文档库 最新最全的文档下载
当前位置:文档库 › 基于某小波分析报告地故障诊断算法

基于某小波分析报告地故障诊断算法

基于某小波分析报告地故障诊断算法
基于某小波分析报告地故障诊断算法

基于小波分析的故障诊断算法

前言:

小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。

在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。

因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。

小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。

小波分析在故障诊断中应用进展

1) 基于小波信号分析的故障诊断方法

基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型,这对于那些难以建立解析数学模型的诊断对象是非常有用的。

具体可分为以下4种方法:

①利用小波变换检测信号突变的故障方法

连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数α>0时,其连续小波变换的模极大值随尺度的增大而增大;当α<0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0。因此,利用小波变换可以区分噪声和信号边沿,有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化,可以直接利用小波变换检测观测信号的奇异点,从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点,用小波变换检测这些突变点,实现输油管道的泄漏点诊断。

②观测信号频率结构变化的故障诊断方法

小波多分辨率分析能够描述信号的频谱随时间变化情况或信号在某时刻

附近的频率分布。系统故障由于产生原因不同,通常具有不同的频率特征。利用小波变换尺度与频率的对应关系,分析观测信号的频率结构特点,可以有效地检测系统的故障。有人利用多分辨率分析获得系统状态信号奇异值特征矩阵,并根据相应的故障检测算法,实现对系统故障检测,该方法成功实现对某一武器平台上的精密弹簧阻尼器的故障检测。有研究者提出了利用Mallet塔式算法实现对系统的多故障检测,将观测信号进行多尺度分解,获得故障在不同尺度下的特征,进而实现故障区分,利用该方法实现对某一电网上不同故障的区分。

③基于系统脉冲响应函数小波变换的故障方法

统故障导致系统结构和传递函数发生变化,其脉冲响应函数也必然发生变化,这一变化可以由少数几个小波变换系数反映出来。通常这些小波变换系统中只有少数几个元素具有较大的模,其余元素的模都非常小,以系统的状态为参照,根据系统待检状态下辨识得到的这几个元素或其平均值随时间的变化情况,就可以判断有无故障。

④利用小波变换去噪提取系统波形特征的诊断方法

小波变换可以看作一个带通滤波器,从而可以对信号进行滤波。近年来,已经出现了很多基于小波变换的去噪方法。Mallat提出了通过寻找小波变换系数中的局部极大值点,并据此重构信号,可以很好地逼近未被噪声污染前的信号。Donoho也提出了一种新的基于阈值处理思想的小波去噪技术。利用去噪后的信号可以直接对系统进行故障诊断,也可利用此信号进行残差分析。通过去噪获得系统输出信号来进行故障诊断,方法上比较简单,但对故障的判断受限于观测人员自身的经验。某期刊文献中提出了基于小波变换的含噪系统辨识方法,利用噪声和信号在小波变换下的不同特性达到消噪目的,直接对含噪声的数据进行小波变换来实现系统辨识。

2) 小波变换与模式识别相结合的故障诊断方法

在故障诊断过程中,对于那些使系统输出发生明显变化的故障,利用小波变换能够有效检测出。但是,当故障的程度很小时,使用小波变换所得的可视信息是有限的,这些信息用于故障检测是困难的。某些研究员提出了利用模式识别中的统计相似性分析的方法进行故障特征提取与诊断,信号检测值与样板之间的相似性是通过二者之间的距离来实现的。直接使用小波变换的小波系数的所有值作为特征矢量是不现实的,因此必须进行特征压缩。这一方法特别适用于缓变故障或具有故障趋势的系统故障诊断。

3) 基于小波分析和模糊逻辑理论的故障诊断方法

模糊逻辑理论是描述与处理广泛存在的不精确、模糊的事件和概念的有效理论工具。近年来人们已将这一理论成果应用于故障诊断中。但在故障诊断中,通常是将这一理论和其他方法相结合来实现的。某研究人员将小波变换和模糊逻辑理论相结合,实现对影响电网稳定性的干扰源故障诊断。还有研究者用小波变换分析模糊数据的局部时频特性来进行故障的检测与分离,利用了在线和离线的学习算法进行规则库的设计和更新。

4) 基于小波网络的故障诊断方法

将小波分析理论与神经网络理论相结合的小波神经网络(WaveletNeuralNetwork,WNN)最早是由ZhangQinghua等提出的。小波网络的基本思想是基于任何函数或信号可以由小波函数表示。小波网络用于故障诊断,主要用于信号逼近和故障分类。目前,用于故障诊断的小波神经网络,主要有两种方式:

①小波变换与常规神经网络的辅助式结合

它的基本思想是将信号经小波变换后,提取相应的故障特征,再将所得的故障特征输入给常规神经网络,利用神经网络的非线性映射能力,对故障进行识别和诊断。某人提出了利用辅助式小波神经网络实现对动态系统的辨识方法。还有研究者利用小波包的多维多分辨率特性,对电机振动信号进行分解重构,提取电机故障特征信号,将其作为特征向量输入ART2(自适应谐振)神经网络,可对电机工作状态进行在线监测和故障诊断。某研究团队针对非线性系统中的多重并发故障,提出了在输入层对残差信号进行二进制离散小波变换,由故障信号多尺度下的细节分量进行故障特征的提取,并将其输入到神经网络进行故障分类与识别。该方法成功实现了对某歼击机同时发生的平尾卡死故障和副翼损伤故障的诊断。

②小波分解与前馈神经网络的融合

它的基本思想是将常规单隐层神经网络的隐节点函数用小波函数代替。利用小波网络的非线性映射能力对非线性动力系统实现故障诊断。某研究员提出了一种可对任意非线性时变系统进行辨识的小波神经网络,它采用了自校正移动窗的递推最小二乘算法,可自动地调节移动窗的长度来跟踪非线性时变系统的动态特性,比常规神经网络具有更好的跟踪精度和辨识性能。某人提出了在BP网络的基础上引入小波函数的方法对电力系统的接地短路故障进行诊断。

5)小波分析和数据融合相结合的故障诊断方法

数据融合(DataFusion)指的是将不同性质的多个传感器在不同层次上获得的关于同一事物的信息、或同一传感器在不同时刻获得的同一事物的信息综合成一个信息表征形式的处理过程。数据融合技术现已广泛应用于工业过程监控、机器人制造、医疗诊断和模式识别等众多领域中。现代高性能、多层次、复杂系统往往要求多个传感器在不同的层次上对其状态或过程进行监测、分析和综合,所以数据融合系统可以获得关于目标更精确的信息。某篇期刊论文中提出了利用多传感器数据融合技术进行非线性系统的状态参数估计方法。同时小波分析具有尺度可变的特点,能将信号的特征在不同的尺度下刻画出来。将小波分析的多分辨特点与数据融合技术相结合进行故障诊断,是一个很有前途的诊断方法。

6) 小波分析与混沌理论相结合的故障诊断方法

混沌(Chaos)的分形维数、关联维数等特征量可以描述非线性系统的特征。在实际的故障诊断中,有一些变量是难于直接测量到的,而在有些极端情况下,甚

至不知道系统独立变量有几个,也不知道哪些是系统变量。根据动力学系统方法,系统变量之间存在关联作用,某个变量的时间序列蕴藏着参与动态的全部变量的痕迹。因而,当监测参量有限时,可以通过混沌特征量进行系统故障监测与诊断。某研究人员提出利用小波多分辨模型来辨识混沌系统,混沌系统对初始条件极端敏感,两个(或多个)相近的初始条件将导致完全不同的混沌轨迹,这就使得混沌系统建模变得相当困难。作者根据小波多分辨率分析特点,利用小波对非线性强有力的逼近能力,采用张量积构造多维小波框架,利用降维分解建模方法解决高维空间中的“维数灾”问题。这一方法给非线性系统的故障诊断提出了一个新的方法和思路。

7)其他方法

除了上面介绍的一些方法外,小波分析在故障诊断中的应用还有其他一些方法。如小波分析与数据挖掘相结合的故障诊断方法、小波分析与时间序列统计与估计分析相结合的故障诊断方法,甚至还有上述多种方法的组合,如小波分析、神经网络和专家系统的组合,小波分析、神经网络和粗糙集的组合等。利用专家系统、神经网络和小波分析技术组成的混合故障诊断系统,实现对某钢厂的冷轧自动化生产线系统进行实时状态监测和故障诊断。某医疗科研机构提出了利用小波分析与粗糙集理论、神经网络相结合的信号处理方法,实现对癫痫病的诊断分析。

MATLAB仿真

本次仿真中将采用小波包变换分析两个信号的特征向量和各频率成分的功率谱。

产生两个信号;s1为正常信号,s2为故障信号

仿真运行程序,两个信号如下图:

获得小波正交基和节点数据如下:

两个信号的功率谱:

两个信号选取八个特征向量点进行分析:

得到正常信号和故障信号的特征向量如下:

每次运行得到的数据(包括上面的功率谱)应该不一样,因为存在随机产生。如下图,某次运行得到的结果:

通过特征向量的对比,检测到信号的突变点,可是识别出故障,也可以通过模式匹配,识别出故障的类型。

结语:

总之,小波分析故障诊断方法研究已经取得了相当大的进展,但就这些理论和方法本身来说还不是很成熟,还需要进一步完善,无论是在理论研究还是工程应用方面,都还有许多工作要做。

①故障检测中的小波基选择

要有效地检测故障,必须选择合适的小波基波。目前小波基波的选择虽有一些经验,但还没有一个理论标准,有待进一步地规范。

②小波分析和其他理论和方法的结合

小波分析虽然能有效地检测故障,但通常很难对故障进行识别。因此,将小波分析和其他各种知识方法的结合,如神经网络、专家系统、粗糙集理论和数据融合等,发挥各自的优点,是小波分析在故障诊断中应用的一个重要研究方向,因此要加强小波分析与各种方法结合的理论和方法实现研究。

③加强实际应用研究

故障诊断理论已取得很大的发展,但大多数方法还只是着重于理论和方法上的研究,真正应用于工作实际的较少,小波分析故障诊断也不例外。因此要加强实际应用研究,如开发实用的小波分析应用软件,并解决实际应用中的硬件实现

问题。

附录:matlab程序

%t=0.001:0.001:1;

t=1:1000;

s1=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));%rand 随机产生函数

for t=1:500;

s2(t)=sin(2*pi*50*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));

end

for t=501:1000;

s2(t)=sin(2*pi*200*t*0.001)+sin(2*pi*120*t*0.001)+rand(1,length(t));

end

subplot(9,2,1) %subplot(m,n,p) m-行数 n-列数 p-位置

plot(s1)

title('原始信号')

ylabel('S1')

subplot(9,2,2)

plot(s2)

title('故障信号')

ylabel('S2')

wpt=wpdec(s1,3,'db1','shannon');%小波包函数

plot(wpt);

s130=wprcoef(wpt,[3,0]);%将某个节点的小波包系数重构,得到的是和原信号一样长度的信号

s131=wprcoef(wpt,[3,1]);

s132=wprcoef(wpt,[3,2]);

s133=wprcoef(wpt,[3,3]);

s134=wprcoef(wpt,[3,4]);

s135=wprcoef(wpt,[3,5]);

s136=wprcoef(wpt,[3,6]);

s137=wprcoef(wpt,[3,7]);

s10=norm(s130);%求范数

s11=norm(s131);

s12=norm(s132);

s13=norm(s133);

s14=norm(s134);

s15=norm(s135);

s16=norm(s136);

s17=norm(s137);

st10=std(s130);%求标准差

st11=std(s131);

st12=std(s132);

st13=std(s133);

st14=std(s134);

st15=std(s135);

st16=std(s136);

st17=std(s137);

disp('正常信号的特征向量');

snorm1=[s10,s11,s12,s13,s14,s15,s16,s17]

std1=[st10,st11,st12,st13,st14,st15,st16,st17]

subplot(9,2,3);plot(s130);

ylabel('S130');

subplot(9,2,5);plot(s131);

ylabel('S131');

subplot(9,2,7);plot(s132);

ylabel('S132');

subplot(9,2,9);plot(s133);

ylabel('S133');

subplot(9,2,11);plot(s134);

ylabel('S134');

subplot(9,2,13);plot(s135);

ylabel('S135');

subplot(9,2,15);plot(s136);

ylabel('S136');

subplot(9,2,17);plot(s137);

ylabel('S137');

wpt=wpdec(s2,3,'db1','shannon');

