文档库 最新最全的文档下载
当前位置:文档库 › Adsorption behaviour of Fe(II) and Fe(III) ions on chitosan and cross-linked chitosan beads

Adsorption behaviour of Fe(II) and Fe(III) ions on chitosan and cross-linked chitosan beads

Adsorption behaviour of Fe(II) and Fe(III) ions on chitosan and cross-linked chitosan beads
Adsorption behaviour of Fe(II) and Fe(III) ions on chitosan and cross-linked chitosan beads

Adsorption behaviour of Fe(II)and Fe(III)ions in aqueous

solution on chitosan and cross-linked chitosan beads

W.S.Wan Ngah *,S.Ab Ghani,A.Kamari

School of Chemical Sciences,Universiti Sains Malaysia,11800Penang,Malaysia

Received in revised form 6May 2004;accepted 20May 2004

Abstract

A batch adsorption system was applied to study the adsorption of Fe(II)and Fe(III)ions from aqueous solution by chitosan and cross-linked chitosan beads.The adsorption capacities and rates of Fe(II)and Fe(III)ions onto chitosan and cross-linked chitosan beads were evaluated.Chitosan beads were cross-linked with glutaraldehyde (GLA),epichlorohydrin (ECH)and ethylene glycol diglycidyl ether (EGDE)in order to enhance the chemical resistance and mechanical strength of chitosan beads.Experiments were carried out as function of pH,agitation period,agitation rate and concentration of Fe(II)and Fe(III)https://www.wendangku.net/doc/a218085293.html,ngmuir and Fre-undlich adsorption models were applied to describe the isotherms and isotherm constants.Equilibrium data agreed very well with the Langmuir model.The kinetic experimental data correlated well with the second-order kinetic model,indicating that the chemical sorption was the rate-limiting step.Results also showed that chitosan and cross-linked chitosan beads were favourable adsorbers.ó2004Elsevier Ltd.All rights reserved.

Keywords:Chitosan beads;Cross-linked chitosan beads;Adsorption capacities;Adsorption rates;Adsorption isotherm

1.Introduction

Water pollution by toxic metals remains a serious environmental problem and can be detrimental to living systems.Metals can be toxic pollutants that are non-biodegradable,undergo transformations,and have great environmental,public health,and economic impacts (Gupta and Sharma,2002).In the environment,one element can be present in di?erent chemical forms,which di?er in their chemical behaviour,bioavailability and toxicity.Some elements such as iron (Mulaudzi et al.,2002),arsenic (Balaji and Matsunaga,2002),manganese (Xue et al.,2001)and chromium (Xue et al.,2000)are mainly present in natural water as two oxi-dation states.For instance Cr(VI),As(III)and As(V)are known carcinogens,while Fe(II),Fe(III),Mn(II),Mn(VII)and Cr(III)are essential micronutrients for organisms and plants.However,they become toxic at higher levels.

Iron is the fourth most abundant element in the earth’s crust,it is present in a variety of rock and soil

minerals both as Fe(II)and Fe(III).Fe(II)is required for proper transport and storage of oxygen by means of hemoglobin and myoglobin while its oxidized forms,methemoglobin and metmyoglobin,which contain Fe(III),will not bind oxygen (Safavi and Abdollahi,1999).Iron plays an essential role in photosynthesis and is the limiting growth nutrient for phytoplanktons in some parts of the ocean (Kieber et al.,2001).Both Fe(II)and Fe(III)are important in the biosphere,serving as an active centre of a wide range of proteins such as oxi-dases,reductases and dehydrases.Waste e?uents from steel tempering,coal coking and mining industries,for example,contain signi?cant quantities of iron,nickel,copper and zinc (Aksu et al.,1999).

Among the many methods available for the removal of trace metals from water namely:chemical precipita-tion,ion exchange,coagulation,solvent extraction and membrane processes,adsorption has been shown to be an economically feasible alternative.Activated carbon has undoubtedly been one of the most popular adsor-bents for the removal of metal ions from aqueous solution and is widely used in wastewater treatment applications throughout the world (El-Shafey et al.,2002).In spite of its pro?lic use,activated carbon

*

Corresponding author.Fax:+60-465-74854.

E-mail address:wsaime@usm.my (W.S.W.Ngah).

0960-8524/$-see front matter ó2004Elsevier Ltd.All rights reserved.

doi:10.1016/j.biortech.2004.05.022

Bioresource Technology 96(2005)

443–450

remains an expensive material since the higher the qual-ity of the activated carbon,the greater its cost.Research interest into the production of alternative adsorbents to replace the costly activated carbon has intensi?ed in recent years.Attention has been focused on various adsorbents which have metal-binding capacities and are able to remove unwanted heavy metals from contami-nated water at low cost.Because of their low cost and local availability,natural materials such as chitosan, zeolites,clay or certain waste products from industrial operations such as?y ash,coal and oxides are classi?ed as low-cost adsorbents(Babel and Kurniawan,2003). Low et al.(2000)de?ned a low-cost sorbent as one which is abundant in nature,or as a by-product or waste material from another industry.

Chitin,poly(1?4)-2-acetamido-2-deoxy-b-D-glucan is a naturally occurring polymer extracted from crusta-cean shells,such as prawns,crabs,krill,insects and shrimps,and the second most abundant biopolymer next to cellulose.Chitosan is prepared from chitin by partially deacetylating its acetamido groups with a strong alkaline solution.Chitosan has been reported to have high potential for adsorption of metal ions(Guibal et al.,1998,Ngah et al.,2002a),dyes(Chiou and Li, 2002)and proteins(Zeng and Ruckenstein,1998). Chitosan is non-toxic,hydrophilic,biocompatible,bio-degradable and anti-bacterial,which has led to a very diverse range of applications in the biomedical?eld and in cosmetic,food and textile industries.The presence of a large number of amine groups on the chitosan chain increases the adsorption capacity of chitosan compared to that of chitin,which only has a small percentage of amino groups(Evans et al.,2002;Wu et al.,2000;Lu et al.,2001).Chitosan has both hydroxyl and amine groups that can be chemically modi?ed.Several meth-ods have been used to modify raw chitosan?ake either physical or chemical modi?cations(Guibal et al.,1999; Ngah and Liang,1999;Yang et al.,2002).Physical modi?cations(Onsoyen and Skaugrud,1990)may in-crease the sorption properties:gel formation decreases the crystallinity of the sorbent and involves an expan-sion of the porous network.Chemical modi?cations also o?er a wide spectrum of tools to enhance the sorption properties of chitosan for metals.They may increase the chemical stability of the sorbent in acid media and, especially,decrease the solubility in most mineral and organic acids.They also increase its resistance to bio-chemical and microbiological degradation(Guibal et al., 2000;Yang and Yuan,2001).A cross-linking step is required to reinforce the chemical stability of the bio-sorbents in such acidic solutions.Although cross-linking reduces the adsorption capacity,it enhances the resis-tance of chitosan against acid,alkali and chemicals.

This work concentrates on the study of ferrous and ferric ions sorption onto chitosan and cross-linked chitosan beads.The in?uence of experimental condi-tions such as pH,agitation period,agitation rate and concentration of Fe(II)and Fe(III)ions was studied. The Langmuir and Freundlich equations were used to?t the equilibrium isotherm.The adsorption rates were determined quantitatively and compared by the?rst-order,second-order and the intraparticle di?usion model.This information will be useful for further applications of system design in the treatment of prac-tical waste e?uents.

