文档库 最新最全的文档下载
当前位置:文档库 › 泊松流条件

泊松流条件

泊松流条件

泊松流条件:

1、在不相重叠的时间区间内顾客到达数是相互独立的,称这性质为无后效性。

2、对于一个充分小的时间段,一个顾客到达的概率与时间无关,而与该时间段的长度成正比。

3、对于一个充分小的时间段,两个或两个以上的顾客到达的概率可以忽略。 因此n 个顾客从开始到经过t 达到的概率服从泊松分布,即:

,2,1,!

)(=?=-n e n t P t n

n λλ 顾客相继到达的时间间隔必须服从指数分布:

0,)(>=-t e t f t λλ

泊松分布

概率论大作业 --泊松分布 班级:11011001班 姓名:郭敏 学号:2010302612 2013年1月10日

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 泊松分布在现实生活中应用非常广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。在某些函数关系泊松分布起着一种重要作用,例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质以及基本相关知识, 并讨论了这些知识在实际生活中的重要作用。 关键词:泊松分布性质及其应用、二项分布、泊松过程

近数十年来,泊松分布日益显示其重要性,成了了解概率论中最重要的几个分布之一。 一、泊松分布的由来 在历史上泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入。 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。又设0>=λn np 是常数, 则{}λλ-∞ →= =e k k x P k n n ! lim 。 证明 由λ=n np 得: {}()()n n k n k k n k n n n k n n k n n k k n n n k x P ?--??? ??-??????? ??? ??--????? ??-???? ? ?-?= ? ? ? ??-??? ??+--==λλλλ11121111!1!11 显然,当k = 0 时,故λ -n e k} x P{→=。当k ≥1 且k → ∞时,有 λλ-?-→? ? ? ??-→??? ??--????? ??-???? ??-?e n n k n n n n k n 1,11121111 从而{}λ λ-→ =e k k x P k n 1 ,故{}λλ-∞ →= =e k k x P k n n ! lim 。 在应用中,当p 相当小时(一般当p<=0.1)时,用下面近似公式 np k e k np p n k b -≈! )(),;( 对于不同λ值得泊松分布图:

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

泊松过程

第二讲 泊松过程 1.随机过程和有限维分布族 现实世界中的随机过程例子: 液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数; 到某个时刻服务器到达的数据流数量,等。 特征:都涉及无限多个随机变量,且依赖于时间。 定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族 }),({T t t X ∈为随机过程。 注 一个随机过程是就是一个二元函数E T t X →?Ωω:),(。固定ω,即考虑某个事件相 应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。映射的值域空间E 称为状态空间。 例 随机游动(离散时间,离散状态) 质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。 如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。 两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01 n n k k S S X ==+ ∑ 习题 计算n ES 和n DS (设00S =)。 提示 利用∑== n k k n X S 1 ,其中k X 是时刻k 的移动方式。 习题 设从原点出发,则()/2()/2()/2 ,2()0, 21n k n k n k n n C q p n k i P S k n k i +-+?+===?+=-?。 例 服务器到达的数据流(连续时间,离散状态) 在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程, 其指标集}{+ ∈=R t T ,状态空间},1,0{ =E 。

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

Poisson过程

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

泊松过程

泊松过程 泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。

泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的 频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理:

泊松过程

作者:BUG生成器 来源:知乎 ·从一个生活的例子中引出泊松过程 愉快的暑假结束了,同学们陆陆续续来到学校。在开学当天的上午,学校教导主任开始站在学校门口计数到达学校的同学的个数,每分钟计数一次(单位时间),可能是开学第一天比较清闲,顺便观察一下同学们的精神面貌。 通常在一个短暂的时间段内,单位时间到达学校的人数的数学期望应该是一致的。这是很容易理解的,毕竟这是一个学生人数众多的学校,在教导主任站在门口的这几个小时内到达学校的人数,相比较学校的总人数是微不足道的,也就是说,这一分钟到达学校人数的期望和下一分钟到达学校的人数的期望是相同的。 同时,对于某一分钟(单位时间),某一个学生在这一分钟到达学校的概率也是相同的,两个同学互不相关,在满足学校到校时间要求的前提下,他们到达学校的时间是自由的。并且假设每个学生在一分钟内到达学校的概率为P。 这个时候就可以定义随机变量了,假设有n个随机变量,它表示

