文档库 最新最全的文档下载
当前位置:文档库 › 套管柱强度设计计算

套管柱强度设计计算

套管柱强度设计计算
套管柱强度设计计算

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

固井基础知识

第二部分固井基础知识 第一章基本概念 1、什么叫固井? 固井是指向井内下入一定尺寸的套管串,并在其周围注以水泥浆,把套管与井壁紧固起来的工作。 2、什么叫挤水泥? 是水泥浆在压力作用下注入井中某一特定位置的施工方法。 3、固井后套管试压的标准是什么? 5英寸、5 1/2英寸试压15MPa,30分钟降压不超过 0.5MPa,7英寸,9 5/8英寸分别为10MPa和8MPa,30分钟不超过0.5MPa;10 3/4—13 3/8英寸不超过6MPa,30分钟压降不超0.5MPa。 4、什么叫调整井? 为挽回死油区的储量损失,改善断层遮挡地区的注水开发效果以及调整平面矛盾严重地段的开发效果所补钻井叫调整井。 5、什么叫开发井? 亦属于生产井的一种,是指在发现的储油构造上第一批打的生产井。 6、什么叫探井? 在有储油气的构造上为探明地下岩层生储油气的特征而打的井。 7、简述大庆油田有多少种不同井别的井? 有探井、探气井、资料井、检查井、观察井、标准井、生产井、调整井、更新井、定向井、泄压井等。 8、什么叫表外储层? 是指储量公报表以外的储层(即未计算储量的油层)。包括:含油砂岩和未划含油砂岩的所有含没产状的储层。 9、固井质量要求油气层底界距人工井底不少于多少米?探井不少于多少米? 固井质量要求,调整井、开发井油、气层底界距人工井底不少于25米(探井不少于15米)。 10、调整井(小于等于1500米)按质量标准井斜不大于多少度?探井(小于等于3000米)按质量标准井斜不大于多少度? 调整井按质量标准井斜不大于3度。探井按质量标准井斜不大于5度。

11、调整井(小于等于1500米)井底最大水平位移是多少?探井(小于等于3000米)井底最大水平位移是多少? 调整井井底最大水平位移是40米。探井井底最大水平位移80米。 12、目前大庆油田常用的固井方法有哪几种? (1)常规固井(2)双密度固井(变密度固井)(3)双级注固井(4)低密度固井(5)尾管固井 13、目前大庆油田形成几套固井工艺? (1)多压力层系调整井固井工艺技术。 (2)水平井固井工艺技术。 (3)斜直井固井工艺技术。 (4)小井眼固井工艺技术。 (5)深井及长封井固井工艺技术。 (6)欠平衡固井工艺技术。 14、水泥头是用来完成注水泥作业的专业工具,常用的有哪几种?(1)简易水泥头;(2)单塞水泥头;(3)双塞水泥头;(4)尾管固井水泥头。 15、5 1/2″水泥头销子直径为多少毫米? 5 1/2″水泥头销子直径为24mm。 16、常用的套管有哪些规格? 5″、5 1/2″、7″、7 5/8″、8 5/8″、9 5/8″、10 3/4″、12 3/4″、13 3/8″、20″等。 17、简述技术套管及油层套管的作用? 技术套管是封隔复杂地层,保证固井顺利进行,安装井口装置,支承油层套管重量,必要时可当油层套管使用。 油层套管是封隔油、气、水层与其它不同压力的地层,如因保护套管形成油气通道,满足开采和增产措施的需要。 18、常用扶正器的规格有哪些? 5×5 1/4,5 1/2×7 1/2,5 1/2×8 1/2,5 1/2×9 3/4,9 5/8×12 1/4,13 3/8×17 3/4。 19、上胶塞的作用是什么? (1)在管内隔开水泥浆和泥浆或清水;

注射模具设计强度和刚度计算例_.

注射模具设计的习题 10、有一壳形塑件,如图7-37所示,所用模具结构如图7-38所示,选用HDPE 塑料成型,型腔压力取40MPa,模具材料选45钢,其许用应力[σ]=160MPa,其余尺寸见图7-38。计算定模型腔侧壁厚度S和型芯垫板厚度H。 1

1、定模型腔侧壁厚度的计算: 分析:该零件为矩形零件,凹模置于定模侧,且采用了底部镶拼组合式结构,模板形状为矩形,所以采用组合式凹模的侧壁厚度的计算公式。 刚度计算公式为P156中(6.20) p?H1?l4 S= 32?E?H?[δ] 参数取值 p=40MPa;H1=80mm,l=120mm E=2.06*105Mpa,H=120mm [δ]=? 其中:许用变形量[δ]的确定,满足以下三个原则 型腔不发生溢料 HDPE的许用变形量为0.025~0.04mm,HDPE的粘度相对较高,取为0.03mm 保证塑件精度 塑件的外轮廓尺寸中长度尺寸为120mm,没有标公差等级,按MT7取公差,即

