文档库 最新最全的文档下载
当前位置:文档库 › 自己动手计算圆周率 教学设计

自己动手计算圆周率 教学设计

自己动手计算圆周率  教学设计
自己动手计算圆周率  教学设计

自己动手计算圆周率

圆周率的计算历程

圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代又一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面。π的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。

(1)实验时期

通过实验对π 值进行估算,这是计算π 的的第一阶段。这种对π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用π =3这个数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为

3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计园田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。

凭直观推测或实物度量,来计算π 值的实验方法所得到的结果是相当粗略的。

真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于3+(1/7) 而大于3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出π =3.1416,取得了自阿基米德以来的巨大进步。

在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出π =3.14,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率3.1415926 <π < 3.1415927。其二是,得到π 的两个近似分数即:约率为22/7;密率为355/113。他算出的π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。

这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算π 。1593年,韦达给出这一不寻常的公式是π的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出π值。接着有多种表达式出现。1706年,梅钦建立了一个重要的公式,现以他的名字命名,再利用分析中的级数展开,他算到小数后100位。这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个。19世纪以后,类似的公式不断涌现,π的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将π算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚忍不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶:π的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以至于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的π值。又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在π的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把π计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。人们对这些在地球的各个角落里做出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡

献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗?1948

年1月弗格森和伦奇两人共同发表有808位正确小数的π。这是人工计算π的最高记录。

(4)计算机时期

1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。

1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。

自己动手计算圆周率

(1)课程目的

1、理解并掌握蒙特卡罗模拟的基本原理;

2、运用蒙特卡洛思想解决实际问题;

3、分析总结蒙特卡洛解决问题的优缺点。

(2)计算原理

用蒙特卡洛思想计算π的值分为如下几部:

第一步构建几何原理:构建单位圆外切正方形的几何图形。单位圆的面积为S0=π,正方形的面积S1=4;

第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。分别生产均匀随机数(x,y)二维坐标。X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。

第三步打把结构处理:根据S0/S1=M/N计算出π的值。因此π=4*M/N。

第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百万个计数。

(3)代码内容

1、用matlab编写的实验代码,总计数率为1000。

zfx_x=[1,-1,-1,1,1];

zfx_y=[1,1,-1,-1,1];

plot(zfx_x,zfx_y)

axis([-3 3 -3 3]);

hold on;

r=1; theta=0:pi/100:2*pi;

x=r*cos(theta); y=r*sin(theta);

rho=r*sin(theta);

figure(1)

plot(x,y,'-')

N=1000;

mcnp_x=zeros(1,N);

mcnp_y=zeros(1,N);

M=0;

for i=1:N

x=2*(rand(1,1)-0.5);

y=2*(rand(1,1)-0.5);

if((x^2+y^2)<1)

M=M+1;

mcnp_x(i)=x;

mcnp_y(i)=y;

end

end

plot(mcnp_x,mcnp_y,'.')

PI1=4*M/N;

2、用matlab绘制的图形

(4)实验结果

1.当模拟总计数为1000时,某次计算结果:

PI=3.128。

2.改变实验总数绘制PI的收敛特性:

(5)实验总结

模拟总计数率越低时,模拟出的π值的误差就越大,随着模拟总计数的增加,模拟值值逐渐趋近于π真实值。蒙卡模拟的方法是收敛。并且模拟的方法比较简单,可以把复杂的计算转换为简单的模拟计算;但是蒙卡模拟的收敛速度比较慢。

