文档库 最新最全的文档下载
当前位置:文档库 › 大连理工大学数学分析考试题

大连理工大学数学分析考试题

大连理工大学数学分析考试题
大连理工大学数学分析考试题

大 连 理 工 大 学

课 程 名 称: 数学分析(二) 试 卷: B 考试形式: 闭卷 授课院 (系): 数学系 考试日期:2008 年7月10日 试卷共 6 页

一. 计算与证明题(每小题5分,共40分) 1. 求积分24417

dx

x x +∞

-∞

++?。

2. 写出函数ln Maclaurin 级数。

3. 求极限2222

(,)(0,0)sin()

lim

x y y x y x y →++。

姓名: 学号: 院系: 级 班

线

4. 设()f x 在[2,)+∞上连续可微,'()f x 单调递增,且

lim '()x f x →∞

=+∞。求证:2

cos(())f x dx +∞

?收敛。

5. 设222222,

0(,)0,0xy

x y x y f x y x y ?+>?+=??+=?

,求(,),(,)f f x y x y x y ????。

6. 设正数列{}n a 单调递减,且级数1(1)n n n a ∞

=-∑发散,讨论级数

111n

n n a ∞

=??

?+??

∑的敛散性。

7.

讨论级数1n ∞

=?∑的敛散性。

8. 设级数1n n a n λ∞

=∑收敛,求证:级数1

n x

n a

n ∞

=∑在x λ≥时收敛。

二. (12分)讨论积分1

01

cos p x dx x

?的敛散性,条件收敛性和绝对

收敛性。

三. (10分)讨论级数11

1

(1)sin

(0)n p n p n

-=->∑的条件收敛性与绝对收敛性。

四. (10分)设2(),1,2,...1n

n n

x f x n x ==+,分别讨论{()}n f x 在[1,1]λλ-+和[1,)λ++∞上的一致收敛性,其中01λ<<为常数。

五. (10分)设1

()nx n f x ne ∞

-==∑,证明:()f x 在(0,)+∞上连续可微。

六. (8分)设()f x 在(,)-∞+∞上一致连续,{()}n g x 在区间I 上一

致收敛于()g x 。求证:{(())}n f g x 在I 上一致收敛于(())f g x 。

七. (10分)设2()2,[0,2]f x x x x ππ=-∈,求()f x 的Fourier 级数,

并由此求级数2

11

n n

=∑

的和。

数学分析试题库--证明题

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞ →lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列. 5.用δε-方法验证: 3) 23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证: 2 11lim 2- =-+-∞ →x x x x . 7 . 设a x x x =→)(lim 0 ?,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f a t =→证明 A x f x x =→))((lim 0 ?. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x , (1))(0x U x n ?∈,0x x n →, (2)0010x x x x n n -<-<+,都有A x f n n =∞ →)(lim , 则A x f x x =→)(lim 0 . 9. 证明函数 ? ? ?=为无理数为有理数x , x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

数学分析试题库--选择题

数学分析题库(1-22章) 一.选择题 1.函数7 12arcsin 162 -+-= x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-. 2.函数)1ln(2 ++ =x x x y ()+∞<<∞-x 是( ). (A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数x e y 1 =的( ). (A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点. 4.当0→x 时,x 2tan 是( ). (A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小. 5.x x x x 2) 1 ( lim -∞ →的值( ). (A )e; (B) e 1; (C)2e ; (D)0. 6.函数f(x)在x=0x 处的导数)(0' x f 可定义 为( ). (A ) 0) ()(x x x f x f -- ; (B)x x f x x f x x ?-?+→) ()(lim ; (C) ()()x f x f x ?-→?0lim ; (D)()() x x x f x x f x ??--?+→?2lim 000 . 7.若()() 2 102lim =-→x f x f x ,则()0f '等于( ). (A )4; (B)2; (C) 2 1; (D)4 1, 8.过曲线x e x y +=的点()1,0处的切线方程为( ). (A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内 是( ). (A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933 12 3 +-= 在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.

