文档库 最新最全的文档下载
当前位置:文档库 › 第四周数学思维

第四周数学思维

第四周数学思维
第四周数学思维

教学设计

课题数学思维授课时间2014.3.15 教者于成教学对象一、二年级教学目标培养学生数感与符号感,训练学生创造性思维。

教学重、难点画图、列表的思想解决问题、数字分析与计算。

课前准备自选题目

教学过程:

常熟国际学校数学思维训练

常熟国际学校数学思维(初级)3.15

常熟国际学校数学思维(中级)3.15

1、环形跑道上正在进行长跑比赛。每位运动员前面有7个人在跑,每位运动员后面也有7个人在跑。跑道上一共有( )个运动员?

2、把16只鸡分别装进5个笼子里,要使每个笼子里鸡的只数都不相同,应怎样装?请把每只笼子里的鸡的只数分别填入下面五个方框中。

3、今天红红8岁,姐姐13岁,10年后,姐姐比红红大( )岁。

4、汽车每隔15分钟开出一班,哥哥想乘9时10分的一班车,但到站时,已是9时20分,那么他要等( )分钟才能乘上下一班车。

5、从底楼走到3楼,用了24秒;那么从1楼走到6楼,需要( )秒。

6、二(1)班小朋友排成长方形队伍参加体操表演。红红左看是第6名,右看是第2名,前看是第4名,后看是第3名。二(1)班共有( )小朋友。

7、汽车场每天上午8时发车,每隔8分钟发一辆。那么从8时到8时40分,共发了( )辆车?

8、一只苹果的重量等于一只桔子加上一只草莓的重量,而一只苹果加上一只桔子的重量等于9只草莓的重量,请问,一只桔子的重量等于几只草莓的重量。

教学反思:

数学特色课程方案

数学特色课程方案

《小学生数学思维开发训练》课程方案(试行稿) 一、课程开发背景 教育是否培养出具有严密的思维能力和具有创造精神的新人,是当今素质教育的核心所在。2011版《数学课程标准》明确指出:数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维。由此可见,从小加强学生的创造性思维方法的训练和创造性思维品质的培养,对于实施素质教育具有深远的意义。 “数学是思维的体操”。开展数学思维训练,不仅使学生能够掌握渊博的数学知识,更重要的是可以训练他们的思维,增强分析问题和解决问题的能力,促使学生发展,形式健全人格,具有终身持续发展能力的力量源泉。开展思维训练活动,能扩大学生的视野,拓宽知识,培养兴趣爱好,发展教学才能,为培养发展学生的创造性思维品质提供极大的空间,全面促进学生数学素养的提升。 二、课程目标 1.知识目标:了解源于教材又高于教材的数学各专题知识,初步应用所学知识解决日常生活问题;学会一些基本的解题策略和解题方法,提高分析问题、解决问题的能力;初步学会一些基本的数学思想方法,尝试用数学的思维方式去思考问题,提升数学思维能力。 2.能力目标:通过校本课程的学习,提高学生主动思考问题、发现问题和解决问题的品质,并在学习中学会与人分享、与人合作。 3.情感目标:通过思维训练,提高学习数学的兴趣和喜爱,感受数学学科独特的魅力,增强学好数学的信心,具有初步的创新意识和实事求是的科学态度。 三、课程内容 根据学生的认知规律、数学学习的特点和学生实际学习情况,本课程安排了“数与运算、图形与几何、解决问题”三方面的内容,放在五个年级学习,各年级教学内容如下: 年级数的运算图形与几何解决问题 一年级找规律(一)、数 和数数、数的计算、图形的计数(一)、谁 的眼力好、图形游戏 比较、简单运用、智力趣题 二年级加法的巧算、有余 数的除法、算式中 的数迷(一)、巧图形的剪拼(一)、 拼图游戏、数立方 体、图形的计数 周期问题(一)、天平问题、 幻方(一)、移多补少问题、 年龄问题、简单重叠问题、

数学思维

二、《解密数学思维的内核》 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)、充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己

小学数学思维训练题大全

1、一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树? 答案:路分成100÷10=10段,共栽树10+1=11棵。 2、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树? 答案:3×(12-1)=33棵。 3、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次? 答案:200÷10=20段,20-1=19次。 4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟? 答案:从第一节到第13节需10×(13-1)=120秒,120÷60=2分。 5、在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花? 答案:20÷1×1=20盆

6、从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远? 答案:30×(250-1)=7470米。 7、王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元? 答案:[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。 8、一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米? 答案:1×2×2=4千米 9、甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?

