文档库 最新最全的文档下载
当前位置:文档库 › 5800p竖曲线

5800p竖曲线

5800p竖曲线
5800p竖曲线

最近很多网友向我要路线设计高程(竖曲线)计算的5800计算器程序,其实,在我的新书《卡西欧fx-5800P计算器与道路施工放样程序》中的第2章第2.3.5节(82页)就有,可能有些网友没有购买这本书,于是我将该程序截取下来,发布在空间,供需要的网友参考使用。

竖曲线高程计算

4.3 某条道路变坡点桩号为K25+460.00,高程为780.72.m,i1=0.8%,i2=5%,竖曲线半径为5000m。(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。 解:ω=i2-i1=5%-0.8%=4.2%凹曲线 L=R?ω=5000×4.2%=210.00 m T=L/2=105.00 m E=T2/2R=1.10 m 竖曲线起点桩号:K25+460-T=K25+355.00 设计高程:780.72-105×0.8%=779.88 m K25+400: 横距:x=(K25+400)-(K25+355.00)=45m 竖距:h=x2/2R=0.20 m 切线高程:779.88+45×0.8%=780.2 m 设计高程:780.24+0.20=780.44 m K25+460:变坡点处 设计高程=变坡点高程+E=780.72+1.10=781.82 m 竖曲线终点桩号:K25+460+T=K25+565 设计高程:780.72+105×5%=785.97 m K25+500:两种方法 1、从竖曲线起点开始计算 横距:x=(K25+500)-(K25+355.00)=145m 竖距:h=x2/2R=2.10 m 切线高程(从竖曲线起点越过变坡点向前延伸):779.88+145×0.8%=781.04m 设计高程:781.04+2.10=783.14 m 2、从竖曲线终点开始计算 横距:x=(K25+565)-(K25+500)=65m 竖距:h=x2/2R=0.42 m 切线高程 (从竖曲线终点反向计算):785.97-65×5%=782.72m 或从变坡点计算:780.72+(105-65)×5%=782.72m 设计高程:782.72+0.42=783.14 m

公路竖曲线高程计算程序

fx-4800P计算器 公路竖曲线高程计算程序 (程序名:GAO CHENG-HP) Lb1 0︰{CDAB}︰C“K1=”︰D“H1=”︰A“PV-K0=”︰B “PV-H0=”↙ Lb1 1 ︰{REF }︰R“R=”︰E“K2=”︰F“H2=”↙Lb1 2︰U =(B-D)÷(A-C)︰V =(F-B)÷(E-A)︰U >V =>N = 0︰T = R ( U-V ) ÷2︰≠>N = 1︰T = R ( V-U ) ÷2 ︰⊿G = A -T ︰Q = A +T ︰W = T 2÷(2 R)↙ Lb1 3︰{K}︰K “I.T.E.ZY-K.YZ-K=0,1”︰ K =0 =>Goto 4 ︰⊿U “I 1”= U ▲V “I 2”= V ▲T = T ▲W “E”= W ▲G “ZY-K”= G ▲Q “YZ-K”= Q▲↙ Lb1 4︰{M}︰M“PK=”︰M ≤A =>Goto 5︰⊿Goto 6 ↙Lb1 5︰M ≤G =>H = B-U ( A-M ) ︰Goto 7 ︰≠>Prog “H1 ”︰N = 1 =>H = B+X-Y ︰Goto 7︰≠>N = 0 =>H = B-X -Y ︰Goto 7↙ Lb1 6︰M ≥Q =>H = B+V ( M-A ) ︰Goto 7 ︰≠>Prog “H2 ”︰N = 1 =>H = B+X+Y ︰Goto 7︰≠>N = 0 =>H = B-X +Y ↙ Lb1 7︰H “HP”= H ▲{L}︰L“BZ-T=0,L”︰L = 0 =>Goto 8 ︰⊿{S}︰S “IL=”︰H “HL”= H +S L ▲↙