%plot(wpt);

s230=wprcoef(wpt,[3,0]);

s231=wprcoef(wpt,[3,1]);

s232=wprcoef(wpt,[3,2]);

s233=wprcoef(wpt,[3,3]);

s234=wprcoef(wpt,[3,4]);

s235=wprcoef(wpt,[3,5]);

s236=wprcoef(wpt,[3,6]);

s237=wprcoef(wpt,[3,7]);

s20=norm(s230);

s21=norm(s231);

s22=norm(s232);

s23=norm(s233);

s24=norm(s234);

s25=norm(s235);

s26=norm(s236);

s27=norm(s237);

st20=std(s230);

st21=std(s231);

st22=std(s232);

st23=std(s233);

st24=std(s234);

st25=std(s235);

st26=std(s236);

st27=std(s237);

disp('故障信号的特征向量');

snorm2=[s20,s21,s22,s23,s24,s25,s26,s27]

std2=[st20,st21,st22,st23,st24,st25,st26,st27]

subplot(9,2,4);plot(s230);

ylabel('S230');

subplot(9,2,6);plot(s231);

ylabel('S231');

subplot(9,2,8);plot(s232);

ylabel('S232');

subplot(9,2,10);plot(s233);

ylabel('S233');

subplot(9,2,12);plot(s234);

ylabel('S234');

subplot(9,2,14);plot(s235);

ylabel('S235');

subplot(9,2,16);plot(s236);

ylabel('S236');

subplot(9,2,18);plot(s237);

ylabel('S237');

%fft

figure

y1=fft(s1,1024);%对信号s1前1024个点进行fft py1=y1.*conj(y1)/1024;

y2=fft(s2,1024);

py2=y2.*conj(y2)/1024;

y130=fft(s130,1024);

py130=y130.*conj(y130)/1024;

y131=fft(s131,1024);

py131=y131.*conj(y131)/1024;

y132=fft(s132,1024);

py132=y132.*conj(y132)/1024;

y133=fft(s133,1024);

py133=y133.*conj(y133)/1024;

y134=fft(s134,1024);

py134=y134.*conj(y134)/1024;

y135=fft(s135,1024);

py135=y135.*conj(y135)/1024;

y136=fft(s136,1024);

py136=y136.*conj(y136)/1024;

y137=fft(s137,1024);

py137=y137.*conj(y137)/1024;

y230=fft(s230,1024);

py230=y230.*conj(y230)/1024;

y231=fft(s231,1024);

py231=y231.*conj(y231)/1024;

y232=fft(s232,1024);

py232=y232.*conj(y232)/1024;

y233=fft(s233,1024);

py233=y233.*conj(y233)/1024;

y234=fft(s234,1024);

py234=y234.*conj(y234)/1024;

y235=fft(s235,1024);

py235=y235.*conj(y235)/1024;

y236=fft(s236,1024);

py236=y236.*conj(y236)/1024;

y237=fft(s237,1024);

py237=y237.*conj(y237)/1024;

f=1000*(0:511)/1024;

subplot(1,2,1);

plot(f,py1(1:512));

ylabel('P1');

title('原始信号的功率谱') subplot(1,2,2);

plot(f,py2(1:512)); ylabel('P2');

title('故障信号的功率谱') figure

subplot(4,2,1);

plot(f,py130(1:512)); ylabel('P130');

title('S130的功率谱') subplot(4,2,2);

plot(f,py131(1:512)); ylabel('P131');

title('S131的功率谱') subplot(4,2,3);

plot(f,py132(1:512)); ylabel('P132');

subplot(4,2,4);

plot(f,py133(1:512)); ylabel('P133');

subplot(4,2,5);

plot(f,py134(1:512)); ylabel('P134');

subplot(4,2,6);

plot(f,py135(1:512)); ylabel('P135');

subplot(4,2,7);

plot(f,py136(1:512)); ylabel('P136');

subplot(4,2,8);

plot(f,py137(1:512)); ylabel('P137');

figure

subplot(4,2,1);

plot(f,py230(1:512)); ylabel('P230');

title('S230的功率谱') subplot(4,2,2);

plot(f,py231(1:512)); ylabel('P231');

title('S231的功率谱')

subplot(4,2,3);

plot(f,py232(1:512)); ylabel('P232'); subplot(4,2,4);

plot(f,py233(1:512)); ylabel('P233'); subplot(4,2,5);

plot(f,py234(1:512)); ylabel('P234'); subplot(4,2,6);

plot(f,py235(1:512)); ylabel('P235'); subplot(4,2,7);

plot(f,py236(1:512)); ylabel('P236'); subplot(4,2,8);

plot(f,py237(1:512)); ylabel('P237');

%figure

%plottree(wpt)