答案:(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个 10、一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米? 答案:16÷2÷2=4(厘米),16-1-1=14(天) 11、一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克? 答案:180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。 12、甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本? 答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。 13、小燕买一套衣服用去185元,问上衣和裤子各多少元?

例说数学解题的思维过程

例说数学解题的思维过程 陕西师范大学数学系 罗增儒 在数学教学中暴露思维过程早就引起了人们的关注。暴露概念的形成过程,暴露命题的 发现过程,暴露证明的探究过程等,包括暴露这些过程中犯错误的真实活动,但是,这种暴 露大多停留在可见事实的陈述上,而内在思维性质的细致揭示不多,也常常进行到思路初步 打通、结论初步得出时就停了下来。本文想从解题分析的角度提供一个简单例子,展示内在 的思维过程,并在证明得出之后仍继续进行下去。先给出题目: 两直线被第三条直线所截,外错角相等,则两直线平行。 1.浮现数学表象 通过认真阅读,我们接收到题目所提供的信息,首先在脑子里出现了一个图形(几何型 表象),与这个图形相伴随的是一个问题(代数型表象):由数量关系去确定位置关系。 在问题的牵引下,思维的齿轮开始启动,有3 个展开的起点。 (1)由图形表象,我们回想起“三线八角”基本图形,回想起与此图形有关的命题,如 两直线被第三条直线所截,有: 1)同位角相等?两直线平行; 2)内错角相等?两直线平行。 …… 这些命题的附图,在我们脑海里逐幅浮现出来。 (2)由条件∠1= ∠2(数量关系)所唤起的问题有: 1)由角的相等关系能得出什么? 2)图1 中有与∠1 相等的角吗?

3) 图1 中有与∠2 相等的角吗? …… 一开始,“由条件能推出什么”是一道开放性问题,我们不知道该往哪些地方推进,但 随着对结论思考的深化,会慢慢明朗起来。 (3) 由结论AB∥CD(位置关系)所唤起的问题有:得出直线平行需要什么条件?题目提供 了这样的条件没有?如果不是直接提供,那么间接提供没有? …… 由此激活了记忆储存中的相关知识,并又激活更多的记忆储存(扩散): 1) 同位角(内错角)相等,则两直线平行;进而问 2) 什么是同位角(内错角)?图1 中有同位角(内错角)吗?有相等的同位角(内错角)吗? 3) 己知条件的相等角能导出“同位角(内错角)相等”吗? …… 这是表象的一个有序深化的过程。 2.产生数学直感 上述三方面的思考,促使我们更专注于图形,图中有3 条直线,8 个角,8 条射线,1 条 线段,其中哪些信息对于我们解题是有用的,哪些是多余的呢?(这相当于一道条件过剩、 结论发散的开放题)当然,一开始我们并不清楚,但是目标意识驱使我们去考虑角的关系, 因为课本中两条直线平行的判定均与角有关,而已知条件又给出了等角。所以,我们的思考 逐渐集中到:从图形中找同位角(或内错角),找相等的角,找相等的同位角(或内错角)。 这时,伴随着问题的需要,图1 被分解出一系列的部分图形(图2 中实线图),并凸现在 我们的眼前: 图2