工程测量竖曲线程序及公式

竖曲线程序要素 已知要素 ? 1. 变坡点里程桩号 2. 变坡点高程3. 竖曲线半径4. 变坡点前坡度(上坡为正,下坡 为负) 5. 变坡点后坡度(上坡为正,下坡为负)6.待求点里程 计算公式 ●凹凸型:当前坡度-后坡度为正,则为凸型,反之为凹型 ●转坡角(曲折角):前坡度–后坡度 ●竖曲线长:半径* 转坡角 ●切线长:竖曲线长/ 2 ●外矢距:切线长的平方/ 2倍半径 ●待求点到变坡点距离:待求点桩号–变坡点桩号(取绝对值) ●曲线起终点桩号: 起点:变坡点的桩号–切线长终点:变坡点的桩号+ 切线长 ●任意点切线标高:变坡点的标高±测点与变坡点里程距离*该里程对应坡度 ●任意点设计标高: 1. 凸型:该桩号在切线上的设计标高–修正值 2. 凹型:该桩号在切线上的设计标高+ 修正值 程序条件 ◆条件:如果待求点≦变坡点,则待求点–起点=间距,反之待求点>变坡点,则终点–待 求点=间距 ●曲线点间距:待求点–起点或终点–待求点 If K ≦Z:Then K - A→X:Else K > Z =>B - K→X : IfEnd ●竖曲线上点的高程修正值:曲线点间距的平方/ 2倍半径 ◆条件:凸型竖曲线(J>0) 如果待求点≦变坡点,则任意点设计标高=变坡点高程-(变坡点-待求点)* 前坡度(取绝对值)-修正值,反之待求点>变坡点,则变坡点任意点设计标高=变坡点高程-(待求点-变坡点)* 后坡度(取绝对值)-修正值 If K≦Z:Then H-Abs(U*I)-Y→G:Else K>Z=>H-Abs(U*L)-Y→G:IfEnd ◆条件:凹型竖曲线(J<0) 如果待求点≦变坡点,则任意点设计标高=变坡点高程+(待求点-变坡点)* 前坡度(取绝对值)+修正值,反之待求点>变坡点,则变坡点任意点设计标高=变坡点高程+(变坡点-待求点)* 后坡度(取绝对值)+修正值 If K≦Z:Then H+Abs(U*I)+Y→G:Else K>Z=>H+Abs(U*L)+Y→G:IfEnd

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

竖曲线计算方法

竖曲线计算书 一、 变坡点桩号为220k28+,变坡点标高为m 135.873,两相邻路段的纵坡为 %303.0%0.39921-=+=i i 和,m R 15000=凸。 1. 计算竖曲线的基本要素 竖曲线长度 )(105.3)00303.000399.0(15000m R L =+?==ω 切线长度 )(7.522 3.1052m L T === 外距 )(09.015000 27 .52*7..5222m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:3.167287.522202822028+=-+=-+K K T K 竖曲线起点高程:135.873-52.7 ?0.00399=135.663 (2) 竖曲线终点桩号:7.272287.522202822028+=++=++K K T K 竖曲线终点高程:135.873-52.7?0.00303=135.713 3. 求各桩号标高和竖曲线高程

二、 变坡点桩号为23029+K ,变坡点标高为m 809.132,两相邻路段的纵坡为 %401.0%303.021+=-=i i 和,m R 9000=凹。 1. 计算竖曲线的基本要素 竖曲线长度 )(36.63)]00303.0(00401.0[9000m R L =--?==ω 切线长度 )(68.312 36.632m L T === 外距 )(06.09000 268 .31*68.3122m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:32.1982968.312302923029+=-+=-+K K T K 竖曲线起点高程:132.809+31.68?0.00303=132.905 (2) 竖曲线终点桩号:68.2612968.312302923029+=++=++K K T K 竖曲线终点高程:132.809+31.68?0.00401=132.936 3. 求各桩号标高和竖曲线高程

纵断面设计——竖曲线设计

纵断面设计——竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。 当i1- i2为正值时,则为凸形竖曲线。当i1 - i2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: 若取抛物线参数为竖曲线的半径,则有: (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距通过推导可得: 2、竖曲线曲线长:L = Rω 3、竖曲线切线长:T= TA =TB ≈ L/2 = 4、竖曲线的外距:E = ⑤竖曲线上任意点至相应切线的距离: 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R—为竖曲线的半径,m。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