2.Methods

2.1.Material

Samples of chitosan?akes with average molecular weights105–106and with a deacetylation percentage of approximately55.94%(de?ned by an IR method),pre-pared from shells of prawns,were kindly donated by the Chitin-Chitosan Research Centre,Universiti Ke-bangsaan Malaysia,Bangi.Glutaraldehyde(GLA),epi-chlorohydrin(ECH)and ethylene glycol diglycidyl ether (EGDE)purchased from Fluka were analytical-reagent grade.Doubly distilled water was used to prepare all the solutions.

2.2.Preparation of chitosan beads

Chitosan solution was prepared by dissolving2.00g of chitosan?akes in60ml of5%(v/v)acetic acid solu-tion.The chitosan solution was sprayed into a precipi-tation bath containing500ml of0.50M NaOH,which neutralized the acetic acid within the chitosan gel and thereby coagulated the chitosan gel to spherical uniform chitosan gel beads.A magnetic stirrer was used to stir the aqueous NaOH solution.The wet chitosan gel beads were extensively rinsed with distilled water to remove any NaOH,?ltered and?nally air-dried to remove the water from the pore structure(hereafter called chitosan beads).The beads were then ground by using a labo-ratory jar mill and sieved to a constant size(<250l m) before use.

2.3.Preparation of cross-linked chitosan beads

Cross-linked chitosan beads were prepared according to the same procedure described previously(Ngah et al., 2002b).In this work,three di?erent cross-linking agents were used to modify chitosan at a ratio of1:1(cross-linking agent:chitosan).

2.3.1.Glutaraldehyde(GLA)

Recently prepared wet chitosan beads were sus-pended in0.025M glutaraldehyde solution to obtain a ratio of1:1with chitosan(mol GLA:mol NH2).The chitosan beads in resulting glutaraldehyde solution were

444W.S.W.Ngah et al./Bioresource Technology96(2005)443–450

left standing for24h at room temperature.After24h the cross-linked chitosan beads were intensively washed with distilled water,?ltered and air-dried.The newly formed beads(hereafter called chitosan-GLA beads) were ground and sieved to a constant size(<250l m) before use.The chitosan-GLA beads obtained were con?rmed by a Perkin-Elmer FT-IR System2000Model spectrometer.

2.3.2.Epichlorohydrin(ECH)

A solution of0.10M epichlorohydrin containing

0.067M sodium hydroxide was prepared(pH10). Freshly prepared wet chitosan beads were added to the epichlorohydrin solution to obtain a ratio of1:1with chitosan(mol ECH:mol CH2OH).The chitosan beads in epichlorohydrin were heated to a temperature between 40and50°C for2h and stirred continuously using a magnetic stirrer.After2h the beads were?ltered and washed intensively with distilled water to remove any unreacted epichlorohydrin,then?ltered and air-dried. The newly formed beads(hereafter called chitosan-ECH beads)were ground and sieved to a constant size(<250 l m)before use.The chitosan-ECH beads obtained were con?rmed by a Perkin-Elmer FT-IR System2000Model spectrometer.

2.3.3.Ethylene glycol diglycidyl ether(EGDE)

Wet chitosan beads were added to a solution of0.025 M EGDE to obtain a ratio of1:1with chitosan(mol EGDE:mol NH2).The solution was heated to a tem-perature of50–60°C for3h and stirred continuously. After3h,the newly cross-linked chitosan beads were intensively washed and air-dried.The beads(hereafter called chitosan-EGDE beads)were ground and sieved to a constant size(<250l m)before use.The chitosan-EGDE beads obtained were con?rmed by a Perkin-Elmer FT-IR System2000Model spectrometer.

2.4.Characterization of chitosan and cross-linked chito-san

Some physical properties of chitosan and cross-linked chitosan beads were measured in this work.The ana-lyses were performed using a Micromeritics ASAP2010 gas adsorption surface analyzer according to the BET equation.The CHN analyses of the beads were deter-mined using a Perkin-Elmer Series II2400CHNS/O Analyzer.

2.5.Batch adsorption experiments

Stock solutions(1000ppm)of Fe(II)and Fe(III)ions were prepared by using FeSO4?7H2O(R&M Chemicals) and FeCl3(R&M Chemicals),respectively.The stock solutions were then diluted to give standard solutions of appropriate concentrations.Batch experiments were conducted in250ml beakers and equilibrated using a magnetic stirrer.Then100ml aliquots of these standard solutions were placed in250ml beakers and0.010g of chitosan or cross-linked chitosan beads was added. After?ltration,the concentrations of Fe(II)and Fe(III) in supernatant were analyzed at wavelength248nm using an atomic absorption spectrophotometer(Perkin-Elmer3100Model).The e?ect of Fe(II)and Fe(III) adsorption was studied in pH range1–5.The pH of the initial solution was adjusted to the required pH value using either0.10M HCl or0.10M NaOH.Chitosan and cross-linked chitosan beads were equilibrated at the particular pH for about30min at500rpm and at an initial Fe(II)and Fe(III)concentration of6ppm.The e?ect of agitation period and agitation rate was also studied to determine the optimum conditions for adsorption of Fe(II)and Fe(III)ions.

Adsorption equilibrium studies were conducted under optimum conditions.For the Fe(II)adsorption equi-librium studies,a contact time of40min at pH5for chitosan,chitosan-GLA and chitosan-ECH beads was employed,whereas for chitosan-EGDE beads,contact time was60min at pH5.For the Fe(III)adsorption equilibrium studies,a contact time of40min at pH3 was used for chitosan,chitosan-GLA and chitosan-ECH beads,whereas for chitosan-EGDE beads,contact time was60min at pH3.Isotherm studies were con-ducted with a constant chitosan and cross-linked chitosan beads weight(0.010g)and varying initial concentrations of Fe(II)and Fe(III)in the range of2–14 ppm.The amounts of adsorption were calculated based on the di?erence of Fe(II)and Fe(III)concentrations in aqueous solutions before and after adsorption,the vol-ume of aqueous solution(100ml)and the weight of the beads(0.010g)according to:

Adsorption capacityeq eT?

eC0àC eTV

W

e1T

where C0is the initial Fe(II)and Fe(III)concentration (ppm),C e is the?nal or equilibrium Fe(II)and Fe(III) concentration(ppm),V is the volume of the Fe(II)and Fe(III)solution(ml)and W is the weight of the chitosan and cross-linked chitosan beads(g).

For batch kinetic studies,0.010g chitosan and cross-linked chitosan beads(<250l m)were equilibrated under optimum conditions as mentioned earlier.The beads and100ml of Fe(II)and Fe(III)solutions(6ppm) were placed in250ml beakers and stirred by a magnetic stirrer.The sorption time was varied between2and 90min.At predetermined times,the solutions in the beakers were separated from the beads by?ltration. After?ltration,the concentrations of Fe(II)and Fe(III) in supernatant were determined at wavelength248nm.