学生数学思维发展的特点

学生数学思维发展的特点 学生数学思维发展的特点 数学思维的发展呈现年龄特征,要经历直观行动思维、具体形象思维、抽象逻辑思维(包括辩证思维)等阶段。不同阶段的思维形态 有本质的差别,表现出不同的功能、数学思维就是按此顺序由低层 次向高层次不断发展的。当然,这种发展不是以高层次思维取代低 层次思维,而是高层次思维形态以低层次思维形态为基础,高层次 思维形态的出现与发展又反过来带动、促进低层次思维形态由低水 平向高水平发展。 小学阶段,学生的数学思维从以具体形象恩维为主要形式向以抽象逻辑思维为主要形式过渡。当然,这种抽象逻辑思维在很大程度 上仍与感性经验直接相联系,具有很大成分的具体形象性。这里的 过渡通常认为以1011岁(4年级)为转折点,称为“关键年龄”。在 小学低年级,学生的数学思维具有明显的形象性,与面前的具体事 物或其生动表象联系着。而在高年级,学生逐步学会区分概念中的 本质与非本质属性、主要与次要的因素,学会掌握初步的科学定义,学会独立进行逻辑论证。当然,这种思维活动仍然要与直接的、感 性的经验联系在一起,具有很大成分的具体抽象性。 在整个中学阶段,学生的数学思维获得迅速发展,抽象逻辑思维占据优势地位。这种思维有五方面特征征:第一,能够离开具体事物,运用概念、通过假设进行思维,使思维按照发现问题、明确问题、提出假设、检验假设的途径,经过一系列抽象逻辑思维,达到 解决问题的目的。第二,在具体从事复杂活动之前,能够预计活动 的发展进程,预先设想活动的计划、步骤和策略,具有思维的预见性。第三,由具体运算思维占优势发展到形式运算思维占优势,具 有思维的形式化特点。第四,思维活动中,自我意识或监控能力明 显化,反省的、监控性的思维特点越来越明显。第五,思维的自我 调节能力明显优,思维过程中追求新颖独特性、追求个性,思维的 系统性和结构性明显加强。中学生的抽象逻辑思维发展也存在“关

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

幼儿数学思维训练方法

幼儿数学思维训练方法 本文适合幼儿园大班以上孩子的家长尤其是小学生家长阅读, 数学能力有两个方面,一个是运算能力,一个是思维能力。 运算能力是一种低级能力。强调记忆、熟练度(复杂运算需要一些技巧), 思维能力是一种高级能力,强调借助抽象的数字符号、概念进行思考与推理。 运算能力对于小学生来说也比较重要,这个话题以后再谈,今天先谈思维能力的培养。 数学思维的基本功是数数。每个数的音、形、义要弄清楚,不是从1数到9就可以了,还要知道每个数字对应的具体数量。 数数这关过后,就可以进入加法的学习。 对成人来说,我们看到“3+5=8”这个等式,结合我们的生活经验,很容易把这个抽象的等式具体化为:三个XX加上五个XX是八个XX 而进一步具体化则会得到: 三个香蕉加上五个香蕉是八个香蕉 ?三匹马加上五匹马是八匹马 ?三只猴子加上五只猴子是八只猴子 如果把数字进行替换,如:5+6=11。便可以生成无数的具体表达。 数学符号的意义就是把无限的具体事物进行高度概括。虽然看起来抽象,来源却是具体的。 而数学思维,就是把各种具体事物及其关系,用抽象的数字符号表达出来。 锻炼孩子的思维其实并不难。孩子们平时做的数学应用题本质就是一种数学思维训练。 家长可根据上述原理,有意识的自编应用题,来训练孩子的数学思维,比如: ?三只猴子加上两只两只猴子,是多少只猴子? ?笼里有三只猴,又来两只,共几只?(虽没提到“加”这个词,但暗含了这个思维) ?我有两支笔,张阿姨又给了我三只,我现在有几只? ?蜘蛛有八条腿,蜈蚣有100条腿,一共有多少条腿? ?我早上走了十分钟,晚上走了二十分钟,一共走了多长时间?

