文档库 最新最全的文档下载
当前位置:文档库 › 6.三轴压缩试验(粘性土)

6.三轴压缩试验(粘性土)

6.三轴压缩试验(粘性土)
6.三轴压缩试验(粘性土)

六、三轴压缩实验

(一)实验目的

三轴压缩实验是测定土的抗剪强度的一种方法。堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。

(二)实验原理

土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。常规的三轴压缩实验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。三轴压缩实验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水实验(UU );固结不排水实验(CU )和固结排水实验(CD )。 (三)实验设备

1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。(如附图1所示) 2.其它:击样器、饱和器、切土盘、分样器、承膜筒等。 (四)实验步骤

1.切取土样:先用钢丝锯或切土刀切取一稍大于规定尺寸的土柱,放在切土架上,用钢丝锯或切土刀紧靠侧板,由上往下细心切削,边切削边转动圆盘,按规定的高度将两端削平、称量;并取余土测定试样的含水率。

2.试样饱和:试样有抽气饱和、水头饱和及反压力饱和三种方法,最常用的是抽气饱和。即将试样装入饱和器内,放入真空缸内,与抽气机接通,开动抽气机,连续真空抽气2~4h ,然后停止抽气,静止12h 左右即可。 3.试样安装:将压力室底座的透水石与管路系统以及孔隙水测定装置充水并放上一张滤纸,然后再将套上乳胶膜的试样放在压力室的底座上,最后装上压力筒,并拧紧密封螺帽,同时使传压活塞与土样帽接触。

4.施加周围压力:分别按100、200、300、400Kpa 施加周围压力。 5.测孔隙水压力:在不排水条件下测定试样的孔隙水压力。

6.调整测力计:移动量测轴向变形的位移计和轴向压力测力计的初始“零点”读数。 7.施加轴向压力:启动电动机,合上离合器,开始剪切。剪切应变速率取每分钟0.5%~1.0%,当试样每产生轴向应变为0.3%~0.4%时,测记一次测力计,孔隙水压力和轴向变形读数,直至轴向应变为20%时为止。

8.实验结束:停机并卸除周围压力,然后拆除试样,描述试样破坏时形状。 (五)实验注意事项

1.实验前,透水石要煮过沸腾把气泡排出,橡皮膜要检查是否有漏洞。 2.实验时,压力室内充满纯水,没有气泡。 (六)计算与绘图

1.试样面积剪切时校正值:

01

1a A A ε=

-

式中:

ε1—轴向应变(%)

2.主应力差的计算 1310a

C R A σσ?-=

?

式中:

σ1—大主应力,kPa ; σ3—小主应力,kPa ;

C —测力计率定系数(N/0.01mm 或N/mV ); R —测力计读数(0.01mm 或mV ); A a —试样剪切时的校正面积,cm 2; 10 —单位换算系数。 3.孔隙水压力系数的计算:

3

u B σ=

13()

f

f u A B σσ=

-

式中:

B —初始孔隙水压力系数;

u o —施加周围压力后产生的孔隙水压力,kPa ;

A f —破坏时的孔隙水压力系数;

u f —试样破坏时,主应力差产生的孔隙水压力,kPa ; 4.绘制应力圆及强度包线

对不固结不排水实验及固结不排水实验,以法向应力σ为横坐标,剪应力τ为纵坐标。在横坐标上以(σ1f +σ3f )/2为圆心,(σ1f -σ3f )/2为半径,绘制破坏总应力圆,该包线的倾角为内摩擦角φu 或φcu ,包线上纵轴上的截距为粘聚力C u 或C cu 。在横坐标轴上以(σ1f +σ3f )/2 为圆心,以(σ1f -σ3f )/2 为半径绘制有效破坏应力圆,包线的倾角为有效内摩擦角υ′,包线在纵轴上的截距为有效粘聚力C ′(如图14所示)。

图1、三轴仪

τ(kPa )

200

实验五 岩石单轴压缩实验(DOC)

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.1. 0.5Ω2.纵向、横向应变片排列采用“┫”等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公共补偿半桥连接方式。 4. 将试样放置在试验机的承压板中心,然后对纵向、横向应变片分别进行反复预调平衡。 5. 施加初载荷,检查试验机和应变片工作情况,正常后以1.0~2.0 kN/s 的加载速度均匀加载,按估计破坏载荷的十分之一间隔读数,纪录相应载荷下的纵向、横向应变,均匀加载直至试样完全破坏。每个测试过程读数不得少于7个点,同一试样的纵向、横应变尽可能同时读出。 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 图5-3 电阻应变片粘贴

三轴压缩试验的步骤(正式)