关于圆周率的计算

关于圆周率的计算 祖冲之在数学方面的突出贡献是关于圆周率的计算,确定了相当精确的圆周率值。中国古代最初采用的圆周率是“周三径一”,也就是说,π=3。这个数值与当时文化发达的其他国家所用的圆周率相同。但这个数值非常粗疏,用它计算会造成很大的误差。随着生产和科学的发展,π=3 就越来越不能满足精确计算的要求。因此,中外数学家都开始探索圆周率的算法和推求比较精确的圆周率值。在中国,据公元一世纪初制造的新莽嘉量斛(亦称律嘉量斛,王莽铜斛,是一种圆柱形标准量器,现存)推算,它所取的圆周率是3.1547 。二世纪初,东汉天文学家张衡在《灵宪》中取用π=≈3.1466,又在球体积计算中取用π≈3.1622。三国时东吴天文学家王蕃在浑仪论说中取用π≈3.1556。以上这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中π= 10还是世界上最早的记录。但这些数值大多是经验结果,并没有可靠的理论依据。 在这方面最先取得突破性进展的是魏晋之际的数学家刘徽,他在《九章算术注》中创立了“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法。他所得到的圆周率值π=3.14 与π==3.1416,都很精确,在当时世界上是很先进的,至今仍在经常使用。继刘徽之后,祖冲之则将圆周率推算到更加精确的程度。据《隋书·律历志》记载,祖冲之确定了π的不足近似值 3.1415926 和过剩近似值 3.1415927,π的真值在这两个近似值之间,即 3.1415926<π<3.1415927 精确到小数 7 位。这是当时世界上最先进的数学成果,直到约一千年后,才为 15 世纪中亚数学家阿尔·卡西(Al—? kash1)和16世纪法国数学家韦达(F.Vièta,1540—1603)所超过。 关于他得到这两个数值的方法,史无明载,一般认为是基于刘徽割圆术。通过现代计算验证,如果按照割圆术计算,要得到小数 7 位准确的圆周率值,必须求出圆内接正12288 边形的边长和 24576边形的面积,这样,就要对9位数进行上百次加减乘除和开方运算,还要选择适当的有效数字,保证准确的误差范围。对于用算筹计算的古代数学家来说,这绝不是一件轻而易举的事情,只有掌握纯熟的理论和技巧,并具备踏踏实实和一丝不苟的研究精神,才能取得这样的杰出成就。祖冲之的这项记录在中国也保持了一千多年。 中国古代数学家和天文学家还往往用分数表示常量的近似值。为此,祖冲之确定了π的两个分数形式的近似值:约率π=22/7≈3.14 ,密率π=355/113 ≈3.1415929。这两个数值都是π的渐近分数。刘宋天文学家何承天及古希腊阿基米德等都已用到过。密率355/113 是π的分母小于10000的最佳近似分数,则为祖冲之首创。关于密率355/113是如何得到的,今人有“调日法”术,连分数法,解同余式或不定方程,割圆术等种种推测,迄今尚无定论。在欧洲,π= 355/113 是16世纪由德国数学家奥托(V.Otto,1550(?)—1605)和荷兰工程师安托尼兹(A.Anthonisz,1527—1607)分别得到,后通称“安托尼兹率”,但这已是祖冲之以后一千多年的事情了。自从我国古代灿烂的科学文化逐渐得到世界公认以来,一些学者就建议把π= 355 称为“祖率”,以纪念祖冲之的杰出贡献。 关于球的体积公式及其证明: 祖冲之的另一项重要数学成就是关于球的体积公式及其证明。各种几何体的体积计算是古代几何学中的基本内容。《九章算术》商功章已经正确地解决了

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

常用数学公式

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

穿越时间隧道,体会圆周率的文化价值

教材分析: 这是人教版义务教育课程标准实验教科书《小学数学》六年级上册第四章第62和63页的内容。 圆周率是最古老的数学知识之一,至少在四千多年前人类已经掌握圆周率的数值,而这四千年来人类也从没间断过对圆周率的研究。所以,圆周率具有很高的文化价值。让学生了解圆周率的历史后,能欣赏和赞叹古人的数学智慧和毅力,及发现到圆周率的奇妙之处。 从教材的角度看,一般包括以下几个方面的内容: 从学生的角度看,学生对圆周长并不是一无所知,学生从直观中可以感知圆周长与直径(半径)有关系。通过调查,有78%的学生愿意通过测量与计算来揭示这种关系;近60%的学生还知道圆周长的计算公式,并会计算;有一部分学生知道 3.14,但是不知道圆周率,有的学生知道,但是不知道它的确定含义。 从教学的角度看,一般地把一堂课分两段,前段学公式,后段学计算。由于计算的内容仅限于求周长,学生不是灵活运用公式解决实际问题,对圆周率的理解也是十分肤浅,对其中的思想教育更是强加硬塞。为了解决这些问题,本设计把计算部分的内容移至下一课时。 教学目标: 通过动手操作探索圆的周长和直径的倍数关系,并会用式子表示,理解圆周率的意义;了解圆周率的历史,体会它的文化价值。 教学过程: 一、认识圆的周长,动手操作感知圆越大它的周长也越长。 学生拿出三个大小不同的圆形物体,认识圆的周长(绕圆一周的长度就是圆的周长),动手把圆的周长化曲为直(如图),并初步感知圆越大它的周长也越长。 引导学生提出问题:圆的周长与什么有关联? 二、认识正方形和内切圆、圆和内接正六边形的关系,猜测圆周率的值。