高考数学解题思维能力是怎样练成的.doc

高考数学解题思维能力是怎样练成的 纵观近几年高考数学试题,可以看出高考数学试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强,下面是我给大家带来的,希望对你有帮助。 高考数学解题思维能力怎样练成的 第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到"需知"后,将"需知"作为新的问题,直到与"已知"所能获得的"可知"相沟通,将问题解决。事实上,在不等式证明中采用的"分析法"就是这种思维的充分体现,我们将这种思维称为"逆向思维"——必要性思维。 第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢? 其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还

必须注意的是,一切转换必须是等价的,否则解答将出现错误。 解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的 桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。 第三、回归课本---夯实基础。 1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维 方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去"悟"出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。 2)构建网络----融会贯通在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。 例如: 若f(x+a)=f(b-x)则f(x)关于对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2),x1+x2=a+b,=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,

数学思维的三个特性分别是什么

数学思维的三个特性分别是什么 数学思维的特性 数学思维从数学学科的特点出发,在数学学习过程中主要表现为以下特性: 1.数学思维的问题性 问题是数学的心脏。它促使数学发现、推动数学的发展。没有问题就不会导致数学的思维。数学思维主要地表现在数学问题解决过程中。希尔伯特说:“正如人类的每项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁般的意志和力量,发现新方法和新观点,达到更为广阔和自由的境界。”(引自:希尔伯特《数学问题》,《数学与文化》,北京大学出版社,1990年版,p191) 在数学学习中,数学思维总是从提出问题开始的,并且数学思维贯穿问题解决的始终。关于问题解决,我们将在后面讨论。 2.数学思维的概括性 思维的概括性主要表现是通过思维而把抽象出的事物本质特性联合起来,或推广到同类事物中去。数学研究的对象不是客观事物,而是从客观事物中抽象出的事物的空间形式与数量关系。例如,数学思维中的平行四边形,就是从客观世界中形形色色的有关的四边形物体中进行抽象和概括出来的。没有抽象概括,就没有数学概念,也就不存在数学思维。

在数学思维中,思维的概括性可以使数学知识活化和推广。“概括就是迁移”。数学思维的概括性具有学习迁移的作用。例如,通过思维的概括,可以使分数的性质很容易地推广到分式上去。 3.数学思维的间接性 间接认识事物是思维的一大功能。对非欧几何的认识是思维间接性何在我们地球这个空间中是无法直观地认识的,只有通过数学思维才能接的思维途径而认识它。 数学思维的间接性在数学学习过程中经常地出现,并表现出它的威力与作用。当然,数学思维的间接性是要凭借已知的数学知识进行思维才能表现出来的。 思维与数学思维 思维是人的一种高级的心理活动形式。 数学思维也就是人们通常所指的数学思维能力,即能够用数学的观点去思考问题和解决问题的能力。比如转化与划归,从一般到特殊、特殊到一般,函数/映射的思想,等等。一般来说数学能力强的人,基本体现在两种能力上,一是联想力,二是数字敏感度。前者能够把两个看似不相关的问题联系在一起,这其中又以构造能力最让人折服;后者便是大多数曝光的所谓geek,比如什么nash之类的。当然也有两种能力的结合体。 我国初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。

数学解题的思维过程

数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段 理解问题是解题思维活动的开始 第二阶段 转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段 计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段 反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。 一、熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有: (一)充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。 (二)全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。(三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命

数学思维训练3

专题5:和倍问题 姓名: 和倍问题 和倍问题是指知道两个数的“和”与“倍”,要求这两个数,是常见的典型应用题。较基本和倍问题基本公式如下: 小数=和÷(倍数+1) 大数=和-小数(或者:大数=小数×倍数) 例1:学校买来两种粉笔共240盒,已知白色粉笔的盒数是彩色粉笔的5倍。两种粉笔各买了多少盒? 练习1: (1)甲,乙两人共存款200元。已知甲存款比乙存款多3倍,甲,乙各存款多 少元? (2)水果店有苹果和梨子共45箱,苹果箱数是梨的2倍。苹果和梨各有多少箱? 例2:甲车间有工人90人,乙车间有工人134人。甲车间调几名工人到乙车间,才能使乙车间人数是甲车间的3倍?