TSZ-3应变控制式三轴仪 (无级调速) 中国水电十局中心试验室 2012-7-20编写操作步骤 一:不固结不排水剪切: 1.1:打开反压排水阀(向右,确保加压帽畅通)→固定土样→上升压力室直到与测力环接触 1.2:注水:打开压力室上面的排气塞、压力室阀(注水)、压力室注水阀→开动水泵开始注水→待排气塞有水溢出时关闭水泵、排气塞、压力室阀(注水)、压力室注水阀 1.3:根据规程设定围压数值→打开围压注水阀→逆时针旋转手轮到底→关闭围压注水阀→打开围压阀→顺时针旋转手轮至围压设定值→拧紧手轮上的螺帽→点击控制器上的稳压→调整两个百分表归零→根据规程设置速率→点击控制器上的上升、开始剪切→记录位移计每走2mm对应测力计的读数→点击控制器上的停止速率、停止稳压. 1.4:卸压排水:打开压力室阀(排水)→轻轻打开压力室排水阀→关闭围压阀→打开压力室上的排气塞→开动水泵开始排水→下降主机压力室→取出土样 二:固结不排水剪切: 2.1:打开反压排水阀(向右,确保加压帽畅通)→固定土样→上升压力室直到与测力环接触 2.2:注水:打开压力室上面的排气塞、压力室阀(注水)、压力室注

水阀→开动水泵开始注水→待排气塞有水溢出时关闭水泵、排气塞、压力室阀(注水)、压力室注水阀 2.3:固结:调整反压力管的水位和土样中心线相齐平,读取反压力管的初始水位→打开反压排水阀,开始固结→当孔压值消散到围压的5%左右时(孔压值在固结过程中读取),固结结束→记录反压力管的刻度,关闭反压排水阀 2.4:剪切:根据规程设定围压数值→打开围压注水阀→逆时针旋转手轮到底→关闭围压注水阀→打开围压阀→顺时针旋转手轮至围压设定值→拧紧手轮上的螺帽→点击控制器上的稳压→调整两个百分表归零→根据规程设置速率→点击控制器上的上升、开始剪切→记录位移计每走2mm对应测力计的读数→点击控制器上的停止速率、停止稳压 2.5:卸压排水:打开压力室阀(排水)→轻轻打开压力室排水阀→关闭围压阀→打开压力室上的排气塞→开动水泵开始排水→下降主机压力室→取出土样 三:固结排水剪切: 3.1:打开反压排水阀(向右,确保加压帽畅通)→固定土样→上升压力室直到与测力环接触 3.2:注水:打开压力室上面的排气塞、压力室阀(注水)、压力室注水阀→开动水泵开始注水→待排气塞有水溢出时关闭水泵、排气塞、压力室阀(注水)、压力室注水阀. 3.3:固结:调整反压力管的水位和土样中心线相齐平,读取反压力

常规三轴压缩实验的测量系统误差及其影响

常规三轴压缩实验系统误差及其影响 摘要:三轴剪切试验被认为是测定土的抗剪强度的一种较完善的方法。与直剪试验相比,三轴剪节试验有以下优点:1、能控制试验过程中试样的排水条件; 2、能量测试样固结和排水过程中的孔隙水应力; 3、试样内应力分布均匀。 三轴剪切试验能得到不同条件下土的抗剪强度指标和变形参数。根据试验过程中排水条件的不同,将三轴试验分为不固结不排水剪(UU)、固结不排水剪(CU)和固结排水剪(CD)等三种类型。 关键词:土工试验系统误差 1.引言 土的强度指标是确定土的承载能力的一个重要指标,因此,准确测定土的抗剪强度指标,对于建筑工程的设计和施工有着很大的意义。目前,用三轴剪切试验测土的抗剪强度指标是较为普遍的一种方法,而且对于高层建筑,在进行地质勘察时,要求对取出的原状土,用三轴剪切实验来测定土的抗剪强度指标。随着社会的发展,兴建的高层建筑越来越多,使得三轴剪切实验的应用也越来越广泛,所以,使三轴实验的检测不断地完善有着很大的必要性。 2. 基本原理 三轴压缩试验是测定土的抗剪强度的一种方法。它通常用3-4个圆柱形试样,分别在不同的恒定周围压力(σ3)下,施加轴向压力,即主应力差(σ1-σ3),进行剪切直到破坏;然后根据摩尔-库伦理论,求得抗剪强度参数。适用于测定细粒土及砂类土的总抗剪强度参数及有效抗剪强度参数。 3. 试验操作 三轴剪切试试样为圆柱状。试验过程中测量以下参数:1、周围压力,2、竖向应力增量q,3、竖向变形量或竖向应变ε1,4、试样底部的孔隙水应力u,5、试样顶部接排水管量测试样排水量,6、反压力。根据排水条件,三轴试验分为不固结不排水剪试验(UU)、固结不排水剪试验(CU)、固结排水剪试验(CD)三种试验类型。三轴压缩试验方法适应于细粒土和粒径小于20mm的粗粒土。不同类型的三轴剪切试验加载过程如下:

直剪试验和三轴剪切试验对比分析

直剪试验和三轴剪切试验对比分析 【摘要】土的抗剪强度是指地基土抵抗外荷载破坏的能力。抗剪强度指标是确定地基土承载力的关键指标,在地基与基础设计及办坡工程设计中至关重要。 土的抗剪强度指标主要是通过室内试验获得。试验方法主要有直接快剪、固结快剪和固结不排水剪。本文通过在室内对同一土体进行固结快剪和固结不排水剪试验,探研两种试验方法所得结果的差异。 【关键词】抗剪强度;固结快剪;固结不排水剪 为了确定建筑物地基承载力、预测边坡的稳定性、确定渠道和基抗的坡角等,都需要研究土的抗剪强度。抗剪强度指标是工程计算中需要的直接计算指标。 土在外力作用下在剪切面单位面积上所能承受的最大剪应力称为土的抗剪强度。土的抗剪强度是由颗粒间的内摩擦力以及胶结物和水膜的分子引力所产生的粘聚力共同组成。 1. 土的抗剪强度的基本理论 1773年,库仑根据砂土的摩擦试验,砂土的抗剪强度决定于砂土的内摩擦角,即决定于砂土颗粒之间的内摩擦力。它与压应力成正比。砂土的抗剪强度曲线为一过原点的直线,可用τf=σtgφ表示。 后来又提出粘性土的抗剪强度表达式为: τf=c+σtgφ