δ=?i/[5(1+?i)]=2.4/[5(1+2.4)],所以保证塑件精度的许用变形量为0.14mm 保证塑件顺利脱模 [δ]≤2?2%+4% 2=0.06mm 所以许用变形量[δ]=0.03mm 6.20)可得到 S=40?80?1204 32?2.06?105?120?0.03=30.35mm 4 由刚度计算公式( 强度计算公式:(公式6.22) S=p?H1?l2 2?H?[σ] 参数取值[σ]=160MPa,p=40MPa;H1=80mm,l=120mm =40?80?1202 S2?120?160=34.64mm 但考虑应力中第二项的影响,S稍放大,取为40mm 比较强度和刚度计算的结果,将定模型腔的侧壁厚度暂取为40mm 因此凹模周界尺寸为:B0=65+2*40=145mm L=120+2*40=200mm 查看中小型标准模架,将本模具与模架模型对比: 6

塔设备机械计算

第四章塔设备机械设计 塔设备设计包括工艺设计和机械设计两方面。机械设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对塔设备进行强度、刚度和稳定性计算,并从制造、安装、检修、使用等方面出发进行机构设计。 4.1设计条件 由塔设备工艺设计设计结果,并查相关资料[1],[9]知设计条件如下表。 表4-1 设计条件表

4.2设计计算 4.2.1全塔计算的分段

图4-1 全塔分段示意图 塔的计算截面应包括所有危险截面,将全塔分成5段,其计算截面分别为:0-0、1-1、2-2、3-3、4-4。分段示意图如图4-1。

4.2.2 塔体和封头厚度 塔内液柱高度:34.23.15.004.05.0=+++=h (m ) 液柱静压力:018.034.281.992.783101066=???==--gh p H ρ(MPa ) 计算压力:1=+=H c p p p MPa (液柱压力可忽略) 圆筒计算厚度:[]94.60 .185.017022000 0.12=-???=-= c i c p D p φσδ(mm ) 圆筒设计厚度:94.8294.6=+=+=C c δδ(mm ) 圆筒名义厚度:108.094.81=?++=?++=C c n δδ(mm ) 圆筒有效厚度:8210=-==-=C n e δδ(mm ) 封头计算厚度:[]93.60 .15.085.017022000 0.15.02=?-???=-= c i c h p D p φσδ(mm ) 封头设计厚度:93.8293.6=+=+=C h hc δδ(mm ) 封头名义厚度:108.093.81=?++=?++=C hc hn δδ(mm ) 封头有效厚度:8210=-==-=C hn he δδ(mm ) 4.2.3 塔设备质量载荷 1. 塔体质量 查资料[1],[8]得内径为2000mm ,厚度为10mm 时,单位筒体质量为495kg/m ,单个封头质量为364kg 。 通体质量:5.121275.244951=?=m (kg ) 封头质量:72823642=?=m (kg ) 裙座质量:14850.34953=?=m (kg ) 塔体质量:5.1434014857285.1212732101=++=++=m m m m (kg ) 0-1段:49514951-0,01=?=m (kg )

API套管强度设计

3API 套管强度 3.1 API 套管抗挤强度 3.1.1屈服挤毁强度值 当外挤压应力作用在套管管壁上使套管材料达到屈服强度时,管体将会发生塑性变形,此时即被认为不安全。当管体发生塑性变形时,通过承受均匀载荷的厚壁筒的拉梅公式,可推导出如下 API 屈服强度挤毁公式: 当套管的径厚比满足(/)(/)c c yp D D δδ≥时: co 2(/)1 2[ ] (/)c P c D p Y D δδ-= 式中:p co —屈服抗挤强度,MPa ; Y p —套管材料的最小屈服强度,MPa (其值钢号字母后面的数据乘以 6.894757) D c —套管的名义外径,mm ; δ—套管的名义壁厚,mm ; 其中: (/)c yp p D δ= 472103 2.8762 1.5488510 4.480610 1.62110p p p A Y Y Y ---=+?+?-? 50.0262337.3410p B Y -=+? 4273 465.93 4.4741 2.20510 1.128510p p p C Y Y Y --=-+-?+? 3.1.2塑性挤毁强度值 当套管的径厚比满足(/)(/)(/)c yp c c pt D D D δδδ≤≤时,套管在外挤压力作用下的挤毁属于塑性强度挤毁,其API 抗挤强度由下式计算。 co 2[ ]0.0068947(/)P c A p Y B C D δ=-- 式中:p co —塑性挤毁强度,MPa ,系数 A 、B 、C 计算同前。式中(D c /δpt 为

塑性强度挤毁与过度强度挤毁临界点的径厚比,当塑性强度挤毁压力等于过度强度挤毁压力时得出塑性挤毁强度与过度挤毁强度临界值的径厚比,用下面公式计算: ()(/)0.0068947() p c pt p Y A F D C Y B G δ-= +- 其中公式的系数 F ,G 由图解法求的,计算如公式 53 2 3/3.23710( ) 2/3/3/[(/)](1)2/2/p B A B A F B A B A Y B A B A B A ?+= --++ (/)G F B A = 3.1.3过渡挤毁强度值 当套管的径厚比满足(/)(/)(/)c pt c c te D D D δδδ≤≤时,套管在外挤压力作用下的挤毁属于过度挤毁(塑弹性挤毁强度),其抗挤强度由下式计算: co [ ] (/)P c F p Y G D δ=- 式中:p co —过度挤毁强度,MPa 当过度强度挤毁压力等于弹性强度挤毁压力时,得出过度挤毁强度与弹性挤毁强度临界值的径厚比,计算公式如下式: 2/(/)3/c te B A D B A δ+= 3.1.4弹性挤毁强度值 当套管的径厚比满足(/)(/)c c te D D δδ≥时,套管在外挤压力作用下的挤毁属于弹性挤毁,其抗挤强度由如下式计算: 5 co 3.23710(/)(/1)c c p D D δδ-?= - 式中:p co —弹性挤毁强度,MPa 式中(D c /δte )为过度挤毁强度与弹性挤毁强度临界点的径厚比。