练习2: (1)甲乙两个车间共有480人。从甲车间调出40人,乙车间调进60人。 这时 乙车间人数是甲车间的4倍,甲乙两车间原来各有多少人? (2)甲乙两袋大米共重180千克。从甲袋倒入10千克到乙袋,这时甲袋重量是乙袋的3倍。甲乙两袋原来各有大米多少千克? 例3:象山人民广场有杨树和柳树共330棵,杨树棵树比柳树棵树的2倍少12棵。杨树与柳树各有多少棵? 练习3: (1)小林和小军共有画片49张,小林送给别人4张后,剩下的张数比小军的3 倍还多5张。小林,小军原来各有画片多少张? (2)水果店有苹果和梨共248箱,苹果的箱数比梨的3倍多8箱。苹果有多少箱? 例4:幼儿园有红,黄,蓝三种颜色的球共270个,黄球个数是红球的2倍,蓝球个数是黄球的3倍。三种颜色的球各有多少个? 练习4: (1)水果店有苹果,梨,香蕉共190箱,苹果的筐数比梨多20筐,并且是香蕉

的3倍。那么三种水果各多少箱? (2)学校新买足球,篮球和排球共96个,足球是篮球的2倍,排球比篮球多8个。三种球各多少个? 选做题: 1.学校图书馆买来420本故事书,准备分给1~6年级同学阅读。从一年级 到四年级,每高一年级就多10本,五年级分到的本数是一年级的2 倍,六年级分到的本数是一年级的3倍。六个年级各分到多少本书? 2.甲.乙.丙.丁四个人共做了370个零件。如果把甲做的个数加2,乙做的 个数 减3,丙做的个数乘以2,丁做的个数除以2,四个人做的个数正好相等。 四 个人各做了多少个? 3.甲乙丙三人,甲的年龄是乙的2倍还大3岁,乙的年龄是丙的2倍小2 岁,三 人的年龄之和是109岁。分别求这三人的年龄。

幼儿的思维特点和学习数学的心理特点汇总

幼儿的思维特点和学习数学的心理特点幼儿期思维发展和趋势是从直觉行动思维向具体形象思维发展,抽象逻辑思维尚处于萌芽状态。幼儿学习数学,主要通过四个阶段,即实物操作——语言表达——图像把握——符号把握,从而建立数学的知识结构。幼儿学习数学的心理特点,具体表现为以下几点: 1.幼儿学习数学开始于动作 自从皮亚杰提出“抽象的思维起源于动作”之后,这已经成为幼儿数学教育中广为接受的观点。我们也经常能观察到,幼儿在学习数学时,最初是通过动作进行的。特别是小班的幼儿,在完成某些任务时,经常伴随着外显的动作。比如在“对应排列相关联的物体”活动中,幼儿在放卡片时,总要先和上面一排相对应的卡片碰一下,然后才把它放在下面。这实际上就是一个对应的动作。随着幼儿动作的逐渐内化,他们才能够在头脑中进行这样的对应。幼儿在最初学习数数的时候,也要借助于手的点数动作才能正确地计数。直到他们的计数能力比较熟练,才改变为心中默数。 幼儿表现出的这些外部动作,实际上是其协调事物之间关系的过程。这对于他们理解数学关系是不可或缺的。在幼儿学习某一数学知识的初期阶段,特别需要这种外部的动作。而对于那些表现出抽象思维有困难的幼儿,也需要给予他们充分的动作摆弄的机会。例如,在学习加减运算时,最能帮助幼儿理解加减的数量关系的方法,就是让幼儿进行合并和拿取的操作,让幼儿在实际的动作中理解两个部分如何合为一个整体、整体中拿走一个部分还剩下另外一个部分。而那些不能摆脱实物进行抽象的数字运算的幼儿,正说明他们还需要动作水平上的操作。在这时给予他们摆弄实物的练习,既符合他们的心理需要,也有助于他们的学习。 2.幼儿数学知识的内化要借助于表象的作用() 尽管说表象对于幼儿学习数学不起决定性的作用,但并不是说毫无作用。幼儿对数学知识的理解开始于外部的动作,但是要把它们变成头脑中抽象的数学概念,还有赖于内化的过程,即在头脑中重建事物之间的逻辑关系。表象的作用即在于帮助幼儿完成这一内化的过程。 过去有些不适当的做法把表象的作用无限地夸大,甚至以为幼儿学习数学就是在头脑中形成数学表象的过程,于是通过让幼儿观看实物或图片、教师讲解数