式中:τ f ——土的抗剪强度,kpa; σ——作用于剪切面上的法向应力,kpa; φ——土的内摩擦角,(°) c——土的粘聚力,kpa。 据库伦定律求土的抗剪强度指标是很简单。但由于土的抗剪强度受许多因素影响,如试验时的排水条件、试样的受压历史、剪切的速度、仪器的类型和操作方法等,所以c、φ值随着影响因素的不同而异,实际上,它是表示在一定条件下的抗剪强度。 2. 试验方法对比 2.1 固结快剪。 试验仪器采用直接剪刀切仪。首先将制备好的3~4个高2cm面积30cm2的圆柱形土体分别置于剪切盒内,使其承受一定的竖向压力σ下排水,待固结稳定后快速施加水平剪应力使其剪破,在剪应力施加过程中记录下剪应力的峰值强度,若未出现峰值取剪位移为4mm相对应的剪应力作为它的抗剪强度(一般最大位移为试样直径的1/15~1/10。对于直径61.8mm的试样,其最大剪切位移为4~6mm,所以规定取剪切位移为4mm对应的剪应力为抗剪强度值。同时要求试验的剪切位移达6mm)。 2.2 固结不排水剪。 试验仪器采用三轴压缩仪。首先将3~4个制备好的高8cm面积12cm2的圆柱形土体在周围压力σ3下排水,待固结稳定后,开始剪切,过程中按一定变形量测记测力计、轴向变形和孔隙水压

三轴压缩试验 简介

三轴压缩试验简介 三轴压缩试验是测定土抗剪强度的一种较为完善的方法。 三轴压缩仪的突出优点是能较为严格地控制排水条件以及可以量测试件中孔隙水压力的变化。此外,试件中的应力状态也比较明确,破裂面是在最弱处,而不像直接剪切仪那样限定在上下盒之间。 一、实验目的 1、了解实验的设备系统组成。 2、学会三轴实验的土样制作方法和安装方法。 3、掌握了解三轴实验的实验过程和要求。 4、分析实验数据和图形。 二、实验仪器设备 全自动三轴仪由三轴仪主机、围压反压控制器和微机(含土工试验微机数据采集处理系统软件)组成。包含了压力室、轴向加荷系统、施加周围压力系统、孔隙水压力量测系统、软件控制系统等。 三、实验步骤 1、按照规范要求制备不少于3个原状土试样或扰动土试样。 2、称试样质量,并取切下的余土测定其含水量。 3、在压力室底座上依次放上不透水板、试样及不透水试样帽,将橡皮膜用承膜筒套 在试样外,并用橡皮圈将橡皮膜两端与底座及试样帽分别扎紧。 4、将压力室罩顶部活塞提高,安放压力室罩,将活塞对准试样帽顶部中心,旋紧压 力室罩。 5、在微机上启动“土工试验微机数据采集处理系统”软件,在“采集”菜单中选择 三轴试验。 6、输入试验参数。试验编号和土样编号同组保持不变。一般取:试样高度:8.00, 试样直径:.3.91,轴向应变:20,加荷级数:1,采样步长:0.2,试验方法:UU,剪切速率:1,围压:100。 7、在显示屏黄色压力室处点击“开始注水”,向压力室加注纯水,待顶部排气孔 有水溢出时,点击“停止操作”,拧紧排气孔螺旋。 8、在绿色框内点击“开始试验”,仪器首先进行自检,然后施加周围压力,并开始 剪切试验,按语音提示进行。 9、试验完成后,语音提示试验结束,自动卸除围压。点击黄色压力室处“开始抽水”, 待水抽空后,点击“停止操作”,取下压力室罩,取下试样,准备安装下一个试样。 10、以后的试验仅改变“围压”一项,其他参数和试验步骤不便。依次完成3~4个 试样的剪切试验。 四、分析实验图形和曲线

