文档库 最新最全的文档下载
当前位置:文档库 › 控制系统的数学模型

控制系统的数学模型

控制系统的数学模型
控制系统的数学模型

https://www.wendangku.net/doc/a418350903.html,/view/43

06d34ef7ec4afe04a1dfc0.html

第二章控制系统的数学模型

本章目录

2.1 列写系统微分方程式的一般方法

2.2 非线性数学模型的线性化

2.3 传递函数

2.4 框图和系统的传递函数

2.5 信号流程图与梅逊公式

2.6 状态空间模型简介

2.7 数学模型的MATLAB描述

小结

本章简介

概述:1. 数学模型 ------描述系统变量之间关系的数学表达式

2. 建模的基本方法: (1) 机理建模法(解析法)

(2) 实验辩识法

3. 控制系统数学模型的主要形式:

(1) 外部描述法: 输入--输出描述

(2) 内部描述法:状态变量描述

系统是指相互联系又相互作用着的对象之间的有机组合。许多控制系统,不管它们是机械的、电气的、热力的、液压的,还是经济学的、生物学的等

等,都可以用微分方程加以描述。如果对这些微分方程求解,就可以获得控制系统对输入量(或称作用函数)的响应。系统的微分方程,可以通过支配着具体系统的物理学定律,例如机械系统中的牛顿定律,电系统中的克希霍夫定律等获得。为了设计(或者分析)一个控制系统,首先需要建立它的数学模型,即描述这一系统运动规律的数学表达式。有三种比较常用的描述方法:一、是把系统的输出量与输入量之间的关系用数学方式表达出来,称之为输入--输出描述,或端部(外部)描述,例如微分方程式、传递函数和差分方程。第二种不仅可以描述系统的输入、输出间关系,而且还可以描述系统的内部特性,称之为状态变量描述,或内部描述,它特别适用于多输入、多输出系统,也适用于时变系统、非线性系统和随机控制系统。另一种方式是用比较直观的方块图模型来进行描述。同一控制系统的数学模型可以表示为不同的形式,需要根据不同情况对这些模型进行取舍,以利于对控制系统进行有效的分析。

建立系统数学模型的方法有:解析法和实验法。

本章所讨论的数学模型以传递函数和方块图为主,有关状态空间模型的说明本书仅进行简单介绍。

2.1 列写系统微分方程式的一般方法回目录

本节应用解析法来建立系统的数学模型。

解析法是根据系统及元件各变量之交间所遵循的基本物理、化学等定律,列写出每一个元件的输入-输出的关系式,然后消去中间变量,从中求出系统输出与输入的数学表达式式。

列写系统微分方程式的一般步骤:

1、确定系统的输入量(给定量和扰动量)与输出量(被控制量,也称为系统的响应)

2、根据基本定律,列写系统中每个元件的输入与输出的微分方程式。

3、确定输入与输出量,消去中间变量,求出系统输入与输出的微分方程式。

例 2—1 图2—1是由电阻R、电感L和电容C组成的无源网络,试列写以Ui(t)为输入量,以Uc(t)为输出量的网络微分方程。

图2—1 RCL无源网络

解:

设回路电流为i(t),则回路方程为

消去中间变量i(t),得:

(2—1)式2—1既为图2—1无源网络的时域数学模型

例 2—2 图2—2是弹簧—质量—阻尼器机械位移系统。试列出质量m在外

力F(t)作用下,位移x(t)的位移方程。

解:设质量m相对于初始状态的位移、速度、

加速度分别为

。由牛顿运动定律有

式中F1(t)=f.dx(t)/dt是

阻尼器的阻尼力,其方

向与运动方向相反,其大小育运动速度成正比,f

是阻尼系数;F2(t)=Kx(t)是弹簧弹性力,其方向亦与

运动方向相反,其大小与位移成比例,K是弹性系数。将F1(t)和F2(t)代入上式中,经整理后即得该系统的微分方程为:

注:一般微分方程写成标准形式,既与输入量有关的项写在方程的右端,与输出量有关的项写在方程左端,变量的导数项按降幂排列。

(2—3)

2.2非线性数学模型的线性化回目录

为了获得非线性系统的线性数学模型,假设变量对于某一工作状态的偏离很小。设系统的输入量为x(t),输出为y(t),y(t)和x(t)的关系是

y=f(x) (2-6)

如果系统的额定工作状态相应于,,那么方程(2-6)可以在该

点附近展开成泰勒级数:

式中都在x=点进行计算。如果x-很小,可以忽略x-的高阶项。因此方程可以写成

方程(2-8)可以改写成

上式说明y-与x-成正比。方程(2-9)就是由方程(2-6)定义的非线性系统的线性数学模型。下面来研究另一种非线性系统,它的输出量y是两个输入量x1和x2的函数,因而

y=f(x1,x2) (2-10)