数学高中数学解题思维与思想

《高中数学解题思维与思想》 导读 数学家G . 波利亚在《怎样解题》中说过:数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策 略结合数学教学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性 根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性 提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性 对一个问题从多方面考虑、对一个对象从多种角度观察、对一个题目运用多种不同的解法。 什么”转变,从而培养他们的思维能力。 《思维与思想》的即时性、针对性、实用性,已在教学实践中得到了 全面验证。

一、高中数学解题思维策略 第一讲 数学思维的变通性 一、概念 数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察 心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。 任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。 例如,求和) 1(1431321211+++?+?+?n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1 111113121211+-=+-++-+-n n n 问题很快就解决了。 (2)善于联想

数学问题解决的思维过程

数学问题解决的思维过程 摘要: 数学问题是指不能用现成的数学经验和方法解决的一种情景状态。这里所指的“问题”不是指那些与课本例题同类型的常规习题,而是指那些非常规性的或者条件不充分、结论不确定的开放性、探究性问题。这些问题不能直接套用现成公式获得解决,而要调动所学知识系统,运用一定的思维策略,通过一定的思维过程逐步指向问题目标,使问题在探究中获解。 关键词:缕析问题;求解方案;问题解答;解题过程 数学问题的解决是一个复杂而连续的心理活动过程,其一般思维过程是:缕析问题信息→确定求解方案→实施问题解答→反思解题过程,下面以实例加以分析。 一、缕析问题信息 1.理清数学问题信息。数学问题作为一种有待加工的信息系统,它主要由条件信息、目标信息和运算信息三部分构成。理解和感知数学问题中的信息元素是解决问题的第一步。这一步主要是要求实施者明确问题所提供的条件信息和目标信息。 对数学问题基本信息的感知要做到全面而完整,特别是对那些综合性强、关系复杂的问题,要注意发现问题中的隐性信息,充分挖掘有用的信息,这对问题解决的顺利实施具有重要的意义。例如,在问题“大数和小数的差是80.1,小数的小数点向右移一位,刚好与大数相等。大数和小数各是多少”中,大数和小数之间的倍数关系这一重要条件信息没给出,而隐藏在“小数点向右移”一句话中,需要学生自己去发现。 二、确定求解方案 在第一步理解分析条件信息、目标信息的前提下,在头脑中已初步形成了数学问题的初始状态,及要解决的问题的目标状态。这时,解决者的思维就要进一步深入,提炼数学问题中存在的显性的或隐性的有用信息,链接各信息间的运算信息,选择解题方法,制定合理的求解计划,这是实现问题解决的最关键一步。这一过程由一组复杂的心理活动组成,一般要连续完成以下几方面的任务。 1.类化问题信息。一切数学问题的解决过程总是将未知的新问题不断地转化成已知的问题的过程,这是解决数学问题的基本策略。在这一环节就是把数学问题中呈现的主要信息同解决者原有认知结构中的相关知识和方法连接起来,并以这些已认知的知识和方法作为解决新问题的依据和基础,重新组合演化成解决新问题所需的新策略。 2.寻找解题起点。解决问题的切入点往往有所不同,具有因人而异的相对灵活性。如在解决例1时,学生一般都会想到从求科技书入手,求出前后科技书本数之差即可;另外,学生想到