土的三轴剪切试验

实验五 土的三轴剪切试验 学 时:2学时 实验性质:综合型实验 一、目的要求: 土的三轴剪切试验是综合性试验,通过对试验的设计,能获得在不同的排水条件下土的应力与应变的关系和强度参数。通过试验加深对土力学基本理论的理解,培养学生的动手能力和创新能力。 掌握土的三轴剪切试验基本原理和试验方法,了解试验的仪器设备,熟悉试验的操作步骤,掌握三轴剪切试验成果的整理方法,根据试验成果绘制应力与应变的关系曲线,计算土的聚力和摩擦角。 二、试验原理: 一般认为,土体的破坏条件用莫尔-库仑(Mohr-Coulomb )破坏准则:土体在各向主应力作用下,作用在某一应力面上的剪应力τ与法向应力σ之比达到某一比值,土体将沿该面发生剪切破坏。莫尔-库仑破坏准则的表达式为:φσσφσσsin 2 cos 23131++=-C 。1σ大主应力,3σ小主应力,C 土的粘聚力,φ土的摩擦角。 三轴剪切试验就是根据莫尔-库仑破坏准则测定土的强度参数粘聚力c 和摩擦角φ。 三、试验方法: 根据加载类型的不同,三轴剪切试验又可分为三种试验方法:不固结不排水剪(UU);固结不排水剪(CU);固结排水剪(CU)。 四、仪器设备: 1.应变控制式三轴仪(图5. 1—1):由压力室、轴向加压设备、周围压力系统、反压力系统、孔隙水压力量测系统、轴向变形和体积变化量测系统组成。 2.附属设备:包括击样器、饱和器、切土器、原状土分样器、切土盘、承膜筒和对开圆膜,应符合下图要求:1)击样器(图5. 1-2),饱和器(图5. 1-3)。2)切土盘、切土器和原状土分样器(图5. 1-4)。3)承膜筒及对开圆模(图5. 1—5及图5. 1—6)。 3.天平:称量200g ,最小分度值0. 0lg ;称量1000g ,最小分度值0. 1g 。 4.橡皮膜:应具有弹性的乳胶膜,对直径39. 1和61. 8mm 的试样;厚度以0. 1~0. 2mm 为宜,对直径101mm 的试样,厚度以0. 2~0. 3为宜。

三轴剪切试验

实验十 三轴剪切试验 一、概述 三轴剪切试验是测定土的抗剪强度的主要方法之一。它通常用3~4个圆柱形试样分别在不同的围压下施加轴向压力对试样进行剪切,直至破坏,然后根据摩尔——库伦理论,求得土的抗剪强度指标φ和c 。根据排水条件的不同,三轴剪切试验可分为不固结不排水剪(UU)、固结不排水剪(CU)和固结排水剪(CD)三种试验方法。不固结不排水剪试验,在施加周围压力σ3和轴向偏应力(σ1-σ3),直至试样剪坏的整个过程中,均不允许试样排水固结,即不让孔隙水压力消散。固结不排水剪试验,在施加周围压力时,允许试样充分排水固结;在施加偏应力时,不允许排水至试样剪坏。固结排水剪试验,在施加周围压力和轴向偏应力,直至试样剪坏的整个过程中,使试样充分排水固结。这里只介绍饱和试样的固结不排水剪试验。 二、试验原理 三轴试验采用圆柱形试样,对试样在空间三个坐标方向上施加压力。试验时先通过压力室有压液体,使试样在三个轴向受到相同的周围压力σ3,并维持整个试验过程不变。然后通过活塞杆向试样施加垂直轴向压力,直到试样剪坏。 若由活塞杆所加的试样破坏时的压力强度为q =σ1-σ3,小主应力是周围压力 σ3。由一个试样所得的σ1和σ3,可以绘制 一个极限应力圆。若干个试样,可得在不同周围压力作用下,试样剪坏时的最大主应力,从而可绘制若干个极限应力圆,作这些应力圆的公切线,便是土的抗剪强度包线,由此包线可求得强度指标c 和φ,附图10.1所示。 三、仪器设备 1、常用的三轴剪切仪,按施加轴向压力方式的不同,分为应变控制式和应力控制式两种。 2、应变控制式三轴仪见附图10.9所示。包括压力室、轴向加压设备、施加周围压力系统、体积变化和孔隙压力量测系统等。 3、附属设备:击实筒、饱和器、切土盘、切土器和切土架、分样器、承膜筒、天平、 附图10.1 抗剪强度包线

三轴压缩实验

三轴压缩实验 一、实验原理: 三轴试验采用圆柱形试样,可以对试样的空间三个坐标方向上施加压力。试验时先通过压力室内的有压液体,使试样在三个轴向受到相同的周围压力 (其大小由压力计测 3 定),并维持整个试验过程不变。然后通过活塞向试样施加垂直轴向压力,直到试样剪坏。 二、实验过程 1、仪器准备 (1)应变控制式三轴仪:包括压力室、轴向位移计等装备 (2)天平、其他:击实筒、饱和器、承膜筒、橡皮膜等 2、操作步骤 试样安装:(1)检查排水管路是否通畅;活塞在套内滑动是否正常;连接处有无漏水、漏气现象。检查完成后关闭周围压力阀、孔隙压力阀和排水阀,以备使用。 (2)组件击样筒:将三瓣膜拼装好,夹板拧紧,并放置好透水石,在击样筒内部涂抹油 (3)制作土样:(本实验才去的土样为沿海淤泥土),将淤泥土分层放入击样土中并击实,每层击实至相同高度,击实用力均匀,直至击完最后一层。将击样筒中的式样两端整平,去除称其质量。 (4)将橡皮膜套在承膜筒内,两端翻出膜外,从吸嘴稀奇,使膜紧贴承膜筒内壁,然后要在式样外,放弃,翻起橡皮膜取出承膜筒。将包裹着土样的橡皮膜分别扎紧放在一起底座和试样帽上。 (5)装上压力室外罩。装是应将活塞提高,以防碰撞试样,然后将活塞你试样帽中心,病均匀地旋紧螺丝,再将轴向测力计对准活塞 (6)开排气孔,向压力室冲水,当压力室快注满水时,降低进水速度,水从排气孔溢出时,关闭排气孔 (7)开周围压力阀,施加所需的周围压力。周围压力应与工程的实际荷重相适应,并尽可能使最大周围压力与土体的最大实际荷重大致相等。 (8)旋转手轮,当量力环的量表微动时表示活塞已与试样帽接触,然后将量力环的量表和变形量表的指针调整到零位。 试样剪切:(1)打开周围压力阀,关闭体变管阀、排水管阀、孔隙压力阀、量管阀。