1.用课件动画展示正方形内切圆(正方形内切圆,如图),引导学生讨论正方形与圆形的关系:直径等于边长,圆的周长小于正方形的周长,根据C=4a推出圆的周长小于4d。 2.用课件展示一个正三角形变形正六边形,引导学生得出六边形的周长是正三角形边长的6倍;再动画正六边形的外接圆(如图),找出圆的直径,引导学生得出圆的周长大于正六边形的周长,并推出圆的周长大于3d。 3.把正方形和内切圆、圆和内接正六边形合并成一个图形(如图),用课件演示使其变大或变小。 发现圆的周长总是小于4d而大于3d,如果C=()d,猜一猜当是1、2、3、4、位小数时括号里能填几。 三、动手测量,理解圆的周长、直径和圆周率三者之间的关系,并能用式子表示。 1.返回到上述的第一部分,动手测量直径与周长的关系,引导学生得出每个圆的周长都比直径的3倍多一些,多出来的线段长度随直径的长度变化而变化。告诉学生:把多出的部分与直径比较,其结果也是固定的,所以说圆的周长和它的直径的比值是一个固定的数,这个事实至少在4000年前人类就已经知道了,还取名叫做圆周率。1706年,英国人琼斯首次创用代表圆周率,但他的符号并未立刻被采用,以后经过欧拉提倡,才渐渐推广开来。 2.圆的周长C,直径d,圆周率p,让学生用字母表示圆的周长、直径和圆周率三者之间的关系,得出:Cd=,C=d,C=d。 四、穿越时间隧道,运用课件介绍圆周率的历史。 1.测量时代。在上古时期,人们都是为生活而作计算,他们的发现多源自经验所得,对圆周率的兴趣只在于它在建筑及工程上的应用,最多只是想找出圆周率的值是多少,如我们中国人就说径一而周三。同学们在课堂上所进行学习活动,就相当于这个时期的人类活动。 2.推理时代。到了约公元前四世纪,人类才转往追问如何找出圆周率的值,开始为圆周

圆的认识与圆周率-教案

- - 圆的认识与圆周率 典题探究 例1.所有的直径都相等,所有的半径都相等..(判断对错) 例2.圆的周长是它半径的3.14倍.(判断对错) 例3.直径就是两端都在圆上的线段..(判断对错,并改正) 例4.在一个圆中,圆的直径是半径的2倍,那么半径的条数就是直径条数的2倍..(判断对错,并改正) 例5.把一个圆平均分成16份,再拼成一个平行四边形(如图),这个平行四边形的周长是41.4厘米,这个圆的面积是平方厘米. 演练方阵 A档(巩固专练) 一.选择题(共15小题) 1.(?江阴市)世界上第一个把圆周率的值精确到六位小数的人是() A.X衡B.华罗庚C.祖冲之D.X徽 2.(?XX)一个圆内,最长的线段是() A.半径B.直径C.周长 3.(?宝应县)圆的周长总是直径的()倍. A.3 B.3.14 C.π 4.(?高县)世界上最早精确计算圆周率的人是我国数学家(),远在1500多年前,他就算出圆周率在3.1415926和3.1415927之间,他因此被称作“圆周率之父”,西方人在1000多年以后才获得这样精确的值. A.X徽B.杨辉C.祖冲之 5.(?新洲区)世界上第一个把圆周率的值计算精确到六位小数的人是() A.华罗庚B.X衡C.祖冲之D.陶行知 6.(?南明区)π()3.14. A.大于B.小于C.等于 7.(?文成县)圆周率() A.大于3.14 B.等于3.14 C.小于3.14 - zj.