如何培养数学思维方式

如何培养数学思维方式 在学习中进行发散性思维的训练,不仅要尽可能多掌握解题方法,更重要的是要培养自己灵活多变的解题思维,思维的积极性、求异性、广阔性、联想性等是发散思维的特性。 一、训练自己思维的积极性。 思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维极其重要的基础。例如:在一年级《乘法初步认识》一课中,可先出示几道连加算式改写为乘法算式。而后,出示3+3+3+3+2,思考、讨论能否改写成一道含有乘法的算式呢?如3+3+3+3+2=3×5-1=3×4+2=2×7……费时多,但这样的训练却有效地激发了寻求新方法的积极情绪。在学习中还可经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等教学方法,以激发学生对新知识、新方法的探知思维活动,这有利于激发自己的学习动机和求知欲。 二、转换角度思考,训练思维的求异性。 从认知心理学的角度来看,在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展自己的抽象思维能力,必须十分注意培养思维求异性。例如,四则运算之间是有其内在联系的:减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止地看问题,使所学知识有所升华,又进行了求异性思维训练。我们习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。 三、一题多解、变式引伸,训练思维的广阔性。 思维的广阔性是发散思维的又一特征。反复进行一题多解、一题多变的训练,是帮助克服思维狭窄性的有效办法。可通过讨论,启迪思维,开拓解题思路,在此基础上通过多次训练,既增长了知识,又培养了思维能力。 四、转化思想,训练思维的联想性。 联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,思维可达到一定广度,而通过联想思维的训练,思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。在进行多种解题思路的讨论时,有的解法需要用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在应用题解题中,用转化方法,迁移

初中数学解题思维与思想

《初中数学解题思维与思想》 中数学解题思维与思想》 导 读
数学家 G . 波利亚在《怎样解题》中说过:数学 教学的目的在于培养学生的思维能力,培养良好思维 品质的途径,是进行有效的训练,本策略结合数学教 学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性 根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性 提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性 对一个问题从多方面考虑、 对一个对象从多种角度 观察、对一个题目运用多种不同的解法。 什么”转变,从而培养他们的思维能力。 《思维与思想》的即时性、针对性、实用性,已在 教学实践中得到了全面验证。

二、《解密数学思维的内核》 、《解密数学思维的内核》 解密数学思维的内核 数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至 解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段*(见附录),即弄清 问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八 个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝 试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技 能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段: 反思问题往往容易为人们所忽视, 它是发展数学思维的一个重要方面, 是一个思维活动过程的结束包含另一个新的思维活动过程的开始。 数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索 的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道 或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到 解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、 一般化、整体化、间接化等。 一、 熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时, 要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验 或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从 结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此, 要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的 联系方式上多下功夫。 常用的途径有: )、充分联想回忆基本知识和题型 充分联想回忆基本知识和题型: (一)、充分联想回忆基本知识和题型 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题 相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论, 从而解决现有的问题。 全方位、 (二)、全方位、多角度分析题意 全方位 多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己 的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟 悉的解题方向。 恰当构造辅助元素: (三)恰当构造辅助元素 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或 问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题 目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

小学生思维力的发展与特点

小学生思维力的发展与特点 他们需要具体形象的帮助来理解抽象的字、词。 在数学的计算中,小学生往往需要实物或手指的帮助才能运算。 他们的思维活动在很大程度上,还是和面前的具体事物及生动的记忆表象联系着。 小学生的思维逐渐由具体形象思维过渡到抽象逻辑思维为主要形式。 他们思维发展“过渡的实现是思维发展过程中的质变,是通过新质要素的逐渐积累和旧质要素的不断“消亡及改造而实现的。 实现显著质变的决定因素是小学生的生理成熟、集体生活环境和教育作用的综合效应,而不是简单地由哪一个方面所决定的。 小学生思维发展过渡到以抽象逻辑思维为主要形式,并不是说,他们的思维就不存在具体形象性了。 相反,小学生的思维必须借助事物的具体形象来实现抽象逻辑思维,小学生低年级学生思维中的具体形象性成分占优势,而抽象逻辑思维居次要地位。 随着年级的增高,他们的抽象逻辑思维才逐渐占主导地位。 2 .抽象逻辑思维的自觉性较差小学生不能自觉意识到自己的思维过程,低年级小学生尤其明显。 例如,语文阅读中,默读比朗读困难大,这是因为儿童的内部言语的发育尚未成熟,而内部语言是对思维本身进行分析综合的基本条