三轴压缩试验

;. 三轴压缩试验 一、试验目的 测定土的抗剪强度,提供计算地基强度和稳定使用的土的强度指标内摩擦角 和 内聚力c。 二、试验方法 一般有不固结不排水试验(UU)、固结不排水试验(CU)和固结排水试验(CD)。 三、仪器设备 1.三轴压缩议:应变控制式,由周围压力系统、反压力系统、孔隙水压力量测系统和主机组成。 2.附属设备:包括击实器、饱和器、切土器、分样器、切土盘、承膜筒和对开圆模。 3.天平:称量200 g,感量0.01 g;称量1000 g,感量0.1 g。 4.橡皮膜:应具有弹性,厚度应小于橡皮膜直径的1/100,不得有漏气孔。 四、试样制备 (1)本试验需要3~4个试样,分别在不同周围压力下进行试验。 (2)试样尺寸:最小直径为φ35 mm,最大直径为φ101 mm,试样高度宜为试样直径的2~2.5倍。对于有裂缝、软弱面和构造面的试样,试样直径宜大于60 mm。(3)原状试样制备,应将土切成圆柱形试样,试样两端应平整并垂直于试样轴,当试样侧面或端部有小石子或凹坑时,允许用削下的余土修整,试样切削时应避免扰动,并取余土测定试样的含水量。 (4)扰动试样制备,应根据预定的干密度和含水量,在击实器内分层击实,粉质土宜为3~5层,粘质土宜为5~8层,各层土料数量应相等,各层接触面应刨毛。 (5)对于砂性土应先在压力室底座.全依次放上不透水板,橡皮膜和对开圆膜。将砂料填入对开圆膜内,分3层按预定干密度击实。当制备饱和试样时,在对开圆膜内注入纯水至1/3高度,将煮沸的砂料分3层填入,达到预定高度。放上不透水板、试样帽,扎紧橡皮膜。对试样内部施加5 kPa负压力使试样能站立,折除对开圆膜。 (6)对制备好的试样,应量测其直径和高度。试样的平均直径应按下式计算: 分别为试样上、中、下部位的直径。,D式中D,D3l2 五、三轴试验操作步聚

土三轴压缩试验报告精选文档

土三轴压缩试验报告精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

实验六土三轴压缩试验 实验人:学号: (一)、试验目的 1、了解三轴剪切试验的基本原理; 2、掌握三轴剪切试验的基本操作方法; 3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理; 4、进一步巩固抗剪强度的基本理论。 (二)、试验原理 三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。 三轴剪切试验可分为不固结不排水试验(UU)、固结不排水试验(CU)以及固结排水剪试验(CD)。 1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标和UCU?; 2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标和CUCCU?或有效抗剪强度指标和C???及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标和dCd?。 (三)、试验仪器设备 1、三轴剪力仪(分为应力控制式和应变控制式两种)。 应变控制式三轴剪力仪有以下几个组成部分(图8-1):

图8-1 应变控制式三轴剪切仪 1-调压桶;2-周围压力表;3-周围压力阀;4-排水阀;5-体变管;6-排水管;7-变形量表;8-测力环;9-排气孔;10-轴向加压设备;11-压力室;12-量管阀;13-零位指标器;14-孔隙压力表;15-量管;16-孔隙压力阀;17-离合器;18-手轮;19-马达;20-变速箱。 (1)三轴压力室压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。 (2)轴向加荷传动系统采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。 (3)轴向压力测量系统通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。轴向压力系统也可由荷重传感器来代替。 (4)周围压力稳压系统采用调压阀控制,调压阀当控制到某一固定压力后, 它将压力室的压力进行自动补偿而达到周围压力的稳定。

三轴压缩实验(DOC)