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

哈工大小波分析上机实验报告

小波分析上机实验报告 院系:电气工程及自动化学院 学科:仪器科学与技术

实验一小波分析在信号压缩中的应用 一、试验目的 (1)进一步加深对小波分析进行信号压缩的理解; (2)学习Matlab中有关信号压缩的相关函数的用法。 二、相关知识复习 用一个给定的小波基对信号进行压缩后它意味着信号在小波阈的表示相对缺少了一些信息。之所以能对信号进行压缩是因为对于规则的信号可以用很少的低频系数在一个合适的小波层上和一部分高频系数来近似表示。 利用小波变换对信号进行压缩分为以下几个步骤来完成: (1)进行信号的小波分解; (2)将高频系数进行阈值量化处理。对从1 到N 的每一层高频系数都可以选择不同的阈值并且用硬阈值进行系数的量化; (3)对量化后的系数进行小波重构。 三、实验要求 (1)对于某一给定的信号(信号的文件名为leleccum.mat),利用小波分析对信号进行压缩处理。 (2)给出一个图像,即一个二维信号(文件名为wbarb.mat),利用二维小波分析对图像进行压缩。 四、实验结果及程序 (1)load leleccum %将信号装入Matlab工作环境 %设置变量名s和ls,在原始信号中,只取2600-3100个点 s = leleccum(2600:3100); ls = length(s); %用db3对信号进行3级小波分解 [c,l] = wavedec(s, 3, 'db3'); %选用全局阈值进行信号压缩 thr = 35; [xd,cxd,lxd,perf0,perfl2] = wdencmp('gbl',c,l,'db3',3,thr,'h',1); subplot(2,1,1);plot(s); title('原是信号s'); subplot(2,1,2);plot(xd); title('压缩后的信号xd');

初中物理常见电路故障分析方法精讲

初中物理常见电路故障分析方法精讲 在电学中,用电器不工作、突然变亮变暗或变暗或者电表示数异常等,统称为电路故障。 如下图 L 1 L 2 L 1 L 2 L 1 L 2 断路,电路中没有电流 L1被短路(部分短路),电源被短路(整体 短路),L1、L2 电源会被烧坏 部分短路,被短路的用电器不工作,电路有电流 短路 电路故障整体短路,所有用电器均不工作,电路有电流且较大 断路(开路) 电路故障分析思路:1. 是什么? 2.在哪里? 3.怎么分析? 具体分析 (一)电路断路分析 1.电压表法:将电压表并接到接到可能发生开路的地方,用电压表把电路连通,电压表有示数,而且它的示数等于___________。但电路中的灯___,电流表 _______示数. 断开区域

小结:无电流,是开路, 并接电压表,电压表有示数断 路在接点内且接近电源电压 例1.如图电路中,电源电压为3伏。当开关K闭合时,两灯泡都不发光, 且电压表V的示数为3伏。产生这一现象的原因可能是 ( ) (A)灯L1短路 (B)灯L2短路 (C)灯L1开路 (D)灯L2开路 解析:两灯不亮无电流,是开路 并接电压表,电压表最大示数 3V 断路在接点内,L1断路(开路) 举一反三:在电学实验中,遇到开路时,常用电压表来检测。某同学连接 了如图1所示的电路,闭合开关S后,发现灯不亮,为检查电路故障,他用电压 表进行测量,结果是, 则此电路的故障可能是() A. 开关S接触不良 B. 小灯泡灯丝断了 C. d、e间出现断路 D. e、f间出现断路 2.导线法:把一根导线并接到可能发生开路的地方,电路被连通,可以观察到 _______有示数, _______发光。 小结:无电流,是开路并接导线,电流表有示数,灯亮断 路在接点内 例2.如图所示电路,闭合开关时,发现电流表指针几 乎没有偏转。某同学拿一根导线去查找电路故障,他将导线 并接在bc、 cd 、ed 两端时,电流表指针没有发生偏转;将 导线并接在ab 两端时,发现电流表指针发生了偏转,由此可 知电路故障可能是( ) A.e点断路 B.L1开路 C.电流表短路 D.L2开路 3.灯泡法:灯泡法:将灯泡并接到可能发生开路的地方,电路被接通,可以观察 到电流表_______, 灯泡____________。 断开区域 V U U U V U de bd ab ae 3 3= = = =, , , 断开区域 断开区域

小波变换的几个典型应用

第六章小波变换的几个典型应用 6.1 小波变换与信号处理 小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。 6.1.1 小波变换在信号分析中的应用 [例6-1] 以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为 应用db5小波对该信号进行7层分解。xiaobo0601.m 图6-1含躁的三角波与正弦波混合信号波形 分析: (1)在图6-2中,逼近信号a7是一个三角波。 (2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。 图6-2 小波分解后各层逼近信号 图6-3 小波分解后各层细节信号 6.1.2 小波变换在信号降躁和压缩中的应用 一、信号降躁 1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。 小波分析进行消躁处理的3种方法: (1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。 (2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。 (3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。 小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。 3.信号降噪的准则: 1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