竖曲线

竖曲线 竖曲线【vertical curve】在线路纵断面上,以变坡点为交点,连接两相邻坡段的曲线称为竖曲线。 竖曲线有凸形和凹形两种。 道路纵断面线形常采用直线(又叫直坡段)、竖曲线两种线形,二者是纵断面线形的基本要素。竖曲线常采用圆曲线,可以分为凸形和凹形两种。 在道路纵断面上两个相邻纵坡线的交点,被称为变坡点。为了保证行车安全、舒适以及视距的需要,在变坡处设置竖曲线。竖曲线的主要作用是:缓和纵向变坡处行车动量变化而产生的冲击作用,确保道路纵向行车视距;将竖曲线与平曲线恰当地组合,有利于路面排水和改善行车的视线诱导和舒适感。 竖曲线技术指标主要有竖曲线半径和竖曲线长度。凸形的竖曲线的视距条件较差,应选择适当的半径以保证安全行车的需要。凹形的竖曲线,视距一般能得到保证,但由于在离心力作用下汽车要产生增重,因此应选择适当的半径来控制离心力不要过大,以保证行车的平顺和舒适。 鐵路線路採用的豎曲綫,按其形狀可分為一下三種: 1 圓曲綫形豎曲綫 2 抛物線形豎曲綫

3 連續短坡(鏈條坡) 目前採用最多的為抛物線形豎曲綫。這種豎曲綫,在離開切線后,其曲度逐漸變更,將一端的坡度緩緩變化而成為他端的坡度,因其圖形與拋體運動的軌道形狀相同,故稱為拋物線形豎曲綫。 關於豎曲綫的有關規定 相鄰坡度的坡度代數差應儘量小些,最大不得超過重車方向的限制坡度值。 Ⅰ、Ⅱ级铁路相邻地段的坡度差大于3‰,Ⅲ级铁路大于4‰时,应以竖曲线连接。竖曲线半径:Ⅰ、Ⅱ级铁路应为10000m,Ⅲ级铁路应为5000m。 竖曲线不应与缓和曲线重叠,也不应设在无碴桥的桥面上。 竖曲线不宜与道岔重叠,困难条件下必须重叠时,竖曲线半径不应小于10000m。 這裡我們可以這樣分析:如果豎曲綫與道岔重疊時,豎曲綫半徑採用10000米,按我國現行標準道岔來考慮,在尖軌長為7.7及6.25米的範圍內,豎曲綫的影響值為3及2毫米;而在道岔全長範圍內,豎曲綫的影響值為3及2毫米;而在道岔全廠範圍內,其坡度變化如下表所列數值。

5800计算器竖曲线程序

CASIO fx5800p全线高程计算程序 GAOCHEN 主程序 Lbl 1 “KM=,<0,Stop”:?K:K<0=>Stop:“PY=”?L:Prog”GK” C-D→E:Abs(RE/2)→T:R(Abs(E)/E)→R If K≤B-T:Then 0→H:Else:If K≥B+T Then 0→H:D→C:Else K-B+T→H:Ifend:Ifend A-(B-K)C-H2/(2R)-0.000→G:Cls “KM=”:Locate 4,1,K:Locate 10,1,“PY=”:Locate 13,1,L:Fix 3 “H=”:Locate 4,2,G Prog “PODU”:(E-B)/(D-A)(K-A)+B→I:(F-C)/(D-A)(K-A)+C→J “HL=”:G+I(L-1)→X:Locate 4,3,X:Locate 11,3,“I=”:Locate 13,3,I*100 “HR=”:G+J(L-1)→Y:Locate 4,4,Y:Locate 11,4,“I=”:Locate 13,4,J*100◢显示中边桩高程 Cls:Norm 2:“BM+HS≤0,Goto 1”?Z:Z≤0=> Goto 1:Cls (输入视线高) “KM=”:Locate 4,1,K:Locate 10,1,“PY=”:Locate 13,1,L:Fix 3 “QSM=”: Locate 6,2,Z-G (显示中桩读数) “QSL=”: Locate 6,3,Z-X (显示左桩读数) “QSR=”: Locate 6,4,Z-Y◢(显示右桩读数) Norm 2:Cls:Goto1 (后面可加已知视线高计算读数部分,不想计算读数则视线高输入0或负数如不想显示麻烦,可将Locate语句去掉) 以下两个子程序不需运行,只是两个独立的数据库赋值程序,字母重复不影响计算结果 GK 数据库子程序 If K≤第二曲线起点桩号:Then 第一曲线交点高程→A:第一曲线交点桩号→B:第