套管头技术要求(标准)

标准套管头技术要求 一、执行标准:SY/T5127-2002 二、材料:35CrMo锻件 三、材料物理机械性能: (1)C%:~ (2)Si%:~ (3)Mn%:~ (4)P%:≤ (5)S%:≤(6)Cr%:~ (7)Mo%:~ (8)断面收缩率%:≥50 (9)延伸率%(δ5):≥14 (10)抗拉强度N/m m2:≥860 四、检测项目及要求: 1、单级套管头: (1)13 3/8″(10 3/4″、9 5/8″)×5 1/2″(7″)-35Mpa (2)13 3/8″(10 3/4″、95/8″)×5 1/2″(7″)-70Mpa

2、双级套管头: (1)13 3/8″×9 5/8″×5 1/2″(7″)-70MPa (2)13 3/8″×9 5/8″×5 1/2″(7″)-35MPa

五、套管头结构 1、单级套管头结构如图1 2、双级套管头结构如图2

六、售后服务 1、套管头安装时厂家服务人员应及时到井; 2、套管头安装应在各层固井施工完之前到井,指导井队进行套管头安装作业; 3、完井套管的切割、注塑按使用井队或固井方要求时间及时到井; 4、套管头在使用中出现问题导致事故,由厂家负应有责任,并赔偿损失; 5、套管头使用保质期为5年,保质期出现问题由厂家进行整改或更换。 七、其它要求 1、标志 产品包装上应有明显的标准,表明产品名称、商标、型号,公司名称、地址、电话,生产日期,保质期,产品执行标准编号,“怕晒”、“怕雨”等图示标志 2、标签 产品合格证上应有:检验员代号,检验合格印章,检验日期。 3、使用说明书

使用说明书应有包括:产品用途,性能简介,使用方法,涉及安全环保的注意事项。 4、包装 产品采用木质箱子包装 5、运输 运输过程中应做好防碰,防止产品有损伤、变形等情况。 6、贮存 贮存过程中应处于干燥条件下。

最新钻井工程课程设计

1 表A-1 钻井工程课程设计任务书 2 一、地质概况29: 3 井别:探井井号:设计井深:3265m 目的层:

4 当量密度为:g/cm3 表 A-2设计系数 5

6 7 石工专业石工(卓越班)1201班学生姓名:木合来提.木哈西8 9 10 图 A-1 地层压力和破裂压力

11 12 13 14 一.井身结构设计

1.由于该井位为探井,故中间套管下深按可能发生溢流条件确定必封点深度。 15 16 由图A-1得,钻遇最大地层压力当量密度ρpmax=1.23g/cm3,则设计地层破裂压力当17 量密度为:ρfD=1.23+0.024+3245/H1×0.023+0.026. 18 试取H1=1500m,则ρfD=1.23+0.024+2.16×0.023+0.026=1.33 g/cm3, 19 ρf1400=1.36 g/cm3 > ρfD 且相近,所以确定中间套管下入深度初选点为H1=1500m。 20 验证中间套管下入深度初选点1500m是否有卡钻危险。 21 从图A-1知在井深1400m处地层压力梯度为1.12 g/cm3以及320m属正常地层压力,22 该井段内最小地层压力梯度当量密度为1.0 g/cm3。 23 ΔPN=0.00981×(1.10+0.024-1.0)×320=0.389<11MPa 24 所以中间套管下入井深1500m无卡套管危险。 25 水泥返至井深500m。 26 2.油层套管下入J层13-30m,即H2=3265m。 27 校核油层套管下至井深3265m是否卡套管。 28 从图A-1知井深3265m处地层压力梯度为1.23 g/cm3,该井段内的最小地层压力梯度29 为1.12g/cm3,故该井段的最小地层压力的最大深度为2170m。 30 Δpa=0.00981×(1.23+0.024-1.12)×2170=2.85Mpa<20 Mpa 31 所以油层套管下至井深3265m无卡套管危险。 32 水泥返至井深2265m。