W.S.W.Ngah et al./Bioresource Technology96(2005)443–450445

3.Results and discussion

3.1.Characterization of chitosan and cross-linked chito-san beads

Table 1lists the characteristics of chitosan and cross-linked chitosan beads.According to the International Union of Pure and Applied Chemistry (IUPAC)classi-?cations,the pores can be divided in broad terms according to diameter (d )into macropores (d >50nm),mesopores (2

The CHN composition of chitosan and cross-linked chitosan beads as determined by CHN analyzer is given in Table 2.It was found that modi?cation with cross-linking agents decreased the percentage of free N atom on the chitosan chain.This is due to the chemical reaction between the cross-linking agents and chitosan.The cross-linking agents mainly,react with –NH 2groups and,as a result,the residual free N atoms are eliminated.

3.2.Adsorption equilibrium

The pH of a solution strongly a?ects the adsorption capacity of the chitosan and cross-linked chitosan beads.Figs.1and 2show that the adsorption of Fe(II)and Fe(III)increased with increasing pH of the solution.In acidic solutions,more protons will be available to pro-tonate amine groups to form groups –NH t3,reducing the number of binding sites for the adsorption of Fe(II)and Fe(III).While,at higher pH adsorption of Fe(II)and Fe(III)increases due to the decreased inhibitory e?ect of H t,which decreases with the increase in pH.At pH values higher than 7,Fe(II)and Fe(III)precipitation

occurred simultaneously.The maximum adsorptions of Fe(II)and Fe(III)ions on chitosan and cross-linked chitosan beads were found at pH 5.0and 3.0,respec-tively.

Figs.3and 4show the e?ect of agitation period on the adsorption of Fe(II)and Fe(III)by chitosan and cross-linked chitosan beads.The adsorption of Fe(II)and Fe(III)increased with agitation period and attained equilibrium at about 40min for chitosan and 60min for cross-linked chitosan beads.The adsorption of Fe(II)and Fe(III)remained constant after 40min for chitosan and 60min for cross-linked chitosan beads,implying that equilibrium had been reached.

Figs.5and 6show the adsorption isotherms of Fe(II)and Fe(III)on the chitosan and cross-linked chitosan beads.The Langmuir and Freundlich models are often used to describe equilibrium sorption isotherms.The most widely used Langmuir equation,which is valid for monolayer sorption on to a surface with a ?nite number of identical sites,is given by:

Table 1

Physical characteristics of chitosan and cross-linked chitosan beads Beads

BET surface area (m 2g à1)Average pore

diameter ( A)Chitosan

1.4650.96

Chitosan-ECH 1.3369.85Chitosan-GLA 1.4546.52Chitosan-EGDE

1.24

68.18

Table 2

CHN analyses of chitosan and cross-linked chitosan beads Beads

Percentage of composition (%)C H N Chitosan

39.537.26 6.10Chitosan-ECH 40.417.14 5.93Chitosan-GLA 40.357.18 5.45Chitosan-EGDE

37.56

6.86

5.84

446W.S.W.Ngah et al./Bioresource Technology 96(2005)443–450

C e q e ?

C e Q t1

Qb

e2T

where Q is the maximum adsorption at monolayer (mg g à1),C e is the equilibrium concentration of Fe(II)or

Fe(III)(ppm),q e is the amount of Fe(II)or Fe(III)ad-sorbed per unit weight of chitosan and cross-linked chitosan beads at equilibrium concentration and b is the Langmuir constant related to the a?nity of binding sites (ml mg à1)and is a measure of the energy of adsorption.A linearized plot of C e =q e against C e gives Q and b .The widely used empirical Freundlich equation based on sorption on a heterogeneous surface is given by:log q e ?log K F t

1

n

log C e e3T

where K F and n are Freundlich constants indicating sorption capacity and intensity,respectively.K F and n can be determined from a linear plot of log q e against log C e .The calculated results of the Langmuir and Freundlich isotherm constants are given in Table 3.It is found that the adsorptions of Fe(II)and Fe(III)on the chitosan and cross-linked chitosan beads correlated well (R >0:99)with the Langmuir equation as compared to the Freundlich equation under the concentration range studied.

The essential features of a Langmuir isotherm can be expressed in terms of a dimensionless constant separa-tion factor or equilibrium parameter,R L which is used to predict if an adsorption system is ‘‘favourable’’or ‘‘unfavourable’’.The separation factor,R L is de?ned by:R L ?

11tbC 0

e4T

where C 0is the initial Fe(II)or Fe(III)concentration (ppm)and b is the Langmuir adsorption equilibrium constant (ml mg à1).Table 4lists the calculated results.Based on the e?ect of separation factor on isotherm shape,the R L values are in the range of 0

W.S.W.Ngah et al./Bioresource Technology 96(2005)443–450

447

ough to let Fe(II)and Fe(III)ions through.The mech-anism of ion adsorption on porous adsorbents may in-volve three steps(Peniche-Covas et al.,1992):(i) di?usion of the ions to the external surface of adsorbent; (ii)di?usion of ions into the pores of adsorbent;(iii) adsorption of the ions on the internal surface of adsor-bent.The?rst step of adsorption may be a?ected by metal ion concentration and agitation period.The last step is relatively a rapid process.

3.3.Kinetics of adsorption

Figs.7and8show the time pro?les of Fe(II)and Fe(III)adsorption onto chitosan and cross-linked chitosan beads with an initial concentration of6ppm. It indicates that the adsorption capacity of the beads decreases in the order chitosan>chitosan-ECH>chito-san-GLA>chitosan-EGDE.It is known that the amine groups(–NH2)on the chitosan chain act as electron donors.The nitrogen electrons present in the amine groups can establish dative bonds with transition metal ions.But,cross-linking results in a signi?cant decrease in the adsorption capacity,due to the forma-tion of chemical bonds at adsorption sites(Inoue et al., 1993).

In order to investigate the controlling mechanisms of adsorption processes such as mass transfer and chemical reaction,the?rst-order,second-order and intraparticle

Table3

Langmuir and Freundlich isotherm constants and correlation coe?cients

Iron Beads Langmuir Freundlich

Q(mg gà1)b(ml mgà1)R K F(mg gà1)n R

Fe(II)Chitosan64.1021970.998642.74 4.770.7730 Chitosan-ECH57.4718910.999833.25 3.190.9597

Chitosan-GLA45.2510230.999521.84 2.710.9744

Chitosan-EGDE38.617620.998517.15 2.790.9985 Fe(III)Chitosan90.0924130.998955.27 3.320.9824 Chitosan-ECH72.4615500.998739.35 2.980.9788

Chitosan-GLA51.5514050.998928.63 3.470.9881

Chitosan-EGDE46.3020760.999128.36 3.610.8982 Table4

R L values based on the Langmuir equation

Iron Initial concentration

(ppm)R L value

Chitosan Chitosan-ECH Chitosan-GLA Chitosan-EGDE

Fe(II)30.13170.14980.24570.3044

60.07050.08100.14010.1795

90.04810.05550.09800.1273 Fe(III)30.12140.17690.19170.1383

60.06460.09710.10600.0743

90.04400.06690.07320.0508

448W.S.W.Ngah et al./Bioresource Technology96(2005)443–450

di?usion equations were used to test the experimen-tal data.The?rst-order kinetic model of Chiou and Li(2003)and Annadurai and Krishnan(1997)is given as:

logeq eàq tT?log q eà

k1

2:303

te5T

where q e and q t are the amounts of Fe(II)or Fe(III)ad-sorbed on adsorbent(mg gà1)at equilibrium and at time t,respectively and k1is the rate constant of?rst-order adsorption(minà1).Straight line plots of logeq eàq tTagainst t were used to determine the rate constant,k1and correlation coe?cient,R values for Fe(II)and Fe(III) under di?erent concentration range conditions.The sec-ond-order equation(McKay and Ho,1999)may be expressed as:

t q t ?