也就是每个学生都有一个独立的状态,可以是1或者是0,这些所有随机变量加起来就是自观察记录以来到达学校的总人数。 可以看出对于一个确定的时刻t,所有随机变量的和——假设是X,它的概率模型就是比较常见的二项分布。 为什么会是二项分布呢,可能用这种所有学生相互独立的描述方法不易直观理解,那么我们可以这样想,在这样一个确定的时刻,依次询问这个学校所有的学生(不管他有没有到校)有没有到校,那么获得“这个学生已经到校”这个信息的概率是p,“这个学生还

没有到校”的概率是1-p。拿出来一个学生询问就好比做了一次实验,这个实验的结果(这个结果是从开始到时刻t的整个过程决定的,注意理解)为1就计数+1,为0就不计数。 那么现在就可以根据二项分布的概率模型写出随机变量X的分布函数

泊松分布的应用

泊松分布的应用

泊松分布的应用 摘要 泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松过程;泊松分布;定义;定理;应用;

一、 计数过程为广义的泊松过程 1.计数过程 设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。 将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤?=,它表示时间间隔 t), t [ 0内出现的质点数。“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)0 (0) N =; (3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1?+?==?+=?+λ其中常数 0>λ,称为过程)(t N 的强度。 (4)对于充分小的Δt (){}()t j t t t N P t t t P j j j ?==?+=?+∑∑∞ =∞=ο2 2 ,),( 亦即对于充分小的t ?,在()t t t ?+,或2个以上质点的概率与出现一个质点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔内出现质点数目的计数。 二、 泊松分布的概念: 泊松分布常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。

泊松过程

一个基本的独立增量过程,用于累积随机事件的发生时间。例如,随着时间的推移累积电话交换机接收的呼叫数量就构成了泊松过程。 法国著名数学家泊松(1781-1840)证明了泊松过程。1943年,C。Pahlm将这一过程应用到电话服务的研究中,后来又应用于α。я。1950年代,辛勤在服务系统研究中进一步发展了它。法国数学家Poisson于1781年6月21日出生于法国卢瓦尔河,于1840年4月25日去世,死于法国苏富比镇。 1798年,他进入巴黎综合科学与工程学院深造。毕业后,他以出色的研究论文被任命为讲师。由p.-s赞赏。拉普拉斯和j.l.拉格朗日。1800年毕业后,他留校任教,1802年成为副教授,并接替了J.-B.-J.傅里叶于1806年担任教授。1808年,他是法国经度局的天文学家,1809年,他是巴黎科学研究所的力学教授。1812年,他当选为巴黎科学院院士。 泊松的科学生涯始于对微分方程的研究及其在摆运动和声学理论中的应用。他的工作特征是运用数学方法研究各种机械和物理问题,并获得数学发现。他为积分理论,行星运动理论,热物理学,弹性理论,电磁理论,势能理论和概率论做出了重要贡献。 对于泊松过程,通常认为每个样本函数都是一个左跳(或右跳)连续

阶跃函数,其跳跃为1。可以证明具有此属性的样本函数的随机连续独立增量过程必须是泊松过程,因此,泊松过程是描述随机事件累积发生时间的基本数学模型之一。凭直觉,只要随机事件在不相交的时间间隔内独立发生并且在足够小的间隔内仅发生一次,则它们的累积时间就是一个泊松过程。这些条件在许多应用中都可以满足。例如,某个系统在时间段[0,t]中的故障数和在真空管加热t秒钟后阴极发射的电子总数可以被认为是泊松过程。 描述随机事件的累积发生时间的过程通常称为计数过程(请参阅点过程)。还可以通过依次跳转的时间{Tn,n≥1}定义简单的局部计数过程{X(t),t≥0},即T0 = 0,Tn = inf {t:X(t)≥n},n≥1,并且当TN

正确理解-泊松分布-通俗解释

正确理解-泊松分布-通俗解释

年由贝尔发明,一台电话由几个部分构成”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一比如在一段个常数(比 如一直是200人),而应该符合某种随机规律: 学生的概率是10%,来180个学生的概率是假如在1个小时内来200个20%'般认为,这种随机规 若要公式化定义,那就是:若 当一个随 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在 只会做题”的阶段,因为试卷上不会出现请发表一下你对泊松公式的看法”这 样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一 样东西,那么我们就有必要停下来去思考一下诸如为什么要有泊松分布?” 泊松分布的物理意义是什么?”这样的哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:电话是 一种机器,两个距离很远的人可以通过它进行交谈”而不会说:电话在1876 律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布, 随机变量X只取非负整数值0,1,2,…,且其概率分布服 从"k!则随机变量X的分布称为泊松分布,记作P(入。)这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (/中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。生活中,当 机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜 F某区域中的白血球等等,以固定的平均瞬时速率入或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地