实验四 三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

三轴压缩试验

三轴压缩试验 一、试验目的 测定土的抗剪强度,提供计算地基强度和稳定使用的土的强度指标内摩擦角 和内聚力c。 二、试验方法 一般有不固结不排水试验(UU)、固结不排水试验(CU)和固结排水试验(CD)。 三、仪器设备 1.三轴压缩议:应变控制式,由周围压力系统、反压力系统、孔隙水压力量测系统和主机组成。 2.附属设备:包括击实器、饱和器、切土器、分样器、切土盘、承膜筒和对开圆模。 3.天平:称量200 g,感量0.01 g;称量1000 g,感量0.1 g。 4.橡皮膜:应具有弹性,厚度应小于橡皮膜直径的1/100,不得有漏气孔。 四、试样制备 (1)本试验需要3~4个试样,分别在不同周围压力下进行试验。 (2)试样尺寸:最小直径为φ35 mm,最大直径为φ101 mm,试样高度宜为试样直径的2~2.5倍。对于有裂缝、软弱面和构造面的试样,试样直径宜大于60 mm。 (3)原状试样制备,应将土切成圆柱形试样,试样两端应平整并垂直于试样轴,当试样侧面或端部有小石子或凹坑时,允许用削下的余土修整,试样切削时应避免扰动,并取余土测定试样的含水量。 (4)扰动试样制备,应根据预定的干密度和含水量,在击实器内分层击实,粉质土宜为3~5层,粘质土宜为5~8层,各层土料数量应相等,各层接触面应刨毛。 (5)对于砂性土应先在压力室底座.全依次放上不透水板,橡皮膜和对开圆膜。将砂料填入对开圆膜内,分3层按预定干密度击实。当制备饱和试样时,在对开圆膜内注入纯水至1/3高度,将煮沸的砂料分3层填入,达到预定高度。放上不透水板、试样帽,扎紧橡皮膜。对试样内部施加5 kPa负压力使试样能站立,折除对开圆膜。 (6)对制备好的试样,应量测其直径和高度。试样的平均直径应按下式计算: 式中D l,D2,D3分别为试样上、中、下部位的直径。 五、三轴试验操作步聚 1、试样的安装步骤: 2、试样排水固结步骤: 施加周围压力;开孔隙水压力阀,测定孔隙水压力。开排水阀。当需测定排水过程时,测记排水管水面及孔隙水压力值,直至孔隙水压力消散95%以上。固结完成后,关排水阀,测记排水管读数和孔隙水压力读数。

三轴压缩实验

三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

6.三轴压缩试验(砂土)

六、三轴压缩实验 (一)实验目的 三轴压缩实验是测定土的抗剪强度的一种方法。堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。 (二)实验原理 土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。常规的三轴压缩实验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。三轴压缩实验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水实验(UU );固结不排水实验(CU )和固结排水实验(CD )。本演示实验进行干砂的固结不排水实验。 (三)实验设备 1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。(如附图1所示) 2.其它:击样器、承膜筒等。 (四)实验步骤 1.试样制备:将橡皮膜下端套在压力室的底座上,放置好成样模具,使橡皮膜紧贴模具内侧;称取一定质量的干砂(烘干冷却),使砂分批通过漏斗落入橡皮膜内,如需制备较密实的砂样,用木锤轻击土样至所需密度。 2.试样安装:装上土样帽,给试样施加一定的负压力,拆除成样模具;使传压活塞与土样帽接触。 3.固结实验:进行两个试样的实验,分别施加100、400Kpa 的周围压力,数据采集系统自动采集试样的体积变形数据。 4.剪切实验:采用应变控制方式进行剪切实验,剪切应变速率取每分钟0.1%~0.5%,实验过程数据采集系统自动采集轴向力和体积变形数据,直至轴向应变为10%时为止。 8.实验结束:停机并卸除周围压力,然后拆除试样,描述试样破坏时形状。 (五)实验注意事项 实验前,橡皮膜要检查是否有漏洞。 (六)计算与绘图 1.试样面积剪切时校正值: 01 1a A A ε=- 式中: ε1—轴向应变(%) 2. 绘制每个实验的轴向应变-偏应力关系曲线,及轴向应变-体应变关系曲线。 3.绘制应力圆及强度包线 以法向应力σ为横坐标,剪应力τ为纵坐标。在横坐标上以(σ1f +σ3f )/2为圆心,(σ1f -σ3f )/2为半径,绘制破坏应力圆,并确定砂土的内摩擦角'φ。 (七)讨论

土三轴压缩试验报告完整版

土三轴压缩试验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验六土三轴压缩试验 实验人:学号: (一)、试验目的 1、了解三轴剪切试验的基本原理; 2、掌握三轴剪切试验的基本操作方法; 3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理; 4、进一步巩固抗剪强度的基本理论。 (二)、试验原理 三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。 三轴剪切试验可分为不固结不排水试验(UU)、固结不排水试验(CU)以及固结排水剪试验(CD)。 1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标和UCU; 2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标和CUCCU或有效抗剪强度指标和C及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标和dCd。(三)、试验仪器设备 1、三轴剪力仪(分为应力控制式和应变控制式两种)。

应变控制式三轴剪力仪有以下几个组成部分(图8-1): 图8-1 应变控制式三轴剪切仪 1-调压桶;2-周围压力表;3-周围压力阀;4-排水阀;5-体变管;6-排水管;7-变形量表;8-测力环;9-排气孔;10-轴向加压设备;11-压力室;12-量管阀;13-零位指标器;14-孔隙压力表;15-量管;16-孔隙压力阀;17-离合器;18-手轮;19-马达;20-变速箱。 (1)三轴压力室压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。 (2)轴向加荷传动系统采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。 (3)轴向压力测量系统通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。轴向压力系统也可由荷重传感器来代替。 (4)周围压力稳压系统采用调压阀控制,调压阀当控制到某一固定压力后,它将压力室的压力进行自动补偿而达到周围压力的稳定。 (5)孔隙水压力测量系统孔隙水压力由孔隙水压力传感器测得。 (6)轴向应变(位移)测量装置轴向距离采用大量程百分表(0~30mm百分表)或位移传感器测得。 (7)反压力体变系统由体变管和反压力稳定控制系统组成,以模拟土体的实际应力状态或提高试件的饱和度以及测量试件的体积变化。