1

k2q2

e

t

t

q e

e6T

where k2is the rate constant of second-order adsorption (g mgà1minà1).Straight-line plots of t=q t against t were tested to obtain rate parameters and the results sug-gested the applicability of this kinetic model to?t the experimental data.The intraparticle di?usion rate (Chiou and Li,2003)can be described as:

q t?k i t0:5e7Twhere k i is intraparticle di?usion rate(mg gà1minà0:5). The k i is the slope of straight-line portions of the plot of q t against t0:5.

The results of the kinetic parameters for Fe(II)and Fe(II)adsorption are given in Table5.Based on the correlation coe?cients,the adsorptions of Fe(II)and Fe(III)are best described by the second-order equation. Many studies reported the?rst-order equation of La-gergren does not?t well to the initial stages of the adsorption processes(Chiou and Li,2003).The?rst-order kinetic process has been used for reversible reac-tion with an equilibrium being established between liquid and solid phases(Low et al.,2000).Whereas,the second-order kinetic model assumes that the rate-limit-ing step may be chemical adsorption(Wu et al.,2001). In many cases,the second-order equation correlates well to the adsorption studies(Sa g and Aktay,2002). It is more likely to predict that the adsorption behav-iour may involve valency forces through sharing of electrons between transition metal cations and adsor-bent.

4.Conclusion

In this study,the capacity of chitosan and cross-linked chitosan beads with glutaraldehyde,epichlorohydrin and ethylene glycol diglycidyl ether as cross-linkers to adsorb Fe(II)and Fe(III)ions from aqueous solutions was examined,including equilibrium and kinetic studies.The adsorption isotherms could be well?tted by the Lang-muir equation.The adsorption capacity of chitosan beads is higher than that of cross-linked chitosan beads, but cross-linked chitosan beads are insoluble in both acidic and basic media.The adsorption process could be best described by the second-order equation.This sug-gests that the rate-limiting step may be the chemical adsorption(chemisorption)not the mass transport.The capacity of Fe(III)adsorption using chitosan and cross-linked chitosan beads was greater than Fe(II)adsorp-tion.The results showed that the adsorption behaviour of Fe(II)and Fe(III)on chitosan and cross-linked chitosan beads used in this study was not a?ected by physical properties,but was mainly a?ected by chemical interaction.It can be concluded that chitosan and cross-linked chitosan beads are e?ective adsorbents for the collection of metal ions.

Acknowledgements

The authors thank Chitin-Chitosan Research Centre, Universiti Kebangsaan Malaysia,Bangi,Malaysia,for supplying samples of chitosan.The authors also thank Universiti Sains Malaysia for the?nancial support under IRPA Short Term Research Grant(grant no.305/ PKIMIA/622183).

Table5

Kinetic parameters for Fe(II)and Fe(III)adsorption onto chitosan and cross-linked chitosan beads at agitation period90min(C0?6ppm)

Iron Beads First-order Second-order Intraparticle di?usion

k1(minà1)R k2(g mgà1minà1)R k i(mg gà1minà0:5)R

Fe(II)Chitosan 1.99·10à20.9755 1.05·10à30.9992 4.650.9866 Chitosan-ECH 1.82·10à20.97269.86·10à40.9991 3.970.9894

Chitosan-GLA8.63·10à20.9782 1.72·10à30.9996 2.590.9879

Chitosan-EGDE9.80·10à30.9951 4.74·10à40.9993 2.050.9914

Fe(III)Chitosan 3.06·10à20.9622 3.21·10à30.9998 5.040.9978 Chitosan-ECH 1.98·10à20.9727 1.07·10à30.9997 4.520.9953

Chitosan-GLA 2.33·10à20.9755 2.33·10à30.9995 3.150.9817

Chitosan-EGDE 1.66·10à20.9803 1.26·10à30.9997 2.510.9892

W.S.W.Ngah et al./Bioresource Technology96(2005)443–450449

References

Aksu,Z.,Calik,A.,Dursun,A.Y.,Demircan,Z.,1999.Biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus:application of adsorption isotherms.Process Biochem.34,483–491. Annadurai,G.,Krishnan,M.R.V.,1997.Adsorption of acid dye from aqueous solution by chitin:batch kinetic studies.Indian J.Chem.

Technol.4,213–222.

Babel,S.,Kurniawan,T.A.,2003.Low-cost adsorbents for heavy metals uptake from contaminated water:a review.J.Hazard.

Mater.B97,219–243.

Balaji,T.,Matsunaga,H.,2002.Adsorption characteristics of As(III) and As(V)with titanium dioxide loaded Amberlite XAD-7resin.

Anal.Sci.18,1345–1349.

Chiou,M.S.,Li,H.Y.,2002.Equilibrium and kinetic modelling of adsorption of reactive dye on crosslinked chitosan beads.J.

Hazard.Mater.B93,233–248.

Chiou,M.S.,Li,H.Y.,2003.Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads.Che-mosphere50,1095–1105.

El-Shafey,E.,Cox,M.,Pichugin,A.A.,Appleton,Q.,2002.Appli-cation of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution.J.Chem.Technol.

Biotechnol.77,429–436.

Evans,J.R.,Davids,W.G.,MacRae,J.D.,Amirbahman,A.,2002.

Kinetics of cadmium uptake by chitosan-based crab shells.Water Res.36,3219–3226.

Guibal,E.,Dambies,L.,Milot,C.,Roussy,J.,1999.In?uence of polymer structural parameters and experimental conditions on metal anion sorption by chitosan.Polym.Int.48,671–680. Guibal,E.,Milot,C.,Tobin,J.M.,1998.Metal-anion sorption by chitosan beads:equilibrium and kinetic studies.Ind.Eng.Chem.

Res.37,1454–1463.

Guibal,E.,Vincent,T.,Mendoza,R.N.,2000.Synthesis and charac-terization of thiourea derivative of chitosan for platinum recovery.

J.Appl.Polym.Sci.75,119–134.

Gupta,V.K.,Sharma,S.,2002.Removal of cadmium and zinc from aqueous solutions using red mud.Environ.Sci.Technol.36,3612–3617.

Inoue,K.,Baba,Y.,Yoshizuka,K.,1993.Adsorption of metal ions on chitosan and crosslinked copper(II)-complexed chitosan.Bull.

Chem.Soc.Jpn.66,2915–2921.

Kieber,R.J.,Williams,K.,Willey,J.D.,Skrabal,S.,Avery Jr.,G.B., 2001.Iron speciation in coastal rainwater:concentration and deposition to seawater.Marine Chem.73,83–95.

Low,K.S.,Lee,C.K.,Liew,S.C.,2000.Sorption of cadmium and lead from aqueous solutions by spent grain.Process Biochem.36,59–64. Lu,G.,Yao,X.,Wu,X.,Zhan,T.,2001.Determination of the total iron by chitosan-modi?ed glassy carbon electrode.Microchem.J.