大连理工大学2009年数学分析考研试题

大连理工大学2009年研究生入学考试数学分析试题 一、解答下列问题。 1、 判断下列数列是否收敛 222 111123n ++++…… 2、 设{}n a 1= 1= 3、 判断下列函数是否一致连续 ()1cos n f x e x ??= ??? ,(]0,1x ∈ 4、 设,y u f xy x ??= ???,求:22u x ??,2u x y ??? 5、 已知:()f a 存在,求()()lim x a xf a af x x a →-- 6、 设()f x 在[],a b 上可导,且()f a =()f b ,证明:存在(),a b ξ∈,使得 ()()()22f f a f ξξξ-= 7、 求极限()2lim ln n x x x →∞ 8、 求下列函数的Fourior 级数展开(),0,0x x f x x x ππππ+≤,使得 ()()0f x f x ≥,()00,x x x δδ∈-+,证明存在一个区域I 使得()f x 在I 上是一个常数。 二、设()f x 是[],a b 上具有连续的导数,()0a b <<,()()0f a f b ==,()2 1b a f x dx =?, 证明()()2 2'14b a x f x dx >? 三、给定函数列()()()2,3,n x x Inx f x n n α==…试问当α取何值时,(){}n f x 在[0,)+∞上

数学分析(1)期末模拟考试题(单项选择部分)

; 二、数列极限 1. 已知2lim >=∞ →A a n n ,则正确的选项是( B ). (A) 对+N ∈?n ,有2>n x ; (B) + N ∈?N ,当N n >时,有2>n a ; (C) N N N >?N ∈?+0,,使20=N x ; (D) 对2,≠N ∈?+n a n . 2. 设+ N ∈?N ,当N n >时,恒有n n b a >,已知A a n n =∞ →lim ,B b n n =∞ →lim .则正确的选项 是: ( A ). (A) B A ≥; (B) B A ≠; (C) B A >; (D) A 和B 的大小关系不定. 3. 若() 0tan 1 lim 1cos 1≠=---∞→a n e k n n π ,则 ( A ) (A) 2=k 且π21=a ; (B) 2-=k 且π21 =a ; (C) 2=k 且π21-=a ; (D) 2-=k 且π 21 -=a ; 4. 设32lim 1kn n e n -→∞ ?? += ??? ,则k =( C ) (A) 3/2; (B) 2/3; (C) -3/2; (D) -2/3. 5. 设数列{}n x 与{}n y 满足lim 0n n n x y →∞ =,则下列命题正确的是( D ) (A) 若{}n x 发散,则{}n y 必然发散; (B) 若{}n x 无界,则{}n y 必然有界; (C) 若{}n x 有界,则{}n y 必为无穷小量; (D) 若1n x ?? ???? 为无穷小量,则{}n y 必为无穷小 量. ( 数. 三、函数极限 1. 极限=+-∞→3 3 21 213lim x x x ( D ). (A) 3 2 3 ; (B) 3 2 3 - ; (C) 3 2 3 ± ; (D) 不存在.

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

1大连理工数学分析试题及解答

大连理工大学2001年硕士生入学考试 数学分析试题 一. 从以下的1到8题中选答6题 1. 证明:2 ()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致 连续 2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积. 3. 证明:若1α>,那么广义积分1 sin x dx α+∞ ? 收敛 4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有: ()()f x dx g x dx β β α α =??,那么, ()()f x g x ≡于(,)a b 5. 证明:若1 n n a ∞ =∑收敛,那么 1 nx n n a e ∞ -=∑在[0,)+∞一致收敛 6. 已知:2 ,0 ()0,0 x e x f x x -?≠?=?=??,求"(0)f 7. 已知:()() 1(,)()2 2x at x at x at x at u x t d a φφψαα+-++-= + ?. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算 22 222 (,)(,)u x t u x t a t x ??-?? 8. 计算,半径为R 的球的表面积 二. 从9到14题中选取6题 9.已知: lim '()0x f x →∞ =,求证: () lim 0x f x x →∞ =