土的三轴剪切试验

实验五 土的三轴剪切试验 学 时:2学时 实验性质:综合型实验 一、目的要求: 土的三轴剪切试验是综合性试验,通过对试验的设计,能获得在不同的排水条件下土的应力与应变的关系和强度参数。通过试验加深对土力学基本理论的理解,培养学生的动手能力和创新能力。 掌握土的三轴剪切试验基本原理和试验方法,了解试验的仪器设备,熟悉试验的操作步骤,掌握三轴剪切试验成果的整理方法,根据试验成果绘制应力与应变的关系曲线,计算土的内聚力和摩擦角。 二、试验原理: 一般认为,土体的破坏条件用莫尔-库仑(Mohr-Coulomb )破坏准则:土体在各向主应力作用下,作用在某一应力面上的剪应力τ与法向应力σ之比达到某一比值,土体将沿该面发生剪切破坏。莫尔-库仑破坏准则的表达式为:φσσφσσsin 2 cos 23131++=-C 。1σ大主应力,3σ小主应力,C 土的粘聚力,φ土的内摩擦角。 三轴剪切试验就是根据莫尔-库仑破坏准则测定土的强度参数粘聚力c 和内摩擦角φ。 三、试验方法: 根据加载类型的不同,三轴剪切试验又可分为三种试验方法:不固结不排水剪(UU);固结不排水剪(CU);固结排水剪(CU)。 四、仪器设备: 1.应变控制式三轴仪(图5. 1—1):由压力室、轴向加压设备、周围压力系统、反压力系统、孔隙水压力量测系统、轴向变形和体积变化量测系统组成。 2.附属设备:包括击样器、饱和器、切土器、原状土分样器、切土盘、承膜筒和对开圆膜,应符合下图要求:1)击样器(图5. 1-2),饱和器(图5. 1-3)。2)切土盘、切土器和原状土分样器(图5. 1-4)。3)承膜筒及对开圆模(图5. 1—5及图5. 1—6)。 3.天平:称量200g ,最小分度值0. 0lg ;称量1000g ,最小分度值0. 1g 。 4.橡皮膜:应具有弹性的乳胶膜,对直径39. 1和61. 8mm 的试样;厚度以0. 1~0. 2mm 为宜,对直径101mm 的试样,厚度以0. 2~0. 3为宜。 图5.1-1 应变控制式三轴仪 图5.1-2 击样器 图5.1-3 饱和器 1-套环;2-定位螺丝;3-导杆;4-击锤; 1-圆模(3片);2-紧箍 5-底板;6-套筒;7-击样筒;8-底座 3-夹板;4-拉杆;5-透水板 图5.1-4 原装土和土盘分样器 图5.1-5 承膜筒 图5.1-6 对开圆模 全自动三轴仪 TSZ10-1.0应变控制式三轴仪

土三轴压缩试验报告.

实验六土三轴压缩试验 实验人:学号: (一)、试验目的 1、了解三轴剪切试验的基本原理; 2、掌握三轴剪切试验的基本操作方法; 3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理; 4、进一步巩固抗剪强度的基本理论。 (二)、试验原理 三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。 三轴剪切试验可分为不固结不排水试验(UU)、固结不排水试验(CU)以及固结排水剪试验(CD)。 1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标和UCU; 2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标和CUCCU 或有效抗剪强度指标和C及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标和dCd。 (三)、试验仪器设备 1、三轴剪力仪(分为应力控制式和应变控制式两种)。 应变控制式三轴剪力仪有以下几个组成部分(图8-1):

图8-1 应变控制式三轴剪切仪 1-调压桶;2-周围压力表;3-周围压力阀;4-排水阀;5-体变管;6-排水管;7-变形量表;8-测力环;9-排气孔;10-轴向加压设备;11-压力室;12-量管阀;13-零位指标器;14-孔隙压力表;15-量管;16-孔隙压力阀;17-离合器;18-手轮;19-马达;20-变速箱。 (1)三轴压力室压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。 (2)轴向加荷传动系统采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。 (3)轴向压力测量系统通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。轴向压力系统也可由荷重传感器来代替。(4)周围压力稳压系统采用调压阀控制,调压阀当控制到某一固定压力后,它将压力室的压力进行自动补偿而达到周围压力的稳定。 (5)孔隙水压力测量系统孔隙水压力由孔隙水压力传感器测得。

土力学试验报告(教学参考)

土力学实验指导书

目录 土力学实验的目的 (1) 一、颗粒分析试验 (1) [附1-1]筛析法 (1) [附1-2]密度计法(比重计法) (2) 二、密度试验(环刀法) (4) 三、含水率试验(烘干法) (5) 四、比重试验(比重瓶法) (6) 五、界限含水率试验 (8) 液限、塑限联合测定 (8) 六、击实试验 (10) 七、渗透试验 (12) [附7-1]常水头试验(70型渗透仪) (12) [附7-2]变水头试验(南55型渗透仪) (14) 八、固结试验(快速法) (16) 九、直接剪切试验 (18) 十、相对密度试验 (20) 十一、无侧限抗压强度试验 (22) 十二、无粘性土休止角试验 (24) 十三、三轴压缩试验 (25)