69,81–87.McKay,G.,Ho,Y.S.,1999.Pseudo-second order model for sorption processes.Process Biochem.34,451–465.

Mulaudzi,L.Y.,Staden,J.F.V.,Stefan,R.I.,2002.On-line determi-nation of iron(II)and iron(III)using a spectrophotometric sequential injection system.Anal.Chim.Acta.467,35–49. Ngah,W.S.W.,Ghani,S.A.,Hoon,L.L.,https://www.wendangku.net/doc/a218085293.html,parative adsorption of lead(II)on?ake and bead-types of chitosan.J.

Chin.Chem.Soc.49,625–628.

Ngah,W.S.W.,Endud, C.S.,Mayanar,R.,2002b.Removal of copper(II)ions from aqueous solution onto chitosan and cross-linked chitosan beads.React.Funct.Polym.50,181–190.

Ngah,W.S.W.,Liang,K.H.,1999.Adsorption of gold(III)ions onto chitosan and N-carboxymethyl chitosan:equilbrium studies.Ind.

Eng.Chem.Res.38,1411–1414.

Onsoyen,E.,Skaugrud,O.,1990.Metal recovery using chitosan.J.

Chem.Technol.Biotechnol.49,395–404.

Peniche-Covas,C.,Alvarez,L.W.,Arguelles-Monal,W.,1992.The adsorption of mercuric ions by chitosan.J.Appl.Polym.Sci.46, 1147–1150.

Safavi,A.,Abdollahi,H.,1999.Speciation of Fe(II)and Fe(III)with chromagenic mixed reagents by principal-component regression.

Microchem.J.63,211–217.

Sa g,Y.,Aktay,Y.,2002.Kinetic studies on sorption of Cr(VI)and Cu(II)ions by chitin,chitosan and Rhizopus arrhizus.Biochem.

Eng.J.12,143–153.

Wu,F.,Tseng,R.,Juang,R.,https://www.wendangku.net/doc/a218085293.html,parative adsorption of metal and dye on?ake-and bead-types of chitosans prepared from ?shery wastes.J.Hazard.Mater.B73,63–75.

Wu,F.C.,Tseng,R.L.,Juang,R.S.,2001.Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobi-lization.J.Hazard.Mater.B81,166–177.

Xue, A.,Qian,S.,Huang,G.,Chen,L.,2000.Separation and preconcentration of chromium speciation on chitosan and deter-mination by graphite furnace atomic adsorption spectrometry.J.

Anal.At.Spectrom.15,1513–1515.

Xue,A.,Qian,S.,Huang,G.,He,F.,Han,X.,2001.Separation and preconcentration of Mn(VII)/Mn(II)speciation on crosslinked chitosan and determination by?ame atomic absorption spectrom-etry.Analyst126,239–241.

Yang,Z.,Yuan,Y.,2001.Studies on the synthesis and properties of hydroxyl azacrown ether-grafted chitosan.J.Appl.Polym.Sci.82, 1838–1843.

Yang,Z.,Zhuang,L.,Tan,G.,2002.Preparation and adsorption behavior for metal of chitosan crosslinked by dihydroxy azacrown ether.J.Appl.Polym.Sci.85,530–535.

Zeng,X.F.,Ruckenstein,E.,1998.Cross-linked macroporous chitosan anion-exchange membranes for protein separations.J.Membr.Sci.

148,195–205.

450W.S.W.Ngah et al./Bioresource Technology96(2005)443–450

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

计算机应用作业

作业一 1. 电子计算机的最早的应用领域是________。 A. 数据处理 B. 数值计算 C. 文字处理 D. 工业控制 正确答案: B 2. 下列关于世界上第一台电子计算机ENIAC的叙述中,错误的是 A. 它主要采用电子管和继电器 B. 它主要用于弹道计算 C. 它是 1946 年在美国诞生的 D. 它是首次采用存储程序控制使计算机自动工作 正确答案: D 3. 计算机之所以能按人们的意图自动进行工作,最直接的原因是因为采用了________。A. 存储程序控制 B. 程序设计语言 C. 二进制 D. 高速电子元件 正确答案: A 4. 计算机的发展趋势是、微型化、网络化和智能化。 A. 巨型化 B. 精巧化 C. 小型化 D. 大型化 正确答案:

十进制数55 转换成无符号二进制数等于________。 A. 111111 B. 111011 C. 111001 D. 110111 正确答案: D 6. 执行二进制逻辑乘运算(即逻辑与运算 )01011001 ∧ 10100111 其运算结果是______。A. 1111111 B. 00000000 C. 00000001 D. 1111110 正确答案: C 7. 用 8 位二进制数能表示的最大的无符号整数等于十进制整数________。 A. 256 B. 127 C. 255 D. 128 正确答案: C 8. 二进制数101110 转换成等值的十六进制数是________。 A. 2E B. 2C C. 2F D. 2D 正确答案: A 9.

不同数制的数字符是各不相同的,没有一个数字符是一样的 B. 对于相同的十进制整数(>1),其转换结果的位数的变化趋势随着基数R 的增大而减少 C. 对于相同的十进制整数(>1),其转换结果的位数的变化趋势随着基数R 的增大而增加 D. 对于同一个整数值的二进制数表示的位数一定大于十进制数字的位数 正确答案: B 10. 在标准 ASCII码表中,根据码值由小到大的排列原则,下列字符组的排列顺序是________。A. 数字符、小写英文字母、大写英文字母、空格字符 B. 空格字符、数字符、小写英文字母、大写英文字母 C. 数字符、大写英文字母、小写英文字母、空格字符 D. 空格字符、数字符、大写英文字母、小写英文字母 正确答案: D 11. 已知英文字母m 的 ASCII码值为 6DH,那么字母q 的 ASCII码值是。 A. 6FH B. 72H C. 70H D. 71H 正确答案: D 12. 计算机的硬件系统主要包括:中央处理器(CPU)、存储器、输出设备和________. A. 扫描仪 B. 鼠标 C. 键盘 D. 输入设备 正确答案: D 13. 计算机的技术性能指标主要是指________。 A.

