧急停机旋 。 2.控制面板上的钥匙电源开关右拧,此时进 入标签页面。点击来到推注控制页面。 3.或,快速将注射器的

活塞推到底,此时点击。 4.点击,使滑块迅速移退至一定位置,取出空的注射器,将纺丝液注入到 注射器中,固定到推注泵卡口处,通过或来调节滑块位置,使针头 此时显示框内出现负值, 的可用长度,在此范围内任意设定需要纺丝的距离。 5. 接收器:固定式的,平行式的,高转速的) 6.点击并修改、或参数。 7.通过设备底部滑台上的夹子调节喷丝头与连接器之间的距离, 确定好位置,高压夹头加紧,点击,此时推注装置开始单独运行。 8.将控制面板上的、红色按钮按下,此时正负高压开 启,调节旋钮;边观察纺丝现象边调节 (目的是调节喷丝效果),直至出现比较稳定的喷射流即可。 9.若启动平移装置,可以通过触摸屏点击,首先检查平移部分的中点,一 般将标尺的零点设定为中点,并设定平移行程和平移速度。也可以通过点击 “设为中点”即可将当前 位置设定为平移中点, 点击,此时平移装置开始单独运行。 10.若需启动接收装置,可以通过触摸屏点击,设定转辊接收速度,直接 以及。 11.若需要同时启动两个推注装置、平移装置、接收装置,可以分别在相应的标 签页面设置好运行参数之后,点击进入联动标签页面,点击,此时所有能动的装置都会启动,如需停止,点击“停止”即可,此为联动启动功能。 12. 完毕之后再打开正负高压继续进行实验。 13. 操作功能之后方可手触所收集的材料。

电磁场与电磁波实验指导书

电磁场电磁波实验 实验一电磁感应定律的验证 一、实验目的 1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 2、了解半波天线感应器的原理及设计方法 3、天线长短与电磁波波长的接收匹配关系 二、预习要求 1、麦克斯韦电磁理论的内容 2、什么是电偶极子? 3、了解线天线基本结构及其特性 三、实验仪器 HD-CB-IV电磁场电磁波数字智能实训平台:1套 电磁波传输电缆:1套 平板极化天线:1副 半波振子天线:1副 感应灯泡:1个 四、实验原理 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式: │ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过0.625 λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。 五、实验步骤 (一)测量电磁波发射频率 1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。 2、在液晶界面上同时显示出发射功率及频率。 3、已知电磁波发射源的频率F,求得波长:λ=F V光,比如,电磁波发射源频率为900MHz,

静电纺丝技术

摘要:文章介绍了静电纺丝制备纳米纤维的技术,详细地介绍了这种技术的优点,以及它在各个方面广泛的应用。此外,虽然它具有很多的优点,但目前也仍然存在一些问题,我们也对此进行了探讨。 关键词:静电纺丝纳米纤维应用原理 前言:近年来,纳米结构材料,如纳米纤维、纳米管,由于其尺寸效应十分显著,在光、热、磁、电等方面的性质和体材料明显不同,出现许多新奇特性,因此收到了研究人员的高度重视。纳米纤维最大的特点就是比表面积大,从而导致其表面能和活性的增大,产生小尺寸效应、表面或界面效应、量子尺寸效应、宏观量子隧道效应等,在化学、物理性质方面表现出特异性[1]。电纺技术是一种简单和通用的获得连续微米级别以下的超细纤维的方法。通过电纺的方法可以制备出多种纳米纤维,包括氧化物纤维,高子分聚合物纤维等。静电纺丝方法制备的纳米纤维,具有纳米尺寸的直径,高比表面以及纤维之间形成的微小孔隙[2]。 纳米纤维、静电纺丝都是一些新事物,具有广阔的发展前景。可以用于组织工程、人造器官、药物传递和创伤修复等。另外,对植物施用杀虫剂是纳米纤维可能大规模应用的又一个领域。但当前的静电纺丝技术还不成熟,有待于深入地研究,以制得高质量的纤维并能使纳米纤维的制备实现产业化[3]。 一静电电纺丝技术 静电纺丝技术(electrospinning)在国内一般简称为电纺,其是一种利用聚合物流体在强电场作用下,通过金属喷嘴进行喷射拉伸而获得直径为数十纳米到数微米的纳米级纤维的纺丝技术。通过静电纺丝技术得到的纳米级纤维具有直径小、表面积大、孔隙率高、精细程度一致等特点,在组织工程、传感器、工业、国防、农业工程等领域具有极大的发展潜力,而且其在医药领域诸如伤口敷料、控制释放体系等方面也有着巨大的应用前景[5]。从科学基础来看,这一发明可视为静电雾化技术的一种特例。静电雾化与静电纺丝的最大区别在于:两者所使用的工作介质不同。静电雾化采用的是粘度较低的牛顿流体;而静电纺丝采用的是粘度较高的非牛顿流体。由于静电雾化技术与静电纺丝技术原理类似,所以前者的研究也为后者提供了一定的理论基础[4]。因为静电纺丝过程涉及到的学科领域很多,所以至今对它的研究仍处于探索阶段,虽然早在1934年,Formals就发明了用静电力制备聚合物纤维的实验装置并申请了专利,在其专利中,他公布了如何以丙酮作为溶剂的醋酸纤维素溶液在电极间形成射流,从而在静电推力下产生聚合物纤维。 静电纺丝技术的思路最早来源于人们对液体在电场力作用下的电喷射行为的研究。Raleigh在1882年研究发现,当液滴承受的电场力超过表面张力时,其原本的平衡状态被打破,悬挂在金属喷丝头上的液滴就分裂成一系列带电小液