土力学实验指导书 《土力学实验》的目的 土力学试验是在学习了土力学理论的基础上进行的,是配合土力学课程的学习而开设的一门实践性较强的技能训练课。根据教学计划的需要,安排试验内容,以突出实践教学,突出技能训练。 试验课的目的:一、是加强理论联系实际,巩固和提高所学的土力学的理论知识;二、是增强实践操作的技能;三、是结合工程实际,让学生掌握土工试验的全过程和运用实验成果于实际工程的能力。 《土力学实验》的内容及要求 土力学实验指导书是依据中华人民共和国水利部发布《土工试验规程》(SL237-1999)规范编写的。根据教学大纲要求,安排下列实验项目。 一、颗粒分析试验 [附1-1] 筛析法(筛分法) (一)试验目的 测定干土各粒组占该土总质量的百分数,以便了解土粒的组成情况。供砂类土的分类、判断土的工程性质及建材选料之用。 (二)试验原理 土的颗粒组成在一定程度上反映了土的性质,工程上常依据颗粒组成对土进行分类,粗粒土主要是依据颗粒组成进行分类的,细粒土由于矿物成分、颗粒形状及胶体含量等因素,则不能单以颗粒组成进行分类,而要借助于塑性图或塑性指数进行分类。颗粒分析试验可分为筛析法和密度计法,对于粒径大于0.075mm的土粒可用筛析法测定,而对于粒径小于0.075mm的土粒则用密度计法来测定。筛析法是将土样通过各种不同孔径的筛子,并按筛子孔径的大小将颗粒加以分组,然后再称量并计算出各个粒组占总量的百分数。 (三)仪器设备 1.标准筛:孔径10、5、2、1.0、0.5、0.25、0.075mm; 2.天平:称量1000g,分度值0.1g; 3.台称:称量5kg,分度值1g; 4.其它:毛刷、木碾等。 (四)操作步骤 1.备土:从大于粒径0.075mm的风干松散的无粘性土中,用四分对角法取出代表性 的试样。 2.取土:取干砂500g称量准确至0.2g。 3.摇筛:将称好的试样倒入依次叠好的筛,然后按照顺时针或逆时针进行筛析。振摇时间一般为10~15分钟。 4.称量:逐级称取留在各筛上的质量。 (五)试验注意事项 1.将土样倒入依次叠好的筛子中进行筛析。 2.筛析法采用振筛机,在筛析过程中应能上下振动,水平转动。

[课程]静三轴压缩实验报告_secret

指导老师: 班级:岩土工程2007级小组:第一小组时间:2008.5~2008.6 小组成员:

一 实验目的 1.通过静三轴压缩实验了解实验过程及方法; 2. 通过实验数据的处理掌握用EXCEL 处理实验数据; 3.通过实验加深对土的本构关系的理解; 4.掌握邓肯—张模型参数的计算方法。 二 实验原理 Duncan —Chang 模型是与时间无关的试验本构模型,其本质是依据Kondner 提出的用双曲线拟合应力应变关系,即 a 13a a b εσσε-= + (1) 其中a 、b 为试验常数。 1.切线变形模量E t 对于常规三轴压缩试验,εa =ε1,将(1)式改写为 1113 a b εεσσ+= - (2) 将常规三轴压缩试验的结果按 113 εσσ-~1ε的关系进行整理,则二者近似成 线性关系。其中,a 为直线截距;b 为直线斜率。参看图1。 图1 土的应力应变的双曲线关系 在常规三轴压缩试验中,由于d σ2=d σ3=0,所以切线模量为 13t 2 11d()d () a E a b σσεε-= =+ (3) 在试样的起始点,ε1=0,E t =E i ,则 i 1 E a = (4) 这表明a 代表的是在这个试验中的起始变形模量E i 的倒数。在(1)式中,如果1ε→∞,则 13ult 1 ()b σσ-= (5)

或者 13ult 1 ()b σσ= - (6) 由此可看出b 代表的是双曲线的渐近线所对应得极限偏差应力(σ1-σ3)ult 的倒数。 在土的试样中,如果应力应变曲线近似于双曲线关系,则往往是根据一定应变值(如ε1=15%)来确定土的强度(σ1-σ3)f ,而不可能在试验中使ε1无限大,求取(σ1-σ3)ult ;对于有峰值点的情况,取(σ1-σ3)f =(σ1-σ3)峰,这样(σ1-σ3)f <(σ1-σ3)ult 。定义破坏比R f 为 13f f 13ult ()()R σσσσ-= - (7) f 13ult 13f 1 ()()R b σσσσ= =-- (8) 将式(8)、(4)代入式(3)中,得 2 t f i 1i 13f 11 1()E R E E εσσ?? ? ?= ?+ ? -?? (9) 式(9)中E t 表示为应变ε1的函数,使用时不够方便,可将E t 表示为应力的函数形式。从式(2)可以得到 13113() 1() a b σσεσσ-= -- (10) 将式(10)代入式(3),得 t 2 2 2 131******** 1 ()()111()1()1()a E ab b a a a b b b σσσσσσσσσσ= = = ?? ????--++?? ????------? ??? ?? (11) 将式(8)、(4)代入式(11),得 2 13t i f 13f 1()E E R σσσσ?? -=-??-? ? (12) 根据莫尔-库仑强度准则,有

相关文档