10.证明: ()a f x dx +∞ ? 收敛,且lim ()x f x λ→+∞ =,那么0λ= 11.计算曲面积分: 333 S I x dydz y dzdx z dxdy = ++??, 其中S 为旋转椭球面222 2221x y z a b c ++=的外侧 12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛 13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1 0lim ()0n n f x dx →∞ =? 14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1 ()n n u b ∞ =∑发散,那么1 ()n n u x ∞ =∑不在[,)a b 一致收 敛

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

北京理工大学2006-2007学年第一学期数学分析B期中试题

课程编号:A071001 北京理工大学2006-2007学年第一学期 数学分析期中试题 一. 解下列各题(每小题6分) 1. 求极限n n n n )111(lim 2 ++∞→. 2.. 已知f 是可导函数, 且 x x f dx d 1)1(arctan =,求)4 (πf '.微分法,可以补用考虑微分次数,不断向下推。导数法,比需两边对同一变量求导。 3. 求出23||ln )(2+-=x x x x f 的间断点,并指出是第几类间断点. 4. 已知2)13(lim 2=++-+∞ →bx ax x x , 试确定其中常数b a ,. 二. 解下列各题(每小题7分) 1. 设???+=+-=23)1ln(t t y t t x , 求22dx y d . 2. 试确定常数b a ,的值, 使点)3,1(是曲线34bx ax y +=的拐点, 并求出曲线的 凹凸区间. 3. 求由方程0sin 2 1=+-y y x 所确定的隐函数)(x y y =的二阶导数. 4. 已知2112sin )(1lim 30=--+→x x e x x f ,求)(lim 0 x f x →.复合函数与函数求导公式可以一起用。 三.(9分) 设数列}{n x 满足010<<-x , ),2,1,0(221 =+=+n x x x n n n , 证明}{n x 收敛, 并求n n x ∞ →lim . 四.(9分) 设)(x f 有二阶连续导数, 0)0(=f , ?????='≠=0 ),0(0,)()(x f x x x f x g ,求) (x g '

并讨论)(x g '的连续性. 五. (9分) 一个体积给定的观察站底部是一个直圆柱, 顶部是一个半球形, 如果顶部单位面积的造价是侧面单位面积造价的二倍, 问圆柱的底半径r 与高h 分别为多少时可使总造价最低? 六.(8分)证明,当1>x 时,1 1ln +-≥x x x . 七. (9分)(1)已知当0→x 时, 2cos x e x -与k cx 是等价无穷小, 求c 与k 的值; (2)求极限22 2 0sin )(cos 112lim 2x e x x x x x -+-+→. 八.(4分)设)(x f 在],[b a 上连续, 在),(b a 内可导, 0)(≠'x f , 证明存在 ),(,b a ∈ηξ, 使ηηξ---=''e a b e e f f a b )()(.最后一道题一定要会拼与凑。

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

大连理工大学上学期工科数学分析基础学习知识试题

2010工科数学分析基础(微积分)试题 一、填空题 (每题6分,共30分) 1.函数?? ? ?? ??? ??-≥+=01 0)(2πx x e x bx a x f bx ,=- →)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。 2.=?? ? ??+∞→x x x x 1lim , =??? ??+++???++++++∞→n n n n n n n n n 2222211lim 。 3.曲线? ??==t e y t e x t t cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。 4.1=-+xy e y x ,=dy ,='')0(y 。 5.若22 lim 2 21=-+++→x x b ax x x ,则=a ,=b 。 二、单项选择题 (每题4分,共20分) 1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32= a , (B )3=a , (C). 2 3 =a , (D )2=a 2.下列结论中不正确的是( ) (A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数; (D )可导单调增加函数的导数一定是单调增加函数; 3.设x x x x f πsin )(3-=,则其( ) (A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点; 4.设x x x x f 3 )(+=,则使)0() (n f 存在的最高阶数n 为( )。 (A )1 (B )2 (C) 3 (D )4 5.若0)(sin lim 30=+→x x xf x x , 则20) (1lim x x f x +→为( )。 (A )。 0 (B )6 1 , (C) 1 (D )∞