8.(?津南区)一个圆的周长与直径的比值为() A.无限不循环小数B.无限循环小数C.有限小数D.整数 9.(?临澧县)在一个长9厘米,宽8厘米的长方形内画一个最大的圆,这个圆的直径是()厘米. A.4 B.8 C.9 10.(?泸县模拟)圆周率π()3.14. A.大于B.等于C.小于 11.(?建湖县)在一个长6厘米、宽4厘米的长方形内画一个最大的圆,圆的半径应是()厘米. A.6 B.4 C.2 12.(?赣县模拟)圆周率π是一个() A.有限小数B.循环小数C.无限不循环小数 13.(?XX)最早精确计算出圆周率的是我国古代数学家() A.X薇B.祖冲之C.秦九昭 14.(?合水县)决定圆面积大小的是() A.圆心B.半径C.圆周率 15.(?云阳县一模)圆内最长的线段有()条. A.1 B.4 C.无数 二.填空题(共13小题) 16.圆周率的值是_________,它表示_________与_________的比. 17.圆的位置由_________决定;圆的半径决定圆的_________. 18.通过一个圆的圆心的线段,一定是这个圆的直径._________. 19._________决定扇形的位置,_________和_________决定扇形的大小.20.圆是封闭的曲线图形._________(判断对错) 21.如图,大圆与小圆的半径和是45cm,小圆半径是_________cm.

圆周率计算表(π取3.14)

3.14× 1=3.14 3.14× 2=6.28 3.14 × 3=9.42 3.14 × 4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×10=31.4 3.14×11=3 4.54 3.14×12=37.68 3.14×13=40.82 3.14×14=43.96 3.14×15=47.1 3.14×16=50.24 3.14×17=53.38 3.14×18=56.52 3.14×19=59.66 3.14×20=62.8 3.14×21=6 5.94 3.14×22=69.08 3.14×23=72.22 3.14×24=75.36 3.14×25=78.5 3.14×26=81.64 3.14×27=8 4.78 3.14×28=87.92 3.14×29=91.06 3.14×30=9 4.2 3.14×31=97.34 3.14×32=100.48 3.14×33=103.62 3.14×34=106.76 3.14×35=109.9 3.14×36=113.04 3.14×37=116.18 3.14×38=119.32 3.14×39=122.46 3.14×40=125.6 3.14×41=128.74 3.14×42=131.88 3.14×43=135.02 3.14×44=138.16 3.14×45=141.3 3.14×46=14 4.44 3.14×47=147.58 3.14×48=150.72 3.14×49=153.86 3.14×50=157 3.14×51=160.14 3.14×52=163.28 3.14×53=166.42 3.14×54=169.56 3.14×55=172.7 3.14×56=175.84 3.14×57=178.98 3.14×58=182.12 3.14×59=185.26 3.14×60=188.4 3.14×61=191.54 3.14×62=19 4.68 3.14×63=197.82 3.14×64=200.96 3.14×65=20 4.1 3.14×66=207.24 3.14×67=210.38 3.14×68=213.52 3.14×69=216.66 3.14×70=219.8 3.14×71=222.94 3.14×72=226.08 3.14×73=229.22 3.14×74=232.36 3.14×75=235.5 3.14×76=238.64 3.14×77=241.78 3.14×78=24 4.92 3.14×79=248.06 3.14×80=251.2 3.14×81=25 4.34 3.14×82=257.48 3.14×83=260.62 3.14×84=263.76 3.14×85=266.9 3.14×86=270.04 3.14×87=273.18 3.14×88=276.32 3.14×89=279.46 3.14×90=282.6 3.14×91=285.74 3.14×92=288.88 3.14×93=292.02 3.14×94=295.16 3.14×95=298.3 3.14×96=301.44 3.14×97=30 4.58 3.14×98=307.72 3.14×99=310.86 3.14×100=314

认识圆周率的教学设计

穿越时间隧道,体会圆周率的文化价值 ――认识圆周率的教学设计 教材分析: 这是人教版义务教育课程标准实验教科书《小学数学》六年级上册第四章第62和63页的内容。 圆周率是最古老的数学知识之一,至少在四千多年前人类已经掌握圆周率的数值,而这四千年来人类也从没间断过对圆周率的研究。所以,圆周率具有很高的文化价值。让学生了解圆周率的历史后,能欣赏和赞叹古人的数学智慧和毅力,及发现到圆周率的奇妙之处。 从教材的角度看,一般包括以下几个方面的内容: 从学生的角度看,学生对圆周长并不是一无所知,学生从直观中可以感知圆周长与直径(半径)有关系。通过调查,有78%的学生愿意通过测量与计算来揭示这种关系;近60%的学生还知道圆周长的计算公式,并会计算;有一部分学生知道3.14,但是不知道圆周率,有的学生知道“π”,但是不知道它的确定含义。