催化剂的制备和应用

摘要: 均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。 关键词: 分子筛膜包覆载体膜催化反应器 Coated with molecular sieve membrane preparation and application of the catalyst Abstract:uniform, continuous, the synthesis and application of dense molecular sieve membrane is widely https://www.wendangku.net/doc/a218085293.html,ing molecular sieve membrane is screening and catalysis, in traditional particle catalyst or carrier cladding molecular sieve membrane formation on the surface of composite catalyst, can realize the coupling of membrane separation and catalytic process, increase the selectivity of reactants, improve the target product yield.In recent years was reviewed in this paper in different types of particle catalyst or carrier surface preparation methods of synthesis of molecular sieves membrane, describes the molecular sieve membrane coated type composite catalyst used for the results of different catalytic reaction system.At the same time, on the basis of induction and summary of existing research results discussed coated with molecular sieve membrane research and development trend of catalyst. Keywords:molecular sieve membrane coated carrier membrane catalytic reactor 1引言 分子筛膜具有较高的热稳定性,较好的化学稳定性。耐腐蚀性以及与特种材料的生物相容性,自首次支撑体分子筛膜专利报道至今,沸石分子筛膜的研究及生产已经成为膜科学技术领域的研究热点之一。图1分子筛膜论文和专利发表数量随年份的趋势图。支撑体分子筛膜的使用拓宽了分子筛的应用范围,避免了直接使用分子筛粉末床层带来的高压降及成型时加入粘结剂带来的使用效率降低等问题,使分子筛膜规模化的工业应用成为可能。加上分子筛具有筛分效应,较大的比表面积,可控的客体-吸附质相互作用,使其可用于膜催化和分离。分子筛膜在膜分离、膜催化反应器、化学传感器、电极材料、光电器件、低介电常数材料以及保护层方面均有潜在的应用前景。

关于进制的练习题

第一章重要知识点练习题 一、选择题 1、十进制数0.375转换为二进制为()。 A、0.1001 B、0.0011 C、0.1010 D、0.0110 2、最大的无符号16位二进制整数转换为十进制是()。 A、65535 B、255 C、32767 D、1024 3、若在一个非零无符号二进制整数右边加三个零形成一个新的数,则新数值是原数值的()。 A、八倍 B、四倍 C、八分之一 D、四分之一 5、二进制数110110.11转换为十进制数为()。 A、54.75 B、58.6 C、46.3 D、54.85 6、已知a= (111101)2,b= (3c)16,c= (64)10,则不等式( )成立。 A、a

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

二进制的运算法则

1.2 微型计算机运算基础 1.2.1 二进制数的运算方法 电子计算机具有强大的运算能力,它可以进行两种运算:算术运算和逻辑运算。1.二进制数的算术运算 二进制数的算术运算包括:加、减、乘、除四则运算,下面分别予以介绍。(1)二进制数的加法 根据“逢二进一”规则,二进制数加法的法则为: 0+0=0 0+1=1+0=1 1+1=0 (进位为1) 1+1+1=1 (进位为1) 例如:1110和1011相加过程如下: (2)二进制数的减法

根据“借一有二”的规则,二进制数减法的法则为: 0-0=0 1-1=0 1-0=1 0-1=1 (借位为1) 例如:1101减去1011的过程如下: (3)二进制数的乘法 二进制数乘法过程可仿照十进制数乘法进行。但由于二进制数只有0或1两种可能的乘数位,导致二进制乘法更为简单。二进制数乘法的法则为: 0×0=0 0×1=1×0=0 1×1=1 例如:1001和1010相乘的过程如下:

由低位到高位,用乘数的每一位去乘被乘数,若乘数的某一位为1,则该次部分积为被乘数;若乘数的某一位为0,则该次部分积为0。某次部分积的最低位必须和本位乘数对齐,所有部分积相加的结果则为相乘得到的乘积。 (4)二进制数的除法 二进制数除法与十进制数除法很类似。可先从被除数的最高位开始,将被除数(或中间余数)与除数相比较,若被除数(或中间余数)大于除数,则用被除数(或中间余数)减去除数,商为1,并得相减之后的中间余数,否则商为0。再将被除数的下一位移下补充到中间余数的末位,重复以上过程,就可得到所要求的各位商数和最终的余数。 例如:100110÷110的过程如下:

第二章催化剂制备、性能评价及使用技术

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

数字信号及基本逻辑运算

数字信号是时间上和数值上均离散的一种信号,对该种信号进行传递、处理、运算和存储的电路称为数字电路。运算不仅有普通的算术运算而且有逻辑运算 一、数制在数字电路中,数以电路的状态来表示。找一个具有十种状态的电子器件比较难,而找一个具有两种状态的器件很容易,故数字电路中广泛使用二进制。 二进制的数码只有二个,即0和1。进位规律是“逢二进一”。 二进制数1101.11可以用一个多项式形式表示成: (1101.11)2=1×23+1×22+0×21+1×20+1×2-1+1×2-2 对任意一个二进制数可表示为:∑- - =? =1 22 ) n m i i i a N ( 八进制和十六进制数 用二进制表示一个大数时,位数太多。在数字系统中采用八进制和十六进制作为二进制的缩写形式。 八进制数码有8个,即:0、1、2、3、4、5、6、7。进位规律是“逢八进一”。十六进位计数制的数码是:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。进位规律是“逢十六进一”。不管是八进制还是十六进制都可以象十进制和二进制那样,用多项式的形式来表示。 数制间的转换 计算机中存储数据和对数据进行运算采用的是二进制数,当把数据输入到计算机中,或者从计算机中输出数据时,要进行不同计数制之间的转换。 二、编码 用二进制数码表示十进制数或其它特殊信息如字母、符号等的过程称为编码。二—十进制码(BCD码) 二—十进制码是用四位二进制码表示一位十进制数的代码,简称为BCD码。这种编码的方法很多,但常用的是8421码、5421码和余3码等。 8421码是最常用的一种十进制数编码,它是用四位二进制数0000到1001来表示一位十进制数,每一位都有固定的权。从左到右,各位的权依次为:23、22、21、20,即8、4、2、1。可以看出,8421码对十进数的十个数字符号的编码表示和二进制数中表示的方法完全一样,但不允许出现1010到1111这六种编码,因为没有相应的十进制数字符号和其对应。

二进制运算法则

二进制运算法则 莱布尼兹也是第一个认识到二进制记数法重要性的人,并系统地提出了二进制数的运算法则。二进制 对200多年后计算机的发展产生了深远的影响。他于1716年发表了《论中国的哲学》一文,专门讨论 八卦与二进制,指出二进制与八卦有共同之处。 目录 德国著名的数学家和哲学家莱布尼兹,对帕斯卡的加法机很感兴趣。于是,莱布 尼兹也开始了对计算机的研究。 编辑本段 研究过程 1672年1月,莱布尼兹搞出了一个木制的机器模型,向英国皇家学会会员们做了 演示。但这个模型只能说明原理,不能正常运行。此后,为了加快研制计算机的进程,莱布尼兹在巴黎定居4年。在巴黎,他与一位著名钟表匠奥利韦合作。他只需对奥利 韦作一些简单的说明,实际的制造工作就全部由这位钟表匠独自去完成。1974年,最 后定型的那台机器,就是由奥利韦一人装配而成的。莱布尼兹的这台乘法机长约1米,宽30厘米,高25厘米。它由不动的计数器和可动的定位机构两部分组成。整个机器 由一套齿轮系统来传动,它的重要部件是阶梯形轴,便于实现简单的乘除运算。 莱布尼兹设计的样机,先后在巴黎,伦敦展出。由于他在计算设备上的出色成就,被选为英国皇家学会会员。1700年,他被选为巴黎科学院院士。 莱布尼兹在法国定居时,同在华的传教士白晋有密切联系。白晋曾为康熙皇帝讲 过数学课,他对中国的易经很感兴趣,曾在1701年寄给莱布尼兹两张易经图,其中一 张就是有名的“伏羲六十四卦方位圆图”。莱布尼兹惊奇地发现,这六十四卦正好与64 个二进制数相对应。莱布尼兹认为中国的八卦是世界上最早的二进制记数法。为此,