基于连续小波变换的信号检测技术与故障诊断

机械工程学报 CHINESE JOURNAL OF MECHANICAL ENGINEERING 2000 Vol.36 No.12 P.95-100 基于连续小波变换的信号检测技术与故障诊断 林京 屈梁生 摘 要:通过分析指出,连续小波变换具有很强的弱信号检测能力,非常适合故障诊断领域。从参数离散到参数优化系统研究了连续小波变换的工程应用方法,建立 了“小波熵”的概念,并以此作为基小波参数的择优标准。论文最后把连续小波技术应用在滚动轴承滚道缺陷和齿轮裂纹的识别中,诊断效果十分理想。 关键词:小波故障诊断滚动轴承齿轮 分类号:TH133.33 TH132.41 FEATURE DETECTION AND FAULT DIAGNOSIS BASED ON CONTINUOUS WAVELET TRANSFORM Lin Jing(State Key Laboratory of Acoustics, Institute ofAcou stics, Chinese Academy of Science)  Qu Liangsheng(Xi’an Jiaotong University) Abstract:It is pointed out that continuous wavelet transform(CWT) has powerful ability for weak signal detection which help itself to be used for fault diagnosis. The method for parameter discretization and optimi zation of CWT is estabished. The concept of wavelet entropy is introduced and it is used as a rule for parameter optimization. In the end, CWT is used fo r fault diagnosis of rolling bearing and gear-box. Very good results are obtain ed using this method. Keywords:Wavelet Fault diagnosis Rolling bearing Gear

小波实验报告一维Haar小波2次分解

一、题目:一维Haar 小波2次分解 二、目的:编程实现信号的分解与重构 三、算法及其实现:离散小波变换 离散小波变换是对信号的时-频局部化分析,其定义为:/2200()(,)()(),()()j j Wf j k a f t a t k dt f t L R φ+∞---∞=-∈? 本实验实现对信号的分解与重构: (1)信号分解:用小波工具箱中的dwt 函数来实现离散小波变换,函数dwt 将信号分解为两部分,分别称为逼近系数和细节系数(也称为低频系数和高频系数),实验中分别记为cA1,cD1,它们的长度均为原始信号的一半,但dwt 只能实现原始信号的单级分解。在本实验中使用小波函数db1来实现单尺度小波分解,即: [cA1,cD1]=dwt(s,’db1’),其中s 是原信号;再通过[cA2,cD2]=dwt(cA1,’db1’)进行第二次分解,长度又为cA2的一半。 (2)信号重构:用小波工具箱中的upcoef 来实现,upcoef 是进行一维小波分解系数的直接重构,即: A1 = upcoef('a',cA1,'db1'); D1 = upcoef('a',cD1,'db1')。 四、实现工具:Matlab 五、程序代码: %装载leleccum 信号 load leleccum; s = leleccum(1:3920); %用小波函数db1对信号进行单尺度小波分解 [cA1,cD1]=dwt(s,'db1'); subplot(3,2,1); plot(s); title('leleccum 原始信号'); %单尺度低频系数cA1向上一步的重构信号 A1 = upcoef('a',cA1,'db1'); %单尺度高频系数cD1向上一步的重构信号 D1 = upcoef('a',cD1,'db1'); subplot(3,2,3); plot(A1); title('单尺度低频系数cA1向上一步的重构信号'); subplot(3,2,5); plot(D1); title('单尺度高频系数cD1向上一步的重构信号'); [cA1,cD1]=dwt(cA1,’db1'); subplot(3,2,2); plot(s); title('leleccum 第一次分解后的cA1信号'); %第二次分解单尺度低频系数cA2向上一步的重构信号 A2= upcoef('a',cA2,'db1',2); %第二次分解单尺度高频系数cD2向上一步的重构信号 D2 = upcoef('a',cD2,'db1',2); subplot(3,2,4); plot(A2);