用模拟法测绘静电场实验示范报告

用模拟法测绘静电场实验 示范报告 Prepared on 22 November 2020

用模拟法测绘静电场实验示范报告 【实验目的】 1.懂得模拟实验法的适用条件。 2.对于给定的电极,能用模拟法求出其电场分布。 3.加深对电场强度和电势概念的理解 【实验仪器】 双层静电场测试仪、模拟装置(同轴电缆和电子枪聚焦电极)、JDY型静电场描绘电源。 [实验原理] 【实验原理】 1、静电场的描述 电场强度E是一个矢量。因此,在电场的计算或测试中往往是先研究电位的分布情况,因为电位是标量。我们可以先测得等位面,再根据电力线与等位面处处正交的特点,作出电力线,整个电场的分布就可以用几何图形清楚地表示出来了。有了电位U 值的分布,由 便可求出E的大小和方向,整个电场就算确定了。 2、实验中的困难 实验上想利用磁电式电压表直接测定静电场的电位,是不可能的,因为任何磁电式电表都需要有电流通过才能偏转,而静电场是无电流的。再则任何磁电式电表的内阻都远小于空气或真空的电阻,若在静电场中引入电表,势必使电场发生严重畸变;同时,电表或其它探测器置于电场中,要引起静电感应,使原场源电荷的分布发生变化。人们在实践中发现,有些测量在实际情况下难于进行时,可以通过一定的方法,模拟实际情况而进行测量,这种方法称为“模拟法”。 3、模拟法理由 两场服从的规律的数学形式相同,如又满足相同的边界条件,则电场、电位分布完全相类似,所以可用电流场模拟静电场。这种模拟属于数学模拟。 静电场(无电荷区) 稳恒电流场(无电流区) 4、讨论同轴圆柱面的电场、电势分布 (1)静电场 根据理论计算,A、B两电极间半径为r处的电场强度大小为 A、B两电极间任一半径为r的柱面的电势为