莱布尼兹非常向往和崇尚中国的古代文明,他把自己研制的乘法机的复制品赠送给中 国皇帝康熙,以表达他对中国的敬意。 编辑本段 法则 二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位 进位);即7=111 10=1010 3=11 二进制的减法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加运算或异或运 算) ; 二进制的乘法:0 * 0 = 00 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1 ; 逻辑运算二进制的或运算:遇1得1 二进制的与运算:遇0得0 二进制的非运算:各位取反。 编辑本段 二进制与其他进制的转换 首先我们得了解一个概念,叫“权”。“权”就是进制的基底的n次幂。如二进制的 权就是(2)*n了,十进制的权就是(10)*n,看到十进制我们就很自然的想到科学 计算法中的(10)*n,对吧?有了权这个定义之后,我们就可以随便把一个进制的数 转化成另一个进制的数了。日常生活中,由于电脑的字节,汉字西文的字节的原因, 二进制最常见的转换是八进制,十六进制,三十二进制,当然还有十进制。 二进制转换成十进制的原则是:基数乘以权,然后相加,简化运算时可以把数位 数是0的项不写出来,(因为0乘以其他不为0的数都是0)。小数部分也一样,但精确度较少。 二进制与八进制的转换:采用“三位一并法”(是以小数点为中心向左右两边以每 三位分组,不足的补上0)这样就可以轻松的进行转换。 二进制与十六进制的转换:采用的是“四位一并法”,就如二进制与八进制的转换 一样。

催化剂的制备及贵金属催化剂的回收

论文题目:催化剂的制备及贵金属催化剂的回收课程名称:石油化工 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月29日

催化剂的制备及回收 摘要:在工业领域,催化剂是一种重要的化学制品,不但能够促进化学反应的发生,还能控制化学反应的速率,在工业领域有着重要的应用。对于有些化学反应来讲,如果没有催化剂的介入,将无法正常实现。然而,在参与反应后很多催化剂很难回收利用或已经中毒。 关键词:催化剂;回收技术;贵金属;催化剂中毒 Preparation Of Catalysts And Recycling Abstract:In industry, the catalyst is an important chemical products, not only to promote the chemical reaction, but also to control the chemical reaction rate, in the industrial field has important applications. For some chemical reactions in terms of, if not the catalyst intervention will not work properly achieved. However, after involved in the reaction a lot of catalyst is difficult to recycle or have been poisoned. Keywords: Catalyst; recycling technology; precious metals; catalyst poisoning 引言 催化剂最早由瑞典化学家贝采里乌斯发现。100多年前,贝采里乌斯偶然发现,白金粉末可以加快酒精和空气中的氧气发生化学反应,生成了醋酸。后来,人们把这一作用叫做触媒作用或催化作用,希腊语的意思是“解去束缚”。后来,经过科学家们的不断研究和总结,将催化剂普遍定义[1]为--催化剂是一种能够改变一个化学反应的速度,却不能改变化学反应热力学平衡位置,本身在化学反应中不被明显的消耗的化学物质。 1 催化剂的主要分类 催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂, 1.1 均相催化剂 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作

二进制算术运算和逻辑运算

1、二进制的算术运算 二进制数的算术运算非常简单,它的基本运算是加法。在计算机中,引入补码表示后,加上一些控制逻辑,利用加法就可以实现二进制的减法、乘法和除法运算。 (1)二进制的加法运算 二进制数的加法运算法则只有四条:0+0=0 0+1=1 1+0=1 1+1=10(向高位进位) 例:计算1101+1011的和 由算式可知,两个二进制数相加时,每一位最多有三个数:本位被加数、加数和来自低位的进位数。按照加法运算法则可得到本位加法的和及向高位的进位。 (2)二进制数的减法运算 二进制数的减法运算法则也只有四条: 0-0=0 0-1=1(向高位借位) 1-0=1 1-1=0 例:计算11000011 00101101的差 由算式知,两个二进制数相减时,每一位最多有三个数:本位被减数、减数和向高位的借位数。按照减法运算法则可得到本位相减的差数和向高位的借位。 (3)二进制数的乘法运算 二进制数的乘法运算法则也只有四条: 0 * 0 = 0 0 * 1 = 0 1 * 0 = 0 1 * 1 = 1 例:计算1110×1101的积 由算式可知,两个二进制数相乘,若相应位乘数为1,则部份积就是被乘数;若相应位乘数为0,则部份积就是全0。部份积的个数等于乘数的位数。以上这种用位移累加的方法计算两个二进制数的乘积,看起来比传统乘法繁琐,但它却为计算机所接受。累加器的功能是执行加法运算并保存其结果,它是运算器的重要组成部分。 (4)二进制数的除法运算 二进制数的除法运算法则也只有四条:0÷0 = 00÷1 = 01÷0 = 0 (无意义) 1÷1 = 1 例:计算100110÷110的商和余数。 由算式可知,(100110)2÷(110)2得商(110)2,余数(10)2。但在计算机中实现上述除法过程,无法依靠观察判断每一步是否“够减”,需进行修改,通常采用的有“恢复余数法”和“不恢复余数法”,这里就不作介绍了。 2、二进制数的逻辑运算 计算机所以具有很强的数据处理能力,是由于在计算机里装满了处理数据所用的电路。这些电路都是以各种各样的逻辑为基础而构成的简单电路经过巧妙组合而成的。 逻辑变量之间的运算称为逻辑运算,它是逻辑代数的研究内容。在逻辑代数里,表示"真"与"假"、"是"与"否"、"有"与"无"这种具有逻辑属性的变量称为逻辑变量,像普通代数一样,逻辑变量可以用A,B,C,……或X,Y,Z……来表示。对二进制数的1和0赋以逻辑含义,例如用1表示真,用0表示假,这样将二进制数与逻辑取值对应起来。由此可见,逻辑运算是以二进制数为基

微孔分子筛催化剂的制备及应用

2 银川能源学院 工业催化 学生姓名席坤 学号 1310140108 指导教师王伟 院系石油化工学院 专业班级能源化工1302班 微孔分子筛催化剂的制备及应用 (银川能源学院能源化工1302班1310140108 席坤) 摘要:微孔分子筛具有表面积大、水热稳定性高、微孔丰富均一、表面性质可调等性能,被广泛地用作催化剂。分子筛作为催化剂常应用在石油化工、有机中间体的合成和物质的分离中。本文主要是简述了一下微孔分子筛催化剂及对微孔分子筛的改进方法和分子