固井设计

第七章固井设计 7.1 套管柱强度设计 7.2 注水泥设计 7.3 固井质量检测与评价 7.3.1 注水泥质量要求 (1)油气层固井,设计水泥返高应超过油气层顶界150cm,实际封固油气层顶部不少于50cm。其中,要求合格的水泥环段,对于浅层2000m的井不少于10m,深于2000m的井不少于20m。 (2)为了保证套管鞋封固质量,油层套管采用双赛固井时,阻流环距套管鞋长度不少于10m,技术套管一般为20m,套管鞋应该尽量靠近井底。 (3)油气层底界距人工井底不少于15m。 其中,第(2)条是为了防止上胶塞下行时所刮下的套管内表面上的液膜浆体污染水泥浆,而影响套管鞋附近的水泥封固质量;第(3)条是为了满足采油方面的需要。 7.3.2 水泥环质量检测和评价 1、井温测井 水泥水化反应是一放热反应,凝结过程中所放出的热量通过套管传给套管内流体,可使井温温度上升一定数值;而环空中没有水泥的井段,井内温度为正常温度。利用这一特征,可以测定水泥浆在环空中的返高位置。 2、声幅测井 声幅测井是根据声学原理所进行的测井。在井下,从测井仪声波发射器发射出声波,声波向四周以近似球状的波阵面发散,通过不同介质和路线后传播到接收器。最先到达接收器的是沿着套管传播的滑行波所产生的折射波,其次是传到地面后又传播回来的地层波。尽量在钻井液内声波的传播距离最短,但是由于在钻井液内声速相对较低,所以钻井液波到达最迟。声幅测井记录是最先到达的套管波的首波幅度。 套管内钻井液的分布及性质是不变的,因此向管内散失的能量为恒定值。在此基础上,套管波的衰减程度管外水泥与套管的胶结情况。实验证明,套管首波幅度的对数与套管周围水泥未胶结部分所占套管周长的百分数之间存在线性关系,即与套管胶结的水泥越多,所接收的声幅越小;而当管外全为钻井液时,多接收的声幅最大。实际的深海声幅测井远比这复杂,以上述为基本原理。 沿井深由下而上进行测试,就可得到一条沿井深反映水泥与套管胶结情况的声幅测井曲线。应用声幅测井曲线检测水泥环质量是通过相对幅度进行的(以环空内全为钻井液的自由套管段的声幅值为基准)。 ×100%(7-1) 相对幅度=目的段声幅曲线幅度 自由套管段声幅曲线幅度 3、声幅变密度测井 声幅测井记录的是套管首波幅度。声波变密度测井是用接收器将套管波、地层波等声波幅度按到达时间先后厕灵记录,再用一定方法显示,以评价水泥环质量的测井方法。当进行变密度测井时,同时进行声幅测井。 变密度测井因为能够记录地层波,因此能够反映出水泥与地层的胶结情况。将变密度测井结果与声幅测井结果对比分析,可以更全面地评价水泥环质量。

一口井套管柱设计

完井工程大作业二一口井套管柱设计 班级:油工101 学号:004 姓名:王涛 课程:完井工程 任课教师:孙展利

1基本数据 1)井号:广斜-1井;2)井别:开发井;3)井型:定向井 3井身结构如图所示 4套管柱设计有关数据和要求 表层套管:下深150m,外径Φ339.7mm,一开钻井液密度1.1g/cm3,防喷器额定压力21Mpa,安全系数:抗挤S c=1.0,抗拉S t=1.6,抗内压S i=1.0。要求表层套管的抗内压强度接近防喷器的额定压力,套管钢级用J-55,套管性能见下表。 油层套管:下深3574m,外径Φ139.7mm,二开最大钻井液密度1.32g/cm3,安全系数:抗挤S c=1.125,抗拉S t=1.80(考虑浮力),抗内压S i=1.10。由于地层主要为盐岩、泥岩,易塑性流动和膨胀,外挤载荷要求按上覆岩层压力的当量密度 2.3g/cm3来计算,按直井(井斜角小)和单向应力来设计,套管钢级选N-80、P-110。 要求要有明确的步骤和四步计算过程(已知条件、计算公式、数据带入、计算结

油层套管设计: 已知条件: 油层套管下深H=3574m,外径Φ139.7mm,二开最大钻井液密度ρ m = 1.32g/cm3,安全 系数:抗挤S c =1.125,抗拉S t =1.80(考虑浮力),抗内压S i =1.10。 上覆岩层压力的当量密度ρ o =2.3g/cm3,按直井(井斜角小)和单向应力来设计,解: 根据题目要求,本定向井按照直井(井斜角小)和单向应力来设计,根据题目要求外挤 载荷要求按上覆岩层压力的当量密度ρ o =2.3g/cm3来计算 第一段套管设计: 1.计算第一段套管应具有的抗挤强度(即第一段套管底端的抗挤强度) 1)按抗挤强度设计第一段套管,因为套管底端的外挤压力最大,所以以套管底端的外挤压力作为第一段套管应具有的抗挤强度,按全掏空计算井底外挤压力, P b =0.00981*ρ o *H=0.00981*2.3*3574=80.64Mpa 2)第一段套管应具有的抗挤强度应为 P c1= P b *S c =80.64*1.125=90.72Mpa 2.根据第一段套管应具有的抗挤强度,查套管性能表选用P-110,壁厚10.54mm套管, 其抗挤强度为P c’=100.25 Mpa,抗拉强度为T t1 =2860.2KN,重量W 1 =0.3357KN/m 第二段套管设计: 1. 第一段套管的顶截面位置取决于第二段套管的可下深度,第二段套管选用抗挤强度比第一段套管低一级的套管,查套管性能表可选P-110,壁厚9.17mm套管,其抗 挤强度为P c’’=76.532 MPa,抗拉强度T t2 =2437.6KN,重量为W2=0.2919KN/m 2. 按抗挤强度计算第二段套管的可下深度: H 2= P c’’ /(0.00981*ρ o * S c )=76.532/(0.00981*2.3*1.125)=3023m 3.实际套管因为是10m一根,因此要对可下深度取整,再加上数据误差的安全考虑, 实际第二段套管的深度为H 2=3000m,则第一段套管的段长为L 1 =3574-3000=574m 4.校核第一段套管的安全系数:

套管强度设计例题

设计举例: 例题:某井177.8 mm(7 英寸)油层套管下至3500 m ,下套管时的钻井液密度为1.303 /cm g ,水泥返至2800 m ,预计井内最大内压力 35 MPa ,试设计该套管柱 (规定最小段长500 m )。规定的安全系数:Sc=1.0,Si = 1.1,St =1.8 解:(1)计算最大内压力,筛选符合抗内压要求的套管 抗内压强度设计条件为: 筛选套管: C-75,L-80,N-80,C-90,C-95,P-110 按成本排序: N-80 < C-75 < L-80 < C-90< C-95< P-110 (2)按抗挤设计下部套管段,水泥面以上双向应力校核 1)计算最大外挤力, 选择第一段套管 Pa D p m oc 5.4463535003.181.981.9max =??==ρ 1oc c c p S p ?≤ 5.446350.15.4463548401=?≥ 安全 2)选择第二段套管 选低一级套管,第一段抗拉强度校核 22oc c c p S p ?≤ 229.81m c c D S p ρ?≤ 2237301 29259.819.81 1.3 1.0 c m c p D m S ρ≤ ==?? 第二段套管可下深度D 2,第一段套管长度L 1 取D 2=2900m (留有余量) m D D L 60029003500211=-=-= 双向应力强度校核,最终确定D 2和L 1 D 2 =2900 m >2800 m ,超过水泥面,考虑双向应力

危险截面:水泥面2800m 处 浮力系数:834.085 .73.111=-=-=s m f K ρρ 轴向拉力: ()()水泥面11222800 0.8340.42346000.379529002800243.2m B F K q L q D kN ??=+-?? ??=??+?-=?? 存在轴向拉力时的最大限度允许抗外挤强度: 水泥面 22 2243.21.030.7437301 1.030.74354922686.7m ca c s F p p kPa F ?? ??=-=?-= ? ? ??? ?? 2280035492 0.9919.81 1.32800 ca C oc p S p '= == 1.0 安全 水泥胶结面处 套管2: 危险截面 2700 m 处,Sc = 1.02 > 1.0 安全 两段套管交接处 试取D 2 = 2700 m ,L 1 = 800m 计算套管抗拉安全系数:112655.6 7.84 1.80.4234800 sll t a F S F '= ==>? 安全 最终结果:D 2 = 2700 m ,L 1 = 800m 3)选择第三段套管; 轴向拉力:() 211223 m B F K q L q D D ??=+-?? 存在轴向拉力时的最大限度允许抗外挤强度: 2333 23 3 1.030.74 1.09.81m c s ca c ccD m F p F p S p D ρ? ? - ?? ? '= =≥ 试算法,取 D3 =1700 m , 计算得 Sc= 1.03 计算第二段顶部的抗拉安全系数 () ()211223 0.42348000.379427001700718a F q L q D D kN =+-=?+?-=

斜导柱长度计算

斜度a一般取5--8度左右 斜顶脱模行程S= 扣位的距离+ (2--3mm)安全距离 计算公式: S=L X tan a 需要别人解答的题目:在斜导柱抽芯中,已知模板H=25,斜导柱大φ12。导柱阶梯大小φ16。抽芯角度为12度,抽芯间隔S=5mm,请计算斜导柱长度。 最合适的解答:模具滑块的工作原理以及斜导柱长度的计算要领(公式) 1)滑块的工作原理:就是哄骗成型机的开模动作,使斜导柱与滑块孕育发生相对运动趋势,使滑块沿开模标的目的和水平标的目的孕育发生两种运动情势,使之离开产品倒勾。 图中A就是产品的倒勾长度,S就是滑块在水平标的目的上运动的间隔,D是斜导柱倾角度。S=A+3~n 2)斜导柱C段的长度,相当重要,它的是非控制着滑块跑动的间隔S。那么如何计算模具滑块斜导柱的长度?有没有公式呢? 斜导柱的长度计算其实就是哄骗“三角函数”来计算。我们可以简化成1个三角形,利便使用“三角函数”式计算。 设定S就是图中的滑块滑动间隔S,角度X就是图中的角度D。(这两个数已按照产品、模具预设的需要设定为固定值,是已知数。)长度L相对于上图中的C。高度H,就是滑块滑动到了指定位置时,模具打开的间隔。 公式:L=S/ Sin(X)H=S/tan(X)(斜导柱实际长度是L+B,B为斜导柱在模板上的固定段,如图示) 3)当然,这样计算出来的数据只是有理想化的状态下,实际上还要考虑到滑块和斜导柱之间的间隙,以及它们上边的圆角,等等因素。不外,此刻AutoCAD等电脑辅助预设软体已是如此先进,纯粹把许多人从繁杂的计算公式中解放出来,只要通过一些简略的号令,或哄骗一些更快捷的外挂,就能画出所需要的斜导柱,也从而可以得出其长度,还可以摹拟它们在开模后的状态。不消人工去计算这些数据。