竖曲线自动计算表格

竖曲线自动计算表格 篇一:Excel竖曲线计算 利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进<0 = J=0; M-P=0 = J=1 B: K<=D =B=-M ; KD = B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段;

3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型);(4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用);如图1所示: 图1 2、进行计算准备: (1)、根据输入里程判断该里程所处的曲线编号: 需要使用lookup函数,函数公式为“LOOKUP(A2,参数库!H3:H25,参数库!A3:A25)”。如图2所示: 里程为K15+631的桩号位于第11个编号的竖曲线处,可以参照图1 进行对照 (2)、在工作表“程序计算”中对应“参数库”相应的格式建立表格

公路测量曲线和竖曲线要素计算方法

1.某山岭区一般二级公路,变坡点桩号为K5+030,高程为427.68m ,%51=i ,%42-=i ,竖曲线半径R =2000m 。试计算竖曲线各要素以及桩号为k5+000和K5+100处的设计高程。 解:⑴计算竖曲线要素 09.005.004.012-=--=-=i i ω,为凸形竖曲线。 曲线长20000.09180L R m ω==?= 切线长m L T 902 1802=== 外距22 90 2.03222000 T E m R ===? ⑵计算设计高程 竖曲线起点桩号=(K5+30)-90=K4+940 竖曲线起点高程=427.68-90×0.05=423.18m 桩号K5+000处: 横距m K K x 60)9404()0005(1=+-+= 竖距m R x h 9.04000 6022 211=== 切线高程=423.18+60×0.5=426.18m 设计高程=426.18-0.9=425.28m 桩号K5+100处: 横距m K K x 160)9404()1005(2=+-+= 竖距m R x h 4.64000 16022 222=== 切线高程=423.18+160×0.05=431.18m 设计高程=431.18-6.4=424.78m 2.某山岭区二级公路,已知JD1、JD2、JD3的坐标分别为(40961.914,91066.103)、(40433.528,91250.097)、(40547.416,91810.392),并设JD2的R=150m ,Ls=40m ,求JD2的曲线要素。 解:⑴计算出JD2、JD3形成的方位角fwj2, ?=--=48966.11528 .40433416.40547097.91250392.91810arctan 2fwj 计算出JD1、JD2形成的方位角fwj1, ?=--=19908.289914 .40961528.40433103.91066097.91250arctan 1fwj 曲线的转角为α=360+fwj2-fwj1=82.29058° ⑵由曲线的转角,计算出曲线的切线长T ,曲线长L 及超距J

公路竖曲线计算

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。

竖曲线

竖曲线是在变坡点处,为了行车平顺的需要而设置的一段曲线。竖曲线的形状,通常采用圆曲线或二次抛物线两种。在设计和计算上抛物线比圆曲线更为方便,故一般采用二次抛物线。 在纵坡设计时,由于纵断面上只反映水平距离和竖直高度,因此竖曲线的切线长与弧长是其在水平面上的投影,切线支距是竖直的高程差,相邻两条纵坡线相交角用坡度差表示。 一、竖曲线要素计算 如图3-3所示,设变坡处相邻两纵坡度分别为i1和i2,坡度差以ω表示,则坡度差ω为i1和i2的代数差,即ω= i1-i2:当ω>0时,则为凸形竖曲线;当ω<0时,则为凹形竖曲线。 图3-3竖曲线示意图 1、竖曲线的基本方程 二次抛物线作为竖曲线的基本形式是我国目前常用的一种形式。如图3-4所示,用二次抛物线作为竖曲线的基本方程: 3-4 竖曲线要素示意图 竖曲线上任意一点的斜率为: 当x=0时:k= i1,则b= i1; 当x=L,r=R时:,则: 因此,竖曲线的基本方程式为: 或 (3-19) 2、竖曲线的要素计算 曲线长:

(3-20) 切线长: (3-21) 外距: (3-22) 曲线上任意一点的竖距(改正值): (3-23) 二、竖曲线设计标准 竖曲线的设计标准包括竖曲线的最小半径和最小长度。 1、竖曲线设计的限制因素 (1)缓和冲击 汽车在竖曲线上行驶时会产生径向离心力,在凸形竖曲线上行驶会减重,在凹形竖曲线上行驶会增重,如果这种离心力达到某种程度时,乘客就会有不舒适的感觉,同时对汽车的悬挂系统也有不利影响,故应对径向离心力加速度加以控制。根据试验得知,离心加速度a限制在0.5~0.7m/s2比较合适。汽车在竖曲线上行驶时其离心加速度为: (3-24) 《标准》中确定竖曲线半径时取a=0.278 m/s2。 或(3-25) (2)行程时间不宜过短 汽车从直坡段驶入竖曲线时,如果其竖曲线长度过短,汽车倏忽而过,冲击力大,旅客会感到不舒适,太短的竖曲线长度从视觉上也会感到线形突然转折。因此,应限制汽车在竖曲线上的行程时间,一般不宜小于3s。 (3-26) (3)满足视距的要求。 汽车行驶在凸形竖曲线上,若半径过小,道路凸起部分会阻挡司机的视线。汽车行驶在凹形竖曲线上,若半径过小,也同样存在视距问题。为了行车安全,竖曲线的最小半径或最小长度还应从保证视距的角度加以限制。

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

卡西欧5800-竖曲线全线高程计算程序

竖曲线全线高程计算程序(数据库模式-精简版) 主程序:KSH Lb1 0 :"K="? K:"D="?D:"H="?H Lb1 1:Prog"KSH0" If Abs(S-K)≥Abs(T):Then P+I(K-S)→U:IfEnd If Abs(S-K) < Abs(T):Then (S-(T)-K)2/(2R)+(P+I(K-S))→U:IfEnd Lb1 2 :U-D-H→G Locate1,1,"K=": Locaet3,1,K: Locaet1,2,"D=": Locaet3,2,D: Locaet1,3,"H=": Locate3,3,H: Locaet1,4,"G=": Locaet3,4,G◢ Goto 0 数据库K:KSH0 K< 0 => Stop If K>0:Then 200→S:-12000→R:45.04→P:0.01345→I:62.7→T:If End If K>262.7:Then 520→S:7000→R:46→P:0.003→I: 94.481→T :IfEnd If K> …… 输入提示: If K>前段竖曲线终点里程: Then 本段竖曲线交点里程→S: 曲率半径(凸负凹正)→R: 交点高程→P: 纵坡(上正下负,以小数表示,如0.3%为0.003)→I: 切线长→T : Ifend 符号说明: K=?: 输入待求桩号; D=?: 若计算路面高程输入0;若计算路基高程则输入路面与路基的高差; (如:路面比路基高0.5米,则输入0.5,算出结果就是路基的设计高程。) H=?: 计算设计高程则输入0;若计算高差时;则输入实测高程; G= : 若H输入0,G表示设计高程;若H输入为实测高程,G表示高差(正为填,负为挖) 注:纵坡的设计精度不够会使程序计算出的精度也不够,可以微调纵坡调整(如0.3%的0.003改为0.00301或0.002995),以每段竖曲线的前端来验证,若计算出的高程比设计的高程低,就加大纵坡比,相反则减小纵坡比。

Excel竖曲线计算

利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。 程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进行优化和简化,去掉中间环节,进行直接计算; 6、防止计算过程中的误操作,对计算表进行相应的保护。 竖曲线的高程计算原理公式: H=G+B*A+(-1)^J*X2÷(2R) H: 计算里程的设计高程 K: 计算点里程 D: 竖曲线交点里程 G: 竖曲线交点的高程 R: 竖曲线半径 T: 切线长 M: 前坡度I1 P: 后坡度I2 A: A=Abs(K-D) X: A>T => X=0; A X=T-A J: M-P<0 => J=0; M-P>=0 => J=1 B: K<=D =>B=-M ; K>D => B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段; 3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型); (4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用); 如图1所示:

竖曲线的计算方法

竖曲线 铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。两相邻坡段的连续点谓之变坡点。相邻坡段的坡度差是两相邻坡段的坡度代数差。当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。 竖曲线的计算 一、圆曲线形竖曲线 圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。 R α  x T T y R C α/2  B A i1 i2 1、竖曲线的切线长度T T=R·tan(α/2)=R/2·tanα=R/2·△i‰ =R/2000·△i(m) (5-1) 式中 R-竖曲线半径(m); α-竖曲线转角(度); △i-相邻坡段的坡度代数差(‰)。 R=5000m时, T=2.5△i(m)

R=10000m时,T=5.0△i(m) R=15000m时,T=7.5△i(m) R=20000m时,T=10.0△i(m) R=25000m时,T=12.5△i(m) 2、竖曲线长度C C≈2T=R/1000·△i(m) (5-2) 3、竖曲线纵距y y=x2/2R (m) (5-3) 式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。 当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。 Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1) 4、竖曲线上各点的设计标高H 设h为计算点的坡度标高,则 H=h±y (5-4) 式中的y值,凹形取“+”,凸形取“-”。 【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。 由(5-1)式 T=7.5△i=45m 由(5-2)式 C=2T=90m 竖曲线起点里程A=K235+165-45=K235+120 竖曲线终点里程B=K235+165+45=K235+210 各20m点坡度标高的计算: 起点A K235+120 h=54.60+45×4‰=54.78m +140 h=54.60+25×4‰=54.70m

Matlab中竖曲线计算程序

sqx=sortrows(yssj,4); %%原始数据按变坡点里程排序,输入顺序为(R,i1,i2,变坡点里程,变坡点设计高程) [r1,d1]=size(sqx); %%sq矩阵中第一行数据顺序 R,i1,i2,变坡点里程,变坡点设计高程 for i=1:r1 sqxjg=10; %%曲线上两点间隔距离 sqx(i,6)=sqx(i,3)-sqx(i,2); %%计算坡度差 sqx(i,7)=(abs(sqx(i,1)* sqx(i,6)))/2; %%计算竖曲线切线长 sqx(i,8)=((sqx(i,7))^2)/(2*sqx(i,1)); %%计算外距 sqx(i,9)=sqx(i,5)-sqx(i,7)*sqx(i,2); %%计算起始点高程 sqx(i,10)=sqx(i,4)-sqx(i,7); %%计算起始点里程 qxfyd(2*i-1,1)=sqx(i,10); %%起始点里程 qxfyd(2*i,1)=sqx(i,9); %%起始点设计高程 a=floor(sqx(i,7)/sqxjg); %%jg米一桩,坡桩个数 for j=1:a if sqx(i,6)<0; %%判断竖曲线类型凸形 qxfyd(2*i-1,j+1)=qxfyd(2*i-1,1)+j*sqxjg; %%前坡放样点里程 qxfyd(2*i,j+1)=qxfyd(2*i,1)+sqx(i,2)*j*sqxjg-((j*10)^2)/(2*sqx(i,1)); %%前坡放样点设计高程 qxfyd(2*i-1,a+2)=sqx(i,4); %%变坡点里程 qxfyd(2*i,a+2)=sqx(i,5)-sqx(i,8); %%变坡点设计高程 qxfyd(2*i-1,j+2+a)=qxfyd(2*i-1,a+2)+sqxjg*j; %%后坡桩放样点里程 qxfyd(2*i,j+2+a)=sqx(i,5)+sqx(i,3)*(j*sqxjg)-(sqx(i,7)-j*sqxjg)^2/(2* sqx(i,1));%%后坡桩放样点设计高程 qxfyd(2*i-1,j+3+a)=sqx(i,10)+2*sqx(i,7); %%终点里程 qxfyd(2*i,j+3+a)=sqx(i,5)+sqx(i,7)*sqx(i,3); %%终点设计高 end if sqx(i,6)>0; %%判断竖曲线类型凹形 qxfyd(2*i-1,j+1)=qxfyd(2*i-1,1)+j*sqxjg; %%前坡放样点里程 qxfyd(2*i,j+1)=qxfyd(2*i,1)+sqx(i,2)*j*sqxjg+((j*10)^2)/(2*sqx(i,1)); %%前坡放样点设计高程 qxfyd(2*i-1,a+2)=sqx(i,4); %%变坡点里程 qxfyd(2*i,a+2)=sqx(i,5)+sqx(i,8); %%变坡点设计高程 qxfyd(2*i-1,j+2+a)=qxfyd(2*i-1,a+2)+sqxjg*j; %%后坡桩放样点里程 qxfyd(2*i,j+2+a)=sqx(i,5)+sqx(i,3)*(j*sqxjg)+(sqx(i,7)-j*sqxjg)^2/(2* sqx(i,1));%%后坡桩放样点设计高程