泊松过程

泊松过程 泊松过程是指一种累计随机事件发生次数的最基本的独立增量过程。例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。泊松过程是由法国著名数学家泊松(1781—1840)证明的。1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。 泊松过程是随机过程的一种,是以事件的发生时间来定义的。我们说一个随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重迭)的区间内所发生的事件的数目是互相独立的随机变量。 在区间[t,t + τ]内发生的事件的数目标机率分布为: 其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。所以,如果给定在时间区间[t,t + τ]之中事件发生的数目,则随机变量N(t + τ) ?N(t)呈现泊松分布,其参数为λτ。 更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得 在一个时间区间或空间区域内的事件数,和另一个互斥(不重迭)的时间区间或空间区域内的事件数,这两个随机变量是独立的。

在每一个时间区间或空间区域内的事件数是一个随机变量,遵循泊松分布。(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变量。) 考虑一个泊松过程,我们将第一个事件到达的时间记为T1。此外,对于n>1,以T n记在第n-1个事件与第n个事件之间用去的时间。序列{T n,n=1,2,...}称为到达间隔时间列。 T n(n=1,2,...)是独立同分布的指数随机变量,具有均值1/λ。 泊松过程用数学语言说,满足下列三条件的随机过程X={X(t),t≥0}叫做泊松过程。 ①P(X(0)=0)=1。 ②不相交区间上增量相互独立,即对一切0≤t1s)的概率分布为泊松分布,即,式中Λ(t)为非降非负函数。 ④若X还满足X(t)-X(s)的分布仅依赖于t-s,则称X为齐次泊松过程;这时Λ(t)=λt,式中常数λ>0称为过程的强度,因为EX(t)=Λ(t)=λt,λ等于单位时间内事件的平均发生次数。非齐次泊松过程可通过时间尺度的变换变为齐次泊松过程。

泊松过程的应用

应用随机过程课程论文 题目:浅谈泊松过程及其应用 姓名: 学院:理学院 学号: 2013年7月1 日

浅谈泊松过程及其应用 摘要: 本文论述了泊松过程的有关定义,并对其进行相应的推广,阐述了时齐泊松过程、非时齐泊松过程、复合泊松过程以及条件泊松过程,从中很容易看出它们之间的联系。同时,本文也在排队论、数控机床可靠性、保险、航空备件需求上简单描述了泊松过程的应用。另外,泊松过程在物理学、地质学、生物学、金融和可靠性理论等领域中也有着广泛的应用。 关键词:泊松过程;复合泊松过程;排队论 一、泊松过程 1.时齐泊松过程 定义:一随机过程{}(),0N t t ≥,若满足如下条件: (1) 它是一个计数过程,且(0)0N =; (2) 它是独立增量过程; (3) 0,0,,()()s t k N s t N s ?≥∈+-是参数为t λ的泊松分布,即 {}()()().! k t t P N t s N t k e k λλ-+-== 则称此随机过程为时齐泊松过程。 2.非时齐泊松过程 定义:一随机过程{}(),0N t t ≥,若满足如下条件: (1) 它是一个计数过程,且(0)0N =; (2) 它是独立增量过程; (3) 0,0,,s t k ?≥∈满足{}()()[()()]()().! k m s m s t m s t m s P N t s N t k e k -++-+-==其中 0()()t m t s ds λ=?,则称此随机过程为具有强度函数为{}(t)>0λ的非时齐泊松过程。 3.复合泊松过程 定义:设{},1i Y i ≥是独立同分布的随机变量序列,{}(),0N t t ≥为泊松过程, 且{}(),0N t t ≥与{},1i Y i ≥独立,记() 1()N t i i X t Y ==∑,则称{}(),0X t t ≥为复合泊松过程。 4.条件泊松过程 定义:设Λ为一正的随机变量,分布函数为(),0G x x ≥,当给定λΛ=的条件下,{}(),0N t t ≥是一个为泊松过程,即0,0,,0s t k λ?≥∈≥, 有{}()()().! k t t P N t s N t k e k λλλ-+-=Λ== 则称{}(),0N t t ≥是条件泊松过程。 注:这里{}(),0N t t ≥不再是增量独立的过程,由全概率公式,可得 {}0()()()().! k t t P N t s N t k e dG k λλλ∞ -+-==?