筛催化剂在不同反应中的应用。 关键词:催化剂;微孔;分子筛;应用 一、引言 分子筛是一种具有立方晶格的硅铝酸盐化合物,具有均匀的微孔结构,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛”分子的作用,故称分子筛。根据形成的孔径的大小,国际纯粹与应用化学协会(IUPAC)定义:微孔(小于2nm),介孔(2~50nm),大孔(大于50nm)三类。自1756年,瑞典科学家 A.F.Cronstedt 在研究矿物时发现了最早的天然沸石分子筛到现在通过各种方法合成的新型分子筛,人们已经从结构,性质,作用原理等各个方面全面认识了分子筛。根据不同的需要合成具有不同功能的分子筛材料,不同种多性能的分子筛被越来越多的人研究[1]。因此分子筛也不再局限于由硅氧四面体和铝氧四面体组成的阴离子骨架硅铝酸盐体系 ,而是泛指一类具有规则孔结构的结晶无机固体。这些具有新型组成和结构的分子筛进一步扩大了微孔分子筛的应用和发展空间。分子筛作为催化剂特别具有活性高,选择性好,稳定性和抗毒能力强等优点。近年来,它作为一种化工新材料发展得很快,应用也日益广泛。特别是在石油的炼制和石油化工方面作为工业催化剂发挥了很重要的作用[2]。 二、微孔分子筛的合成方法[3] 传统的微孔分子筛合成方法有:水热体系合成法,非水体系合成法,蒸汽相体系合成法,干粉体系合成法,微波法,高温焙烧法,向导剂法等等。 1、水热体系合成法 又称水热晶化法,是将硅源、铝源、碱(有机碱和无机碱)和水按一定比例合,放入反应釜中,在一定温度下晶化而制备沸石晶体。通常低硅铝比沸石是在低温水热体系中合成的,而高硅铝比的沸石于高温水热体系中合成。 2、非水体系合成法 非水体系合成法于本世纪八十年代初期由Bibbq和Dale[19]开创。它不以水为溶剂,而代之以有机物作为溶剂进行沸石的合成。开辟了一条沸石合成的新途径,并为沸石的固相转变机理提供了有力的佐证。 3、蒸汽相体系合成法 蒸汽相体系合成法区别于水热体系合成法和非水体系合成法,蒸汽相体系合成法是

计算机一级试题

础知识选择题部分 第1套基础知识选择题目答案(第1套选择题答案:) 1.下面四条常用术语的叙述中,有错误的是____B。 A)光标是显示屏上指示位置的标志 B)汇编语言是一种面向机器的低级程序设计语言,用汇编语言编写的程序计算机能直接执行 C)总线是计算机系统中各部件之间传输信息的公共通路 D)读写磁头是既能从磁表面存储器读出信息又能把信息写入磁表面存储器的装置 2.下面设备中,既能向主机输入数据又能接收由主机输出数据的设置是___C。 A)CD-ROM B)显示器C)软磁盘存储器D)光笔 3.执行二进制算术加运算11001001+00100111其运算结果是_B。 A)11101111 B)11110000 C)00000001 D)10100010 4.与十六进制数CD等值的十进制数是_B。 A)204 B)205 C)206 D)203 5.微型计算机硬件系统中最核心的部位是_B。 A)主板B)CPU C)内存储器D)I/O设备 6.微型计算机的主机包括_B。 A)运算器和控制器B)CPU和内存储器C)CPU和UPS D)UPS和内存储器 7.计算机能直接识别和执行的语言是_A。 A)机器语言B)高级语言C)汇编语言D)数据库语言 8.微型计算机,控制器的基本功能是_D。 A)进行算术运算和逻辑运算B)存储各种控制信息C)保持各种控制状态 D)控制机器各个部件协调一致地工作 9.与十进制数254等值的二进制数是_A。 A)lllllll0 B)11101111 C)11111011 D)11101110 10.微型计算机存储系统中,PROM是_D。 A)可读写存储器B)动态随机存储器C)只读存储器D)可编程只读存储器B.C.B.B.B.B.A.D.A.D.C.A.C.D.D.B.A.C.D.A 11.执行二进制逻辑乘运算(即逻辑与运算)01011001∧10100111其运算结果是_。 A)00000000 B)1111111 C)00000001 D)1111110 12.下列几种存储器,存取周期最短的是_。 A)内存储器B)光盘存储器C)硬盘存储器D)软盘存储器 13.在微型计算机内存储器中不能用指令修改其存储内容的部分是__。 A)RAM B)DRAM C)ROM D)SRAM 14.计算机病毒是指_。 A)编制有错误的计算机程序B)设计不完善的计算机程序C)已被破坏的计算机程序D)以危害系统为目的的特殊计算机程序 15.CPU中有一个程序计数器(又称指令计数器),它用于存储_。 A)正在执行的指令的内容B)下一条要执行的指令的内容C)正在执行的指令的内存地址D)下一条要执行的指令的内存地址

全国计算机一级考试试题

【网络综合- 计算机等级考试(NCRE)试题】 1、计算机病毒主要造成______。 A 磁盘片的损坏 B 磁盘驱动器的破坏 C CPU的破坏 D 程序和数据的破坏 2、用于局域网的基本网络连接设备是______。 A 集线器 B 网络适配器(网卡) C 调制解调器 D 路由器 3、以下说法中正确的是______。 A 域名服务器中存放Internet主机的IP地址 B 域名服务器中存放Internet主机的域名 C 域名服务器中存放Internet主机域名与IP地址的对照表 D 域名服务器中存放Internet主机的电子邮箱的地址 【试题分析】:域名服务器中存放的是Internet主机域名与IP地址的对照表。 4、计算机最早的应用领域是______。 A 辅助工程 B 过程控制 C 数据处理 D 数值计算 5、在下列字符中,其ASCII码值最大的一个是______。 A Z B 9 C 空格字符 D a 【试题分析】:数字的ASCII码值从0~9依次增大,其后是大写字母,其ASCII码值从A~Z依次增大,再后面是小写字母,其ASCII码值从a~z依次增大。空格的ASCII码值为0,是最小的。 6、要存放10个24×24点阵的汉字字模,需要______存储空间。 A 72B B 320B C 720B D 72KB 7、RAM具有______的特点。 A 断电后,存储在其内的数据将全部丢失 B 存储在其内的数据将永久保存

C 用户不能随机写入数据 D 存取速度慢 8、KB(千字节)是度量存储器容量大小的常用单位之一,这里的1KB等于______。 A 1000个字节 B 1024个字节 C 1000个二进位 D 1024个字 9、下列设备中,读写数据最快的是______。 A 软盘 B CD-ROM C 硬盘 D 磁带 【试题分析】:由于硬盘中含有SDRAM的速度比磁介质快很多,因此也就加快了数据传输的速度。软盘最慢。 10、下列软件中,______属于应用软件。 A Windows 2000 B Word 2000 C Unix D Linux 11、下列叙述中,正确的一条是______。 A 用高级程序语言编写的程序称为源程序 B 计算机能直接识别并执行用汇编语言编写的程序 C 机器语言编写的程序执行效率最低 D 不同型号的计算机具有相同的机器语言 12、为防止计算机硬件的突然故障或病毒入侵的破坏, ,对于重要的数据文件和工作资料在每次工作结束后,通常应______。 A 保存在硬盘之中 B 复制到软盘中作为备份保存 C 全部打印出来 D 压缩后保存到硬盘中 13、下列关于电子邮件的说法,正确的是______。 A 收件人必须有E_mail账号,发件人可以没有E_mail账号 B发件人必须有E_mail账号,收件人可以没有E_mail账号 C 发件人和收件人均必须有E_mail账号 D 发件人必须知道收件人的邮政编码 【试题分析】:电子邮件是Internet最广泛使用的一种服务,任何用户存放在自己计算机上的电子信涵可以通过Internet的电子邮件服务传递到另外的Internet用户的信箱中去。反之,你也可以收到从其他用户那里发来的电子邮件。发件人和收件人均必须有E_mail账号。 1)计算机的特点是处理速度快、计算精度高、存储容量大、可靠性高、工作全自动以及

相关文档