常见仪表常见故障及处理办法

仪表常见故障检查及分析处理 一、磁翻板液位计: 1、故障现象:a、中控远传液位和现场液位对不上或者进液排液时液位无变化;b、现场液位计和中控远传均没有问题的情况下,中控和现场液位对不上; 2、故障分析:a、在确定远传液位准确的情况下,一般怀疑为液位计液相堵塞造成磁浮子卡住,b、现场液位变送器不是线性; 3、处理办法:a、关闭气相和液相一次阀,打开排液阀把内部液体和气体全部排干净,然后再慢慢打开液相一次阀和气相一次阀,如果液位还是对不上,就进行多次重复的冲洗,直到液位恢复正常为止;b、对液位计变送器进行线性校验。 二、3051压力变送器:压力变送器的常见故障及排除 1)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 2)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原

因方法是将传感器卸下看零位是否正常,如果正常更换密封圈再试。 3)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性 三、雷达液位计:

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

调研报告

毕业设计(论文)调研报告 学生姓名张春专业班级电子信息08-2 所在院系电气信息学院 指导教师许丽群职称讲师 所在单位大连交通大学 完成日期2012 年 4 月30 日

调研报告 一、课题来源与意义 语音信号处理在现代通信、多媒体技术以及智能系统等领域中应用非常广泛,是近年来发展非常迅速的一种技术。实际应用中,由于噪声的存在会使语音处理系统的性能恶化,造成语音信号的失真,混淆,给语音信号的传递带来困难。因此,设法去除语音中的噪声,改进语音质量,提高语音信号的信噪比就成为语音去噪研究中的一个重要方向。在传统的傅氏变换的信号处理方法中,信号和噪声的频带重叠部分要尽可能小;在频域可通过时不变滤波方法将信号和噪声区分开,而当它们的频域重叠时,传统的单纯时域或频域处理往往无法达到很好的效果。 小波分析是近十几年来新兴发展起来的一种时频局域化分析方法,它克服了傅里叶变换固定分辨率的弱点, 既可以分析信号的概貌, 又可以分析信号的细节,特别适用于非平稳时变信号,例如语音信号、声纳信号等。小波变换是一种信号的时间-尺度(时间-频率)分析方法,它具有多分辩率分析(Multiresolution Analysis)的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但形状改变的时频局部化分析方法。即在低频部分具有较高的频率分辩率和较低的时间分辩率,在高频部分具有较高的时间分辩率和较低的频率分辩率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以小波变换用于语音信号的去噪是近些年来比较热门的方法。 二、国内外发展状况 小波理论的兴起,得益于其对信号的时域和频域局域分析能力及其对一维有界函数的最优逼近性能,也得益于多分辨率分析概念,以及快速小波变换的实现方法。小波分析的思想来源于伸缩与平移方法。 第一个正交小波基是由Haar在1910年提出的,它就是人们熟知的Haar正交基,Haar 正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。它具有最优的时(空)域分辨率,但是Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。1981年,Stromberg对Haar系进行了改进,证明了小波函数的存在性。1984年,Morlet在分析地震波数据的局部性质时,发现用傅立叶变换难以达到要求,因此引入小波的概念应用于信号分析中,并用一种无限支集的非正交小波分析地震数据,这是第一次真正意义上提出了小波的概念。随后,Grossman和Morlet一起提出了确定小波函数伸缩平移系的展开理论。1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造的规范正交基(即Meyer基),从而证明了正交小波系的存在。1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰

常见故障分析及排除方式方法

常见故障分析及排除方法1.常见故障分析表。

2.同步发电机的故障及排除方法详见《三相同步发电机使用说明书》。 3.机组控制屏故障排除方法详见《柴油发电机组控制屏使用说明书》。 4.电子调速器的故障及排除方法详见《电子调速器使用说明书》。 维护与保养 1.进行维护与保养之前,请阅读有关说明书的有关章节。 2.机组的日常维护要经常进行,日常维护内容: a.日常运行过程中随时注意机组的通风、发热、振动以及轴承运转情况,应防止发电机风道被堵塞,对出现的不良运行情况进行排除; b.注意观察电压、功率、电流,勿使机组超载运行。 c.一般说来,每周应对机组检查一次,并使之短时运行,最好是带载运行,以确认机组处于良好状态,同时对有关情况及参数进行记录。 3.维护保养周期取决于机组运行的条件状况,一般结合柴油机的大修进行,保养内容: a.500兆欧表测量绕组的绝缘电阻,如对地电阻小于1兆欧时应进行焙烘。测量时,机组的调压器,仪表等电子器件不在测量范围。 b.检查发电机轴承磨损情况,用煤油清洗轴承,更换轴承室润滑脂。 c.吹净发电机、电盘内部灰尘; d.检查各带电部分的接触是否良好,对各连接部分进行紧固。 e.经常检查仪表指示是否正常; 4.基本维护保养规范应当包括下列各项: (1)检查空气滤清器、燃油滤清器的滤芯状况,应及时清理,必要时更换之。