从教学的角度看,一般地把一堂课分两段,前段学公式,后段学计算。由于计算的内容仅限于求周长,学生不是灵活运用公式解决实际问题,对圆周率的理解也是十分肤浅,对其中的思想教育更是强加硬塞。为了解决这些问题,本设计把计算部分的内容移至下一课时。 教学目标: 通过动手操作探索圆的周长和直径的倍数关系,并会用式子表示,理解圆周率的意义;了解圆周率的历史,体会它的文化价值。 教学过程: 一、认识圆的周长,动手操作感知圆越大它的周长也越长。 学生拿出三个大小不同的圆形物体,认识圆的周长(绕圆一周的长度就是圆的周长),动手把圆的周长化曲为直(如图),并初步感知圆越大它的周长也越长。 引导学生提出问题:圆的周长与什么有关联? 二、认识正方形和内切圆、圆和内接正六边形的关系,猜测圆周率的值。

十秒速记圆周率小数点后30位

十秒速记圆周率小数点后30位 商店要死要活就要遛 3.1415926 我傻我吧就去救 5358979 傻儿傻爸死脑儿 3238462 老师算算不傻啊 6433832 吃酒! 79 关于圆周率的计算历史 圆周率(π)是一个常数(约等于3.1415926),是代表圆周长和直径的比值。它是一个无理数,即是一个无限不循环小数。 中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。 第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.14)。 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

数学实验:怎样计算圆周率

怎样计算 姓名: 学号 班级:数学与应用数学4班

实验报告 实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。 实验环境:Mathematica软件 实验基本理论和方法: 方法一:数值积分法(单位圆的面积是,只要计算出单位圆的面积也就计算出了的值) 其具体内容是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G是一个扇形, 由曲线()及坐标轴围成,它的面积是,算出了S的近似值,它的4倍就是的近似值。而怎样计算扇形G的面积S的近似值呢?如图

图一 扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。每部分是一个曲边梯形:它的左方、右方的边界是相互平行的直线段,类似于梯形的两底;上方边界是一段曲线,因此称为曲边梯形。如果n很大,每个曲边梯形的上边界可以近似的看成直线段,从而将近似的看成一个梯形来计算它的面积;梯形的高(也就是它的宽度)h=1/n,两条底边的长分别是和,于是这个梯形面积可以作为曲边梯形面积的近似值。所有这些梯形面积的和T就可以作为扇形面积S的近似值: n越大,计算出来的梯形面积之和T就越接近扇形面积S,而4T就越接近的准确值。 方法二:泰勒级数法 其具体内容是:利用反正切函数的泰勒级数 计算。 方法三:蒙特卡罗法

其具体内容是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。而求扇形面积在正方形面积中所占的比例k的值,方法是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,看其中有多少个点落在扇形内。将落在扇形内的点的个数m与所投的点的总数n的比可以作为k的近似值。能够产生在区间[0,1]内均匀分布的随机数,在Mathematica中语句是 Random[ ] 产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。P落在扇形内的充分必要条件是。这样利用随机数来解决数学问题的方法叫蒙特卡罗法。 实验内容、步骤及其结果分析: 问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的的近似值。 分析:图一中的扇形面积S实际上就是定积分。 与有关的定积分很多,比如的定积分