过程设备设计答案(简答题和计算题)

1.压力容器主要由哪几部分组成?分别起什么作用?答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全 附件六大部件组成。筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。密封装置的作用:保证承压容器不泄漏。开孔接管的作用:满足工艺要求和检修需要。支座的作用:支承并把压力容器固定在基础上。安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。 2.介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响? 答:介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检验和管理的要求愈高。如Q235-A或Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应力逐张进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%射线或超声检测,且液压试验合格后还得进行气密性试验。而制造毒性程度为中度或轻度的容器,其要求要低得多。毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等级上,如内部介质为中度毒性危害,选用的管法兰的公称压力应不小于;内部介质为高度或极度毒性危害,选用的管法兰的公称压力应不小于,且还应尽量选用带颈对焊法兰等。易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。如Q235-A·F不得用于易燃介质容器;Q235-A不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝(包括角焊缝)均应采用全焊透结构等。 3.《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类?答:因为pV乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。 1.一壳体成为回转薄壳轴对称问题的条件是什么?几何形状承受载荷边界支承材料性质均对旋转轴对称 2.推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面?为什么?答:不能。如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面,这两截面与壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳体厚度。建立的平衡方程的内力与这两截面正交,而不是与正交壳体两表面的平面正交,在该截面上存在正应力和剪应力,而不是只有正应力,使问题复杂化。 3.试分析标准椭圆形封头采用长短轴之比a/b=2的原因。答:a/b=2时,椭圆形封头中的最大压应力和最大拉应力 相等,使椭圆形封头在同样壁厚的情况下承受的内压力最大,因此GB150称这种椭圆形封头为标准椭圆形封头 4.何谓回转壳的不连续效应?不连续应力有哪些特征,其中β与两个参数的物理意义是什么? 答:回转壳的不连续效应:附加力和力矩产生的变形在组合壳连接处附近较大,很快变小,对应的边缘应力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。

完整word版,Wellcat钻井完井管柱设计介绍

高温高压井管柱设计和分析软件– WellCat WellCat可为管柱设计提供一体化设计和分析解决方案。WellCat解决了管柱设计学科中的最复杂问题,即精确预测井下温度、压力剖面、管柱载荷和由之引起的位移等难题。在Windows操作环境下的Wellcat软件由5个可独立运行的模块(Drill钻井、Pro开发、Casing套管、Tube油管、Multistring多管串)组成。 对高温高压油井不采用WellCat进行设计的潜在危险是,由于环空流体膨胀可能造成管柱失效,造成井漏和井喷,考虑到油藏的油气损失、勘探和开发费用以及对健康安全和环境(HSE)的影响。 该软件主要解决常温套管设计软件所不能解决的如下管柱设计中的最复杂的难题: ①水下油井的环空热膨胀是否会引起套管损坏――内层管柱挤毁,外层管柱崩裂? ②由温度、压力产生的对整个套管和油管系统的载荷会不会引起井口移位运动及载荷的重新分布? ③如何消除套管和油管的弯曲,或将其限制在一定的范围内? ④在深井钻井过程中,套管在未凝固的水泥是否弯曲,在采油过程中,如何避免这类问题? ⑤小排量的反循环顶替封隔液对油管是起加热还是冷却作用? ⑥在确保安全和可靠的前提下,有没有大幅度降低管材成本的途径? 解决以上问题,需要解决三大重点问题,这也是WELLCAT所具有的三大主要功能: 功能之一:精确模拟井的生命周期中任何时刻时的井下温度场与压力场 功能之二:分析各种工况下管柱的受力情况,完成三轴应力校核 功能之三:模拟流体膨胀与管柱变形情况,计算由此而来的附加载荷 WELLCAT具有五个独立的模块,分别是:Drill钻井、Pro开发、Casing套管、Tube 油管、Multistring多管串。 ?瞬态及稳态分析 ?在分析热交换过程中,考虑井眼周围一定范围内的地层温度的变化,提高了温度模拟精度

模具设计及计算

3 模具设计及计算 3.1模具设计的基本原则 3.1.1模具设计的基本作用 模具作为生产用精密、高效的工艺装备,本身也是一种精密的机械产品。该机械产品能否满足对其使用性能和成形精度的要求、必须解决好模具设计与制造、精度与寿命等各方面与模具相关的问题。 同时模具作为中心议题,可以细分成模具设计、制造、材料、成本、精度、寿命、安装、使用,以及标准化等各方面问题。 ①模具设计是模具制造的基础,合理正确的设计是正确制造模具的保证; ②模具制造技术的发展对提高模具质量、精度以及缩短制造模具的周期具有重要意义; ③模具的质量、使用寿命、制造精度及合格率在很大程度上取决于制造模具的材料及热处理工艺; ④模具成本直接关系到制件的成本以及模具生产企业的经济效益; ⑤模具工作零件的精度决定制件的精度; ⑥模具的寿命又与模具材料及热处理、模具结构以及所加工制作材料等诸多因素有关; ⑦模具的安装与使用直接关系到模具的使用性能及安全; 而模具的标准化是模具设计与制造的基础,对大规模、专业化生产模具具有重要的作用,模具标准化程度的高低是模具工业发展水平的标志。 3.1.2模具设计的基本内容 模具结构设计主要包括: ①分析零件的结构工艺性及材料。 ②选择成形的工艺方案和制定工艺卡片。 ③确定坯料的尺寸、重量及备料方法等。 ④计算并确定的各项工艺参数,如压力机等。 ⑤进行各模具的总体结构设计与校对。 3.2模具的结构形式 冲模的结构形式多种多样,按工序的性质分类,可分为冲裁模、弯曲模、拉深模和成形模等;按工序的组合程度分类,可分为单工序模、复合模、级进模等。各种冲模的构成大体相同,主要由工作零件、定位零件、卸料与推料零件、导向