数学分析3期末测试卷

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n n ∞=1n n n n ∞= D. 1 sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数0 21n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. ){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要 条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则 z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. () ()du x v y dx D. ()()u x v y x y ??+?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ?? ????=???? ; 20.若22arctan y x y x +=,则dy dx =______________________。 三、判断题(请在你认为正确的题后的括号内打“√”,错误的打“×”,每题 1分,共10 题号 一 二 三 四 五 总分 复核人 分值 20 20 10 32 18 100 得分 评卷人 得分 得分 得分

数学分析试题库--证明题--答案

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 证 由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法.若B A inf sup π,设 B y A x A B ∈∈?=-,,sup inf 0ε,使得0ε≥-x y . 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立.若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S = (ⅰ)S x ∈?,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε??∈->>于是,0S x ∈ 0sup .x A > 同理可证(2). 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 证 3 5 23252 2---+n n n ) 23(34 32-+= n n ≤ 2234n n ? (n>4) n 32=, 取? ?? ???+??????=4,132max εN ,当n>N 时, 3 5 23252 2---+n n n <ε. 注 扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式

大连理工大学2005硕士研究生考试数学分析试题及解答

大连理工大学2005硕士研究生考试试题数学分析试题及解答 一、 计算题 1、 求极限:122 2 (i) ,lim n n n n a a na a a n →∞ →∞+++=其中 解: 1212222...(1)(1)lim lim lim ()(1)212 n n n n n n a a na n a n a a Stolz n n n n +→∞→∞→∞+++++===+-+利用公式 2、求极限:2 1lim (1)x x x e x -→∞ + 解: 22 2 222 1(1) 1lim (1)lim()1111(1)(1)(ln(1)) 1lim lim 11 1111(())21lim 121(1)112lim (1)lim( )lim()x x x x x x x x x x x x x x x x x x x x e x e e x x x x x x o e x x x x e x e e x x e x e e e -→∞→∞→∞→∞→∞-→∞→∞→∞++=+-++-+=--+- +==--+- ∴+=== 3、证明区间(0,1)和(0,+∞)具有相同的势。 证明:构造一一对应y=arctanx 。 4、计算积分2 1 D dxdy y x +?? ,其中D 是x=0,y=1,y=x 围成的区域 解:

1120220001 1 1011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2 y y D dxdy dxdy x y dy y x y x y dy ydy y y y y y y ==+++=+-=++-+-+=?? ????? 5、计算第二类曲线积分:22 C ydx xdy I x y --=+?,22:21C x y +=方向为逆时针。 解 : 222222002222 2tan 2222 cos ,[0,2)1sin 211 sin cos 4cos 222113cos 22cos 22 13(2)(1)812arctan 421(2)(1)2 311421C x x y ydx xdy I d d x y x x x x d x dx x x x x ππθθ θπθθθθθθθθ +∞+∞=-∞-∞=?? ∈? =?? ---=???→=-+++-+-++?????→-=--+++ +=-?????换元万能公式代换22 6426212x dx d x x ππ+∞+∞-∞-∞+=-++??+ ??? ?? 6、设a>0,b>0,证明:1 11b b a a b b ++?? ?? ≥ ? ?+?? ?? 。 证明:

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1 n n ∞ = C . 21 (1)n n n ∞ =-∑ D . 1 1 (1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2 f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原 函数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 0 (0)1dx k kx +∞>+?收敛于1,则k =( ) A . 2π B .22π C . D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<< 二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,10 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+? ? 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 .

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

(完整版)大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

相关文档
相关文档 最新文档