圆的认识与圆周率-答案

- - 圆的认识与圆周率答案 典题探究 例1.所有的直径都相等,所有的半径都相等.×.(判断对错) 考点:圆的认识与圆周率. 专题:平面图形的认识与计算. 分析:根据“在同圆或等圆中,圆的半径都相等,直径也都相等”进行判断即可. 解答:解:所有的直径都相等,所有的半径都相等,说法错误,前提是:在同圆或等圆中; 故答案为:×. 点评:此题考查了圆的特征,应明确:在同圆或等圆中,圆的半径都相等,直径也都相等.例2.圆的周长是它半径的3.14倍×.(判断对错) 考点:圆的认识与圆周率. 专题:平面图形的认识与计算. 分析:根据”圆的周长=2πr”可知:圆的周长÷r=2π;可知:圆的周长是它半径的2π倍;由此判断即可. 解答:解:圆的周长是它半径的2π倍; 故答案为:× 点评:解答此题应根据圆的半径、圆周率和圆的周长三者之间的关系. 例3.直径就是两端都在圆上的线段.×.(判断对错,并改正) 考点:圆的认识与圆周率. 专题:平面图形的认识与计算. 分析:根据直径的定义可知,通过圆心并且两端都在圆上的线段叫做直径. 解答:解:直径就是两端都在圆上的线段,说法错误. 故答案为:×. 点评:熟练掌握直径的含义是解答此题的关键. 例4.在一个圆中,圆的直径是半径的2倍,那么半径的条数就是直径条数的2倍.错误. 考点:圆的认识与圆周率. 专题:平面图形的认识与计算. 分析:由直径和半径的含义:直径是通过圆心并且两端都在圆上的线段;半径是连接圆心和圆上任意一点的线段;可知:在一个圆里,有无数条直径,有无数条半径;据此判断即可. 解答:解:从定义上看:在一个圆里,有无数条直径,有无数条半径; 所以,半径的条数就是直径条数的2倍,说法错误; 故答案为:错误. 点评:此题考查在一个圆中直径和半径的数量,都有无数条. - zj.

圆周率200位记忆口诀

圆周率的来源和2000位 “圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历 来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法一一“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证, 从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,

做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072 边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率”22/7 ,另一个 是“密率” 355/113 ,其中355/113 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 答应了大宝,教她点东西,才知道自己才疏学浅,不知道教她什么。偶尔看到巧计圆周率,就截图下来和她一起背,呵呵还真的有效,花三

PI点认识与总结

PI点的认识与总结 目前我公司产品64路及以上高路数产品均出现PI点较严重问题,严重影响了公司的产品质量,就目前我所了解的PI点问题做如下总结: 一,PI点表现 在目检台上观察,主要表现为PI污点,小的污点表现为白色亮点,要仔细观察才可发现,而一般比较大的(我们所说的污点)在目检台上亦清晰可见,可以看到玻璃里面有黑色的污物。 而我们通常所说的PI点一般是指在点亮状态下,在负图背光下清晰可见的白点,亮点,大小一般为零点几个毫米。形状不具规则性,可成单独点状,亦可成群状分布。而一般要考察其原因需在高倍显微镜下观察其具体表现而定。就目前我所接触到的PI点,到显微镜下观察,均为污点引起的PI点表现。 二,PI点成因 1,前工序污点或HC,PI印刷不良引起 A:HC(PI)预清洗 黄房经过2次清洗的玻璃,在经过HC预清洗时若没有将表面的污物清洗干净,而留在玻璃表面,在印刷HC时,必定影响HC的印刷性能,引起印刷不良,同时污点被AT-902覆盖,最终表现为PI点。 B:HC(PI)房 在印刷HC(PI)时,若本身HC(PI)印版或者印刷机本身(如钢轮),未清洗干净,有赃物残留,最终转移到产品玻璃表面,同时引起印刷效果不良;或者本身HC(PI)印版凸粒有所欠缺,导致局部区域印刷不良,如有点状的不均,表现为印刷后HC(PI)表面有点状缺陷,最终表现为PI点。再次若PI印刷机涂胶轮老化掉粉,污点留在HC(PI)表面,也会造成PI点 环境因素:HC(PI)房,若环境太差,在印刷,或者存放过程中有污物掉到其表面,可造成较严重PI点。 同时还有很多人为的因素所造成,如在员工操作过程中,例如取放玻璃,搬动玻璃时,玻璃与玻璃有所碰撞,如有将HC(PI)表面刮花,导致光在该区域通过率有所变化,或者导致该区域液晶排列异常(PI),最终也表现为PI点。 C:HC(PI)预烘 无论是使用IR炉,亦或是普通固化烘炉,在HC(PI)固化过程中,如果烘炉本身不够清洁,如炉的四壁,烘炉中的颗粒掉到HC(PI)表面,在此过程中则造成PI污点。再者在烘炉固化的过程中,如果风的来源本身就不是很干净,则势必会污染HC(PI)表面,而无