件,因此,有经验的教师会有计划地指导学生默读课文和阅读一些课外读物。 对数学应用题的解答,小学生不会说出自己的思考过程,也就是常说的“知其然而不知其所以然,也不习惯于自我检查。 教师在教学过程中,若注意引导学生在解应用题时,说出思考过程,检查一下自己在解题时的思维障碍在哪里,并注意及时准确地检查作业,将有助于学生抽象逻辑思维自觉性的发展。 例如,在数学课学习中,尤其是经过系统的小学奥林匹克数学训练的学生,可以离开具体事物进行抽象思考。 但在自然课上仍停留在较具体的形象水平上。 4 .思维缺乏批判性小学生的思维缺乏批判性,年龄越小的儿童越明显。 他们常常不根据客观情况的变化,盲目按照教师所说的每一句话去做,以教师的言语作为衡量事物对错的唯一标准。 这一方面要求教师的言行要慎重,时刻考虑到如何做有利于小学生身心健康发展;另一方面,也向教师提出了新的课题,如何使学生逐步克服这种盲目性,而多一些批判性和理性思考。 5. 思维还缺乏灵活性小学生的思维还缺乏灵活性,他们不善于考虑条件的变化,而以旧经验解答新问题。 在数学学习中,这种特点表现最明显。 一般说来儿童对熟悉的或学过的题目类型,在内容不变时能顺利

数学思维方法:化零为整巧解题

数学思维方法:化零为整巧解题 生活中的数学无所不在,如何才能更好的训练孩子的数学思维呢?接下来,跟你分享的6个数学思维方法。 我们在平时学习的知识一般都是分层次、分内容的较零散的知识形式,在解答应用题时,就会将我们学习掌握的知识逐个知识点从储存的大脑中调出来分内使用。但是,有些题若按常规方法来解答不太容易,也比较麻烦,这时我们可以将思维方法转换一下,把问题看作一个整体,这样解题效果特别好。这种解决问题的的思维方法叫做集零为整法,或称为整体思维。 例1、有五个数的平均数是7;如把其中一个数改为9后,这五个数的平均数则为8。改动的那个数原来是多少? [解题思路]: 你可能读了题目之后,想知道五个数各是多少,这显然是没有必要的。这道题的解答应该从整体去考虑,改动后的五个数的总和比原来增加: 8×5-7×5=5 那么,什么数“增加5”后变为9呢?这就太简单了,一年级的小朋友都会做。 解:根据分析,列综合算式为: 9-(8×5-7×5)=4

答:改动后的那个数是4。 例2、设有四个数,其中每三个数之和分别为22、20、17、25,求这四个数。 [解题思路]: 此题按常规的解题习惯,须分别设四个未知数,然后列出四个方程,这样就出现了很大的难度,我们小学没学过方程组。如把四个数之和作为整体x,则可列出简易方程求解。 解:设四个数之和为x,则四个数为x-22、x-20、x-17、x-25,由题意可得 (x-22)+(x-20)+(x-17)+(x-25)=x 解得x=28 所以,四个数依次为8、3、6、11。 请你试用集零为整的思维方法解答下面的题: 任意调换五位数12345的各位数上数字的位置,所得五位数中质数的个数有多少个? 数学思维方法(2);;巧在变更豁然开朗某山区农民收获了很多花椒,拿到集贸市场去卖,但销路不好,其原因是包装不吸引人。后来他们重新设计了一种漂亮、新颖的包装,很快就打开了销路。 这个例子说明了由于变更了花椒的包装,使得山区农民获得了可观的经济效益。 解数学题也要这样考虑,把问题进行适当的变更来达到化难为易,化繁为简的目的,从而达到顺利解决问题的目的,这种解决问题

相关文档
相关文档 最新文档