竖曲线计算公式

第三节竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。可采用抛物线或圆曲线。 一、竖曲线要素的计算公式 相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距:

例题4-3 ω=-0.09 凸形; L=Rω=2000*0.09=180m T=L/2=90m E=T2/2R=2.03m 起点桩号=k5+030 - T =K4+940 起始高程=427.68 - 5%*90=423.18m 桩号k5+000处: x1=k5+000-k4+940=60m 切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m 设计高程=426.18 - 0.90=425.28m 桩号k5+100处: x2=k5+100-k4+940=160m 切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=40米m 设计高程=431.18 - 6.40=424.78m

1、在桩号k1+575处,引黄渠提水站一级动力电缆埋设电缆一趟。其工程做法为: 采用3*16加1加k电缆,长70米;外套2寸塑料管70米;现浇C20砼包封30*30cm。两端接头设1000mm砖砌检查井,井壁厚240mm,钢筋砼圈盖两套。 2、根据运城市规划设计院《关于振西大街设计变更申请的答复意见》第4条,经与建设单 位,当地村委会协商,分别在k0+150,k0+320,k0+930四处增设灌渠倒虹吸管,工程做法为:DN600钢筋砼承插口管,橡胶胶圈接口,长54米,四周C20砼封包,厚度30cm,进出水口井为1000cm,深4.1米,收口70cm圆形井,加盖钢筋砼圈盖各一套,内外1:2水泥砂浆抹面,四周3:7灰土夯填,引渠长40米,(梯形(45+30)*40/2cm,现浇砼厚5cm);C20现浇砼澄泥池70*70*70cm,壁厚20cm。 3、在两条路的交汇口处W37#检查井,不在清单以内,我项目部已施做,其内径为1250mm, 井高6.5 米(其中井室高为5.9米,井筒高0.6米),1650mm钢筋砼井口盖板1块,钢筋砼圈盖1套。

平曲线要素计算公式给学生用的

第三节 竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线采用抛物线拟合。 一、竖曲线要素的计算公式 (2)曲线主点桩号计算: ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩号)=YH(桩号)+l s JD(桩号)=QZ(桩号)+J/2 30-3 336629-3 4028)-(3 )(227-3 2 sec )(26-3 225-3 2ls 180)2(m 18024) -(3 2 )(23) -(3 9022)-(3 23842421)-(3 )( 24023 4202 30003 422 3m R l R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T R l m R l R l p m R l l q s s s s s Y s s s s s s -=-=-=-?+=-=+??-=+??=+?+=???=-=-=α π βααπα πβ

相邻坡段的坡度为i 1和i 2 ,代数差为ω=i 2 -i 1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距: [例1]、某山岭区二级公路,变坡点桩号为K5+,标高为,变坡点桩号的地面高程为,i1=+5%,i2=-4%,竖曲线半径R=2000m。试计算竖曲线诸要素以及桩号为K5+和K5+处的设计高程,BPD 的设计高程与施工高。 解:1.计算竖曲线要素 ω= |i2-i1|= | =,为凸型。 曲线长L=Rω=2000×=180m 切线长T=L/2=180/2=90m 外距E=T2/2R=902/2×2000= 2.计算设计高程 竖曲线起点桩号=(K5+)-90=K4+ 竖曲线起点高程=×= 竖曲线终点桩号=(K5+)+90=K5+ 竖曲线终点高程=×= 桩号K5+处: 横距K5x1=(K5+ )-(K4+)=60m 竖距h1=x12/2R=602/2×2000=

相关文档