(2)检查冷却水或防冻液的液面,应及时进行补充。 (3)检查润滑油、燃油及冷却水是否有泄漏。 (4)检查油泵泵体内机油是否在规定的范围,不足时应进行补充。 (5)检查蓄电池的电压及电解液比重。 (6)检查控制屏上各指示装置及各开关的状况。 (7)检查电气接线及机械连接有无松动现象,必要时进行紧固。 (8)柴油机在使用期间,应按日填写运行记录,以备定期检查。为保证可靠运行并延长使用寿命,应进行严格的技术保养: 5.新机维护: 新机投入使用100小时进行下列工作: 更换机油滤清器,并更换机油; a.换柴油滤清器; b.清洗空气滤清器; c.检查各紧固件,连接件是否有松动情况。 d.投入累计使用200小时左右时:为了避免气缸盖漏气,保证柴油机可靠工作,应将汽缸盖螺母松开,然后按照柴油机说明书要求分次把紧。 6.柴油机的技术保养: 请根据《R6160/6160系列柴油机使用保养说明书》和《6170系列柴油机使用保养说明书》进行。 7.例行检查项目表: 注:下表中“1”代表每运行12h或每周一次;“2”代表每运行100h或每月一次;“3”代表每运行200h或每年一次。

研究生《小波理论及应用》复习题

2005年研究生《小波理论及应用》复习题 1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。Shannon 采样定理适合于频谱有限的信号。 2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。 3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。 4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别? 5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。 6. 双通道多采样率滤波器组的传递函数为: ()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -??????-++??????+=+=∧∧∧∧212121请根据此式给出理想重建条件: 为了消除映象()z X -引起的混迭:()()()()0=-+-∧ ∧z G z G z H z H

为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数) 7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧ ∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧ , ()()()n h n g n 1-=∧ 8. 试列出几种常用的连续的小波基函数 Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波 9. 试简述海森堡测不准原理,说明应用意义? 10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。 11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。 12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧ ∧,,。 ()()() ()()()()()()???????-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11 13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

基于小波分析的故障诊断算法

基于小波分析的故障诊断算法 前言: 小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间- 频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。 在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。 因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。 小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。 小波分析在故障诊断中应用进展 1)基于小波信号分析的故障诊断方法 基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型, 这对于那些难以建立解析数学模型的诊断对象是非常有用的。 具体可分为以下4种方法: ①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数a >0时,其连续小波变换的模极大值随尺度的增大而增大;当a <0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0, 而信号边沿对应的Lipschitz 指数大于或等于0。因此, 利用小波变换可以区分噪声和信号边沿, 有效地检测出强噪声背景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化, 可以直接利用小波变换检测观测信号的奇异点, 从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点, 用小波变换检测这些突变点, 实现输油管道的泄漏点诊断。 ②观测信号频率结构变化的故障诊断方法小波多分辨率分析能够描述信号的频谱随 时间变化情况或信号在某时刻

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

哈工大小波实验报告

小波理论实验报告 院(系) 专业 学生 学号 日期 2015年12月

实验报告一 一、 实验目的 1. 运用傅立叶变换知识对常用的基本函数做基本变换。 2. 加深对因果滤波器的理解,并会判断因果滤波器的类型。 3. 运用卷积公式对基本信号做滤波处理并分析,以加深理解。 4. 熟悉Matlab 中相关函数的用法。 二、 实验原理 1.运用傅立叶正、反变换的基本公式: ( )?()() ()(),1 1?()(),22i x i t i t i t i t f f x e dx f t e dt f t e f t f e d f t e ωωωωωωωωπ π ∞∞---∞ -∞ ∞ --∞ ==== =?? ? 及其性质,对所要处理信号做相应的傅里叶变换和逆变换。 2.运用卷积的定义式: 1212()()()()+∞ -∞ *=-? f t f t f f t d τττ 对所求信号做滤波处理。 三、 实验步骤与内容 1.实验题目: Butterworth 滤波器,其冲击响应函数为 ,0 ()0, 0若若α-?≥=?

相关文档
相关文档 最新文档