圆周率计算公式

圆周率计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

圆周率计算公式

12π=3.14 22π=12.56 32π=28.26 42π=50.24 52π=78.5 62π=113.04 72π=153.86 82π=200.96 92π=254.34 102π=314 112π=379.94 122π=452.16 132π=530.66 142π=615.44 152π=706.5 162π=803.84 172π=907.46 182π=1017.36 192π=1133.54 202π=1256 212π=1384.74 222π=1519.76 232π=1661.06 242π=1808.64 252π=1962.5 262π=2122.64 272π=2289.06 282π=2416.76 292π=2640.74 302π=2826 312π=3017.54 322π=3215.36 332π=3419.46 342π=3629.84 352π=3846.5 362π=4069.44 372π=4298.66 382π=4534.16 392π=4775.94 402π=5024 412π=5278.34 422π=5538.96

432π=5805.86 442π=6079.04 452π=6358.5 462π=6644.24 472π=6936.26 482π=7234.56 492π=7593.14 502π=7850 512π=8167.14 522π=8490.56 532π=8820.26 542π=9456.24 552π=9498.5 562π=9847.04 572π=10201.86 582π=10562.96 592π=10930.34 602π=11304 612π=11683.94 622π=12070.16 632π=12462.66 642π=12861.44 652π=13266.5 662π=13677.84 672π=14095.46 682π=14519.36 692π=14949.54 702π=15386 712π=15828.74 722π=16277.76 732π=16733.06 742π=17194.64 752π=17662.5 762π=18136.64 772π=18617.06 782π=19103.76 792π=19596.74 802π=200.96 812π=20601.54 822π=21113.36 832π=21631.46 842π=22155.84 852π=22686.5 862π=23223.44

圆周率的故事

圆周率的故事 标签: 圆周率 圆,是人类最早认识的一种曲线,也是用途最广的一种曲线。还在遥远的古代,火红的太阳、皎洁的月亮、清晨的露珠,以及动物的眼睛,水面的波纹,都给人以圆的启示。现代,从滚动的车轮到日常用品,从旋转的机器到航天飞船,到处都有圆的身影。人们的生活与圆早已结下了不解之缘。圆,以它无比美丽的身影带给人们无限美好的遐想。圆满、团圆,这些美妙的词语寄托了人们多少美好和幸福的憧憬! 圆周率是圆的灵魂,是圆的化身,可是这位仙子,却迟迟不肯揭开她那神秘的面纱。 人们对圆周率的认识经历了漫长的历史岁月,许多数学家为此献出了毕生的精力。现在,就让我们穿过时间隧道,与这些伟大的数学家作一次亲密接触吧! 早在三千多年以前的周朝,我们的祖先就从实践中认识到圆的周长大约是直径的3倍,所以在距今2000多年前的西汉初年,在我国最古老的数学著作《周髀算经》里就有了“周三径一”的记载。 随着生产的发展和文明的进步,对圆周率精确度的要求越来越高。西汉末年,数学家刘歆提出把圆周率定为3.1547。到了东汉,张衡——就是那位发明候风地动仪的天文学家,建议把圆周率定为3.1622。但是,这两种建议都因为缺乏科学依据而很少有人采用。一直到了公元263年,三国时期魏国的刘徽创立了割圆术,才使圆周率的计算走上了科学的道路。 什么是割圆术呢?原来,刘徽在整理我国古老的数学著作《九章算术》时发现,所谓的“周三径一”,实质上是把圆的内接正6边形的周长作为圆的周长的结果。于是他想到:如果用圆的内接正12边形、24边形、48边形、96边形……的周长作为圆的周长,岂不是更加精确。这就是割圆术。用他自己的话说就是:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”但是,因为计算过程随着边数的增加越来越复杂,限于当时的条件,刘徽只计算到圆的内接正96边形,使圆周率精确到两位小数,得到3.14。后来,刘徽又算到圆的内接正3072边形,使圆周率精确到四位小数,得到3.1416。还记得,我们那一代人上小学的时候,圆周率用的就是这个值。 又过了大约200年,到了南北朝的时候,我国出了一位大数学家,也是天文历算学家祖冲之。祖冲之于公元429年4月20日出生于范阳郡遒县(现在的河北省涞水县)。他小时候没上过什么学,也没得到过什么名师指点,但是他自学非常刻苦,尤其是对天文、数学有着浓厚的兴趣。他广泛搜集认真阅读了前人有关天文、数学的许多著作,却从来不盲目接受,总要亲自进行测量和推算。公元460年,他采用刘徽的割圆术,一直算到圆的内接12288边形,推算出圆周率应该在3.1415926到3.1415927之间。同时,他还提出用两个分数作为圆周率的近似值,一个是22/7,叫“疏率” ,约等于3.142857;另一个是355/113,叫“密率”,约等于3.1415929。祖冲之对圆周率的计算,开创了一项世界纪录,比欧洲早了一千多年。国际上为了纪念这位伟大的中国数学家,把3.1415926称为“祖率”,并把月球上的一座环形山命名为“祖冲之山”。这是我们中华民族的骄傲。