通过静电纺丝技术制备导电高分子纳米纤维【开题报告】

开题报告 应用化学 通过静电纺丝技术制备导电高分子纳米纤维 一、选题的背景与意义 静电纺丝技术是目前制备纳米纤维最重要的基本方法。由于能直接、连续制备聚合物纳米纤维,因而成为国内外的研究热点。利用静电纺丝技术制备导电聚合物纤维是今年来发展起来的一项新的技术,然而由于导电高分子具有不溶,不熔的特点,利用静电纺丝技术制备导电聚合物纤维过程中遇到了许多困难,主要的问题在于:第一,导电聚合物刚性结构的特性使得静电纺丝过程难以进行;第二,大多数关于静电纺丝制备导电聚合物纤维的研究和应用仅仅处于实验室阶段,因此,必须通过更加深入的研究来探索静电纺丝技术制备聚合物纤维的最科学、最有效的方法,这将作为一个刺激,来实现在工业中大规模生产可控、可重复利用的静电纺丝聚合体纤维。 二、研究的基本内容与拟解决的主要问题: 综述利用静电纺丝技术制备导电聚合物纳米纤维的方法及相应的导电聚合物纤维的用途,综合对比各种方法的优缺点。 制备聚2乙烯基吡啶纳米纤维,利用它作为模板制备聚吡咯纳米纤维,尝试新的合成导电聚合物纳米纤维的方法。 三、研究的方法与技术路线: 合成聚2乙烯基吡啶,将2-乙烯基吡啶在引发剂存在聚合,产生聚2-乙烯基吡啶。 将聚2-乙烯基吡啶同氯金酸混合后,通过静电纺丝直接在高压下纺成纳米纤维。 上述纳米纤维在吡咯蒸汽中进行气相聚合,制备成核壳结构的聚吡咯纳米纤维。四、研究的总体安排与进度: 2010.07.08至2010.07.11:翻译文献,熟悉实验流程,设计实验步骤; 2010.07.12至2010.08.10:通过静电纺丝技术制备导电高分子纳米纤维;2010.11.08至2010.12.25:完成文献综述,文献翻译和开题报告; 2011.04.18至2011.05.08:撰写论文,准备答辩; 2011.05.12至2011.05.19:论文答辩。 五、主要参考文献: [1].Ioannis S. Chronakis , Sven Grapenson , Alexandra Jakob . Science Direct

E.用恒定电流场模拟静电场.05

实验名称用恒定电流场模拟静电场 一、前言 静电场是由电荷分布决定的。给定区域内的电荷分布和介质分布及边界条件,可根据麦克斯韦方程组和边界条件来求解电场分布。但大多数情况下求不出解析解,因此,要靠数值解法求出或实验方法测出电场分布。直接测量静电场很困难,因为仪表(或其探测头)放入静电场中会使被测电场发生一定变化。如果用静电式仪表测量,由于场中无电流流过,不起作用。实验中采用恒定电流场来模拟静电场,即通过测绘点定电流场的分布来测绘对应的静电场分布。 二、教学目标 1、学会用模拟法描绘和研究静电场的分布状况。 2、测绘柱形电极和平行板电极间的电场分布。 3、掌握了解模拟法应用的条件和方法。 4、加深对电场强度及电势等基本概念的理解。 三、教学重点 1、用模拟法描绘静电场的原理。 2、模拟法应用的条件和方法。 四、教学难点 1、正确选择等势点,掌握打点的方法。 2、学会用半对数坐标纸作图。 五、实验原理 电场强度和电势是表征电场特征的两个基本物理量,为了形象地表示静电场,常采用电场线和等势面来描绘静电场。电场线与等势面处处正交,因此有了等势面的图形就可大致画出电场线的分布图,反之亦然。当我们要测出某个带电体的静电场分布

时,由于其形状一般来说比较复杂,用理论计算其电场分布非常困难。同时仪表(或其探测头)放入静电场,总要使被测场原有分布状态发生畸变,不可能用实验手段直接测绘真实的静电场。为了克服上述困难,本实验采用数学模拟法,仿造一个与待测静电场分布完全一样的电流场(称为模拟场),使它的分布和静电场的分布完全一样,当用探针去探测模拟场时,它不受干扰,因此可以间接测出被模拟的静电场。 一般情况下,要进行数学模拟,模拟者和被模拟者在数学形式上要有相同的方程,在相同的初始条件和边界条件下,方程的特解相同,这样才可以进行模拟。由电磁学理论可知,电解质(或水)中稳恒电流的电流场与电介质(或真空)中的静电场具有相似性,都是有源场和保守场,都可以引入电势U ,两个场的电势都是拉普拉斯方程。 对于电流场有:222222 0U U U x y z ???++=???稳恒稳恒稳恒 对于静电场有: 2222 2 2 0U U U x y z ???+ + =???静电静电静电 在相同的边界条件下,这两个方程的特解相同,即这两种场的电势分布相似。实验中只要两种场的带电体的形状和大小,相对位置以及边界条件一样,就可以用电流场来研究和测绘静电场的分布。下面以同轴圆柱形电极的静电场和相应的模拟场——稳恒电流场来讨论这种等效性。 图1 同轴圆柱电极(a )及其静电场分布图(b ) 如图1(a )所示为一个同轴圆柱电极,内电极半径为a r ,外电极内半径为b r ,内电极电势a U ,外电极电势0b U =,其间充以电容率为0ε的均匀电介质,在两极间距轴心 r 处的电势为

相关文档
相关文档 最新文档