泊松分布

2.2.19 泊松分布的图形及最值 泊松分布同二项分布一样,首先是单调增加,然后再单调递减.所以,泊松分布P(λ)的最值情况如下: (1)若λ是整数,则泊松分布在X=λ-1和X=λ处概率值最大; (2)若λ不为整数,则存在整数m有λ-1< span="">,此时泊松分布在X=m 处的概率最大. 注,这些最值的推导分析如同二项分布的分析,即通过比值P{X=k}/P{X=k-1}来推导. 2.2.20 服从泊松分布的例子 泊松分布是重要的离散型分布,它在实际中有着广泛的应用.泊松分布的应用重要集中在三个领域. 1.社会生活对某服务的需求.如 (1)电话交换台在一段时间内的呼叫次数; (2)公共汽车站在一段时间内的乘客数; (3)某餐厅在一段时间内等待就餐的顾客数; (4)某售票窗口接待的顾客数; (5)某医院每天前来就诊的病人数; (6)某地区某癌症的发病人数;?? 2.物理学和生物学领域.如 (1)放射性物质的放射粒子落在某区域的质点数; (2)显微镜下某区域中的血球数目; (3)显微镜下某区域中的细菌数目; (4)数字通讯中传输数字时发生误码的个数; (5)一段时间内某放射性物质发射出的粒子数; (6)一段时间内某容器内部的细菌数;?? 3.大量试验中稀有事件出现的次数.

(1)一页中印刷错误出现的次数; (2)大量螺钉中不合格品出现的个数; (3)三胞胎出生的次数; (4)某路口在一段时间内发生事故的次数; (5)某机器在一段时间内出现故障的次数; (6)某城市在一段时间内出现火灾(或地震)的次数; (7)一纺锭在一段时间内发生断头的次数; (8)特大洪水发生的年数;?? 注稀有事件是指在试验中出现的概率很小的事件,也称小概率事件.如,火山爆发、地震、彩票中大奖等等. 2.2.24 泊松分布(3)-例7 例2.2-7 某一城市每天发生火灾的次数X服从参数λ=0.8的泊松分布,求该城市一天内发生3次或3次以上火灾的概率. 解由概率的性质及泊松分布的定义,得 P{X≥3}=1-P{X<3}=1-P{X=0}-P{X=1}-P{X=2} =1-e-0.8(0.800!+0.811!+0.822!) ≈0.0474.■ 2.2.25 泊松分布(4)-例8 例2.2-8 某公司生产一种产品300件,根据历史生产记录知废品率为0.01,问现在这300件产品经检验废品数大于5的概率是多少? 解把每件产品的检验看作一次伯努利试验,它有两个结果:A={正品},Aˉ={废品},检验300件产品就是作300次独立的伯努利试验.用X表示检验出的废品数,则 X~b(300,0.01), 从而问题变为计算P{X>5}. 由于n>100,np=3<10,故泊松分布可以很好地近似计算二项分布.记λ=np=3,于是得 P{X>5}=∑k=6300b(k;300,0.01)=1-∑k=05b(k;300,0.01)≈1-∑k=053\spacekk

关于泊松分布及其应用

关于泊松分布及其应用 论文提要: 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 摘要泊松分布做为概率论中的一种重要分布,在管理科学、运筹学及自然科学的某些实际问题中都有着广泛的应用。本文对泊松分布产生的过程、定义和性质做了简单的介绍,分析了泊松分布在生物学研究中的应用。 关键词泊松过程泊松分布应用 摘要:泊松分布作为大量试验中稀有事件出现的频数的概率分布的数

学模型, 它具有很多性质。研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松分布; 定义;定理;应用;例题;指数失效律; 数学期 望; 方差 一、 泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 0 , , ,2 ,1 0 k ,! k} X P{>===-λλλ e k k 则()()λλλλλλλλ λ =?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()()() λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑212 2 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+==

相关文档