圆周率π的计算方法

圆周率π的计算方法 圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen 用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。 1、 Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 用马青公式计算Pi至小数点后100位程序 program Pi_Value; {$APPTYPE CONSOLE} //将Pi计算精确小数点后100位 //Machin公式

//Pi=16arctan(1/5)-4arctan(1/239) uses SysUtils; const N=100; S=2*N+50; aNum=5; bNum=239; type Num=array [1..S] of byte; //初始化数组 procedure AZero(var arr:Num); var i:smallint; begin for i:=1 to S do arr:=0; end; //除法 procedure Division(var arr:Num;const b:smallint); var c,y,i:smallint; begin c:=0; for i:=1 to S do begin y:=arr+c*10; c:=y mod b; arr:=y div b; end; end; //加法 procedure Addition(var arr:Num;const b:Num); var i,y,c:smallint; begin c:=0; for i:=S downto 1 do

有关于π的奇妙数学知识

有关于π的奇妙数学知识 ——数学系数学生丙寅 读初中时,数学是不是经常让人头疼?那时候学会一首“古诗”,至今没忘:山巅一寺一壶酒(3.14159),尔乐苦煞吾(26535),把酒吃(897),酒杀尔(932),杀不死(384),乐而乐(626)。现在,圆周率π小数点后你还能记得几位? π最早发源于希腊词汇περιφρεια(peripheria),即边缘,边界之意。尽管四大古文明中早有它的身影,π真正作为一个通用常数被定义仍然要回溯到17世纪。可确证的史料中,π第一次出现是在威廉奥特瑞德1631年的著作《数学之钥》里。紧接着,威廉琼斯在他编写的数学教材《新数学导论》(1706年)中同样提到了这个常数。1748年,数学家欧拉通过在他的著作《无穷小分析引论》中定义并使用π,才真正将它带进了数学界的认识中。可能是因为定义简单以及在数学公式中随处可见,π在流行文化中的出现频率及地位远远高于其他数学常数。 π是无理数,无法用分数表示。但它有许多种近似。最常见的是十进位的无限不循环小数:3.14159265…,以及用分数表示的22/7、333/106、355/113、52163/16604...。在60进制的系统中,π还可以被表示成3+8/60+30/60^2+...。莱布尼茨则用数列求和的方法表示圆周率: π/4=1-1/3+2/5–1/7+1/9–1/11+… 苏格兰数学家詹姆斯·格雷果里将这个近似表示成另一种形式,即我们熟知的,arctan的泰勒级数展开。 除了这些本身的数学特征外,π在很多实际问题中,也经常出现。 1、π决定了曲流河的蜿蜒程度 一条平原上的河流,它的曲折程度——也就是河道的总长度除以源头到入海口的直线距离——随着时间推移会趋向于π。这是π在现实中最惊人的应用之一。1996年数学家Hans-Henrik Stolum在《科学》上发表论文证明了这一点。现实中没有那么理想的河流,平原河的这个数值更可能比π稍微低一点儿。不过这也没那么神秘,想象一下一条由许多圆弧交替拼接组成的河流,就能直觉上理解为何这个数值是π了。 2、π里包含了所有可能的数字组合吗?答案是“不知道,大概吧” 这个观点至今还没有被证明。因为π是无理数,所以有可能包含了所有的数字组合。但不是任何无理数都会包含所有可能的数字组合,举个简单的例子:0.909009000900009.......一直这样下去,这个数也是无理数,但它只有9和0的数字组合。

相关文档