塔设备强度计算裙座基础环和螺栓计算

㈡基础环板设计 1. 基础环板内、外径的确定 裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用 (4-68) 式中: D -基础环的外径,mm; ob D -基础环的内径,mm; ib D -裙座底截面的外径,mm。 is 2. 基础环板厚度计算 在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为: (4-69) 式中: A -基础环面积,mm2; b W -基础环的截面系数,mm3; b (1)基础环板上无筋板 基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷s bmax的作用下,基础环厚度: (4-70) 式中: d -基础环厚度,mm; b [s]b-基础环材料的许用应力,MPa。对低碳钢取[s]b=140MPa。 (2)基础环板上有筋板 基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。此时,可将基础环板简化为一受均布载荷s bmax作用的矩形板(b×l)。基础环厚度:

(4-71) 式中: d b -基础环厚度,mm; M s -计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。无论无筋板或有筋板的基础环厚度均不得小于16mm。 ㈢地脚螺栓 地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。塔设备在基础面上由螺栓承受的最大拉应力为: (4-72)式中: s B-地脚螺栓承受的最大拉应力,MPa。 当s B≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。 当s B>0时,塔设备必须设置地脚螺栓。地脚螺栓的螺纹小径可按式(4-73)计算: (4-73) 式中: d1-地脚螺栓螺纹小径,mm; C2-地脚螺栓腐蚀裕量,取3mm; n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6; [s]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[s]bt=147MPa;选取16Mn时,取[s]bt=170MPa。圆整后地脚螺栓的公称直径不得小于M24。 ㈣裙座体与塔体底封头的焊接结构 裙座体与塔体的焊接形式有下表所示的两种: 名称结构要求特点适用对象 对接焊 缝裙座与塔体直径相等,二者对 齐焊在一起 焊缝承受压应力作用,可承受较高 的轴向载荷 大型塔设备 搭接焊 缝 裙座内径稍大于塔体外径焊缝承受剪应力作用,受力条件差小型塔设备1.裙座体与塔体对接焊缝(如)J-J截面的拉应力校核 (4-74)

压力机冲裁力计算公式 文档 (2)

压力机冲裁力计算公式冲压力是指在冲裁时,压力机应具有的最小压力。 P冲压=P冲裁+P卸料+P推料+P压边力+P拉深力。 冲压力是选择冲床吨位,进行模具强度。刚度校核依据。 1、 冲裁力:冲裁力及其影响周素:使板料分离动称作冲裁力.影响冲裁力的主要因素: 2.冲裁力计算: P冲=Ltσb 其中:P冲裁-冲裁力 L-冲裁件周边长度 t-板料厚度 σb-材料强度极限 σb-的参考数0.6 算出的结果单位为KN 3、 卸料力:把工件或废料从凸模上卸下的力 Px=KxP冲 其中Kx-卸料力系数Kx-的参考数为0.04 算出的结果单位为KN 4、 推件力:将工件或废料顺着冲裁方向从凹模内推出的力

Pt=KtPn Kt-推件力系数n-留于凹模洞口内的件数 其中x、Pt --分别为卸料力、推件力 Kx,Kt分别是上述两种力的修正系数 P——冲裁力; n——查正表卡在凹模洞口内的件数 Kt的参考数为0.05,结果单位为KN 5、 压边力: P y=1/4 [D2—(d1+2R凹)2]P 式中 D------毛坯直径 d1-------凹模直径 R凹-----凹模圆角半径 p--------拉深力

6、拉深力:Fl= d1 bk1(N) 式中d1-----首次拉深直径(mm) b-----材料抗拉强度(Mpa) K-------修正系数 落料前的毛坯未注公差尺寸的极限偏差,故取落料件的尺寸公差为Ф119㎜ 由《冲压手册》表2-31的公式进行计算 D凹 = (D-x△)+δ凹 =(119-0.5×(-0.87)) =119.44 式中: x = 0. 5,由《冲压手册》表2-30查得,

毕业设计计算说明书

夹持机构的设计和计算 液压缸的选择:由于液压缸的作用是补偿铝棒切割后的最大误差,铝棒的最大误差在±1mm,所以我们选择最小型号的液压缸:φ24,L23,行程4,重量0.05kg,加紧力3500N。 加紧机构的校核和计算:加紧机构选择滚珠丝杠,其有良好的传动精度,能让转动变为直线运动,摩擦阻力小等特点。 1、确定定位精度:由工作场合确定精度为C7 2、丝杠的扭矩计算 一次夹持铝棒最大重量=2.7*103*0.203*0.203*0.7*8/4=475KG 铝棒最小摩擦力=475*9.8*1.5≈7125N 由f=μ*F N可知F N=f/μ=8906N 查表初步选择3206-3丝杠,其公称直径=32mm,基本导程=6mm 动载荷=14283 静载荷=35361 3、丝杠的全长计算 全长=工作行程+螺母长度+安全余量+安全长度+链接长度+余量=600mm 4、由于两方向丝杠的公况为,每天开机六小时,每年300个工作日。工作八年以上,依工作要求和工作条件,初选外循环插管式,预紧采用双螺母型,圆螺母调隙,导珠管凸出式,7级精度,定位滚珠副,丝杠材料:C r WM n钢;滚道硬度为58~62HRC。丝杠的传动精度为±mm0.04,T h=8*6*300=14400h。丝杠的转速:n1=250r/min。 5、丝杠的校核 寿命的计算 C oe=(K h*L h*K F*K H*K L*F)/K n=8156<18850 满足寿命要求。 式中――轴向载荷,取F=8906N; K h――寿命系数, (L h/500)1/3L h――工作寿命,取L h=15000 K F――载荷系数,取K F=1.2 K H――动载荷硬度影响系数,取K H=1.0 K L――短行程系数,取K L=1.0 K n――转速系数,取K n=0.5107 静载荷条件计算: C oe=K F*K H*F=32563<35361 满足条件 预拉深量:取温升3.5o C 丝杠的全长深长量:δtu=a*Δt*l u=2.55*10-6*3.5*0.83=7.2642um 取预拉伸量:4.5um 预拉伸力F t=δ*A*E/L0=337>1000/3 所选丝杠预拉伸力满足要求。 6、伺服电机的选择 假设使用环境:水平放置,伺服电动机直接驱动,3206-3滚珠丝杠传动,两个导柱直接承重和导向,理想安装,垂直均匀负载2000kg,求伺服电动机的功率: F a=F+μmg,假设不考虑切屑力,综合摩擦系数μ=0.1,得=0.1*32150=3215N T a=(F a*l)/(2*3.14*n1),设n1=0.94得,T a=2.1N*m 由扭矩可得,选择电机SA系列中SM60-15-30-CF-1000。 额定转矩:0.5N*m 额定转速:3000rpm 额定功率:0.15kw 7、滚动轴承的当量动载荷校核和寿命计算 由于工作情况得知,轴承既要承受径向载荷,又要承受轴向载荷,所以在低速运转的情况下,选择角接触球轴承7206AC,α=25°,内径30mm,外径62mm,宽度16mm,Cr=21300N,Cor=13700N,基本额定动载荷比为1.0-1.3。

第十七章 塔设备强度设计计算

第十七章塔设备强度设计计算 一、塔体的强度计算 安装在室外的高度与直径比(H/D)较大的塔设备,除承受操作压力外,还要承受质量载荷、风载荷、地震载荷和偏心载荷等,见塔设备各种载荷示意图。因此,在进行塔设备设计时必须根据受载情况进行强度计算与校核。 塔设备各种载荷示意图 ㈠按设计压力计算筒体及封头壁厚 按本篇第十五章"容器设计基础"中内压、外压容器的设计方法,计算塔体和封头的有效厚度。

㈡塔设备所承受的各种载荷计算 以下要讨论的载荷主要有:操作压力;质量载荷;风载荷;地震载荷;偏心载荷。 1.操作压力 当塔为内压时,在塔壁上引起周向及轴向拉应力;当塔为外压时,在塔壁上引起周向及轴向压应力。操作压力对裙座不起作用。 2.质量载荷 塔设备的质量包括塔体、裙座体、内构件、保温材料、扶梯和平台及各种附件等的质量,还包括在操作、停修或水压试验等不同工况时的物料或充水质量。 设备操作时的质量 m0=m1+m2+m3+m4+m5+m a+m e(4-42) 设备的最大质量(水压 试验时) m max (4-43) =m1+m2+m3+m4+m w+m a+m e 设备最小质量m min =m1+0.2m2+m3+m4+m a+m e(4-44) 式中: m1:塔体和裙座质量,K g; m2:内件质量,K g; m3:保温材料质量,K g; m4:平台、扶梯质量,K g; m5:操作时塔内物料质量,K g; m a:人孔、接管、法兰等附件质量,K g; m e:偏心质量,K g; m w:液压试验时,塔内充液质量,K g;

0.2m 2:考虑内件焊在塔体上的部分质量,如塔盘支承圈、降液管等。 当空塔吊装时,如未装保温层、平台、扶梯等,则m min 应扣除m 3和m 4。 在计算m 2、m 4及m 5时,若无实际资料,可参考表4-25进行估算。 表4-25 塔设备部分内件、附件质量参考值 ㈢ 圆筒的应力 1.塔设备由内压或外压引起的轴向应力 (4-55) 式中 σ1-由内压或外压引起的轴向应力,MP a ; p -设计压力,MP a ; D i -筒体内径,mm ; δei -i -i 截面处筒体有效壁厚,mm 。 2.操作或非操作时,重量及垂直地震力引起的轴向应力(压应力) (4-56) 式中: σ2-重量及垂直地震力引起的轴向应力,MP a ;

相关文档