为了得到这一非线性系统的线性近似关系,将方程(2-10)在额定工作点

附近展开成泰勒级数。这时方程(2-10)可写成

式中偏导数都在上进行计算。在额定工作点附近,近似

将高阶项忽略。于是在额定工作状态附近,这一非线性系统的线性数学模型可以写成

这里介绍的线性化方法只有在工作状态附近才是正确的。当工作状态的变化范围很大时,线性化方程就不合适了,这时必须使用非线性方程。应当特别注意,在分析和设计中采用的具体数学模型,只有在一定的工作条件下才能精确表示实际系统的动态特性,在其他工作条件下它可能是不精确的。

2.3 传递函数回目录

1.传递函数的定义

2.传递函数的基本性质

3.典型环节的传递函数的数学模型

拉氏变换简介:

连续时间函数f(t)的拉氏变换为

F(s) = = L[f(t)]

常用基本性质:

(1)线性性质: 若f(t)=αf1(t)+βf2(t), 则

F(s) = αF1(s)+βF2(s)

(2)超前定理: 若F(s) = L[f(t)], 则

L[f(t)] = s n F(s)-

一步超前为: L[f(t)] = sF(s)- f(0)

(3)终值定理:

在控制理论中,为了描述线性定常系统的输入-输出关系,最常用的函数是所谓的传递函数。传递函数的概念只适用于线性定常系统,在某些特定条件下也可以扩充到一定的非线性系统中去。

一、传递函数的定义:

线性定常系统的传递函数,定义初始条件为零时,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

系统微分方程的一般形式为

+ a1 +……+ a n-1 + a n·c(t)=

b0+ b1 +……+ b m-1 +b m·r(t)

设R(s) = L[r(t)], C(s) = L[c(t)], 当初始条件均为0时,有

(a0s n+a1s n-1 +…+ a n-1s+a n)C(s) =

(b0s m+b1s m-1+…+b m-1s+b m)R(s)

即 C(s) = R(s)

令 G(s) = =(2-2)

称为系统的传递函数

结论: (1) 传递函数是由微分方程在初始条件为零时进行拉氏

变换得到的

(2) 已知r(t)和G(s)时,

C(s) = G(s)·R(s) c(t) = L-1[C(s)]

传递函数是一种以系统参数表示的线性定常系统的输入量与输出量之间的关系式,它表达了系统本身的特性,而与输入量无关。传递函数包含着联系输入量与输出量所必需的单位,但它不能表明系统的物理结构(许多物理性质不同的系统,可以有相同的传递函数)。

传递函数分母中s的最高阶数,就是输出量最高阶导数的阶数。如果s 的最高阶数等于n,这种系统就叫n阶系统。

例2-1

图2-1所示为一弹簧阻尼系统,阻尼器是一种产生粘性磨擦或阻尼的装置。它由活塞和充满油液的缸体组成。活塞和缸体之间的任何相对运动,都将受到油液的阻滞,因为这时油液必须从活塞的一端,经过活塞周围的间隙(或通过活塞上的专用小孔),而流到活塞的另一端。阻尼器主要用来吸收系统的能量。被阻尼器吸收的能量转变为热量而散失掉,而阻尼器本身不贮藏任何动能或位能。

下面来推导这一系统的传递函数。设系统的输入量为外力x(t),输出量为质量的位移y(t),按下列步骤进行推导:

1.写出系统的微分方程。

2.假设全部初始条件等于零,取微分方程的拉普拉斯变换。

3.求输出Y(s)与输入量X(s)之比。这一比值就是传递函数。

为了推导线性常系数微分方程,假设阻尼器的磨擦力与成正比,并设弹簧为线性弹簧,即弹簧力与y成正比。在这个系统中,m表示质量,f表示粘性磨擦系数,而k表示弹簧刚度。

解牛顿定律是机械系统中的基本定律。在平移系统中,牛顿定律可表示如下:

ma=ΣF=x-Fs-Ff

其中Fs=ky,

a表示加速度,f表示力。

把牛顿定律应用到这一系统可得

(2-3)

对方程(2-3)中每一项取拉普拉斯变换,得出

如果设初始条件等于零,即y(0)=0, (0)=0,即可得出方程(2-3)的拉普拉斯变换:

取Y(s)与X(s)之比,即可得到系统的传递函数:

例2-2

机械转动系统设有一系统,如图2-2所示。它由惯性负载和粘性磨擦阻尼器组成。J为转动惯量,f为粘性磨擦系数,ω为角速度,T为作用到系统上

的转矩。

图2-2 机械转动系统

解对于机械转动系统,其运动方程可写成:

其微分方程为:

(2-4)

初始条件为零时,取方程(2-4)的拉普拉斯变换:

取与T(s)之比,即可得到系统的传递函数:

例2-3

图2-3 L-R-C电路

图2-3所示为一由电感L、电阻R和电容C组成。

解在理想条件下,可得到此电路的电压平衡方程式:

(2-5)

由于

式中,q为电荷量,C为电容。式(2-5)可改写为

初始条件为零时,取方程(2-5)的拉普拉斯变换:

取U(s)与Uc(s) 之比,即可得到系统的传递函数:

二、传递函数的基本性质回目录

传递函数概念的适用范围限于线性常微分方程系统。当然,在这类系统的分析和设计中,传递函数方法的应用是很广泛的。下面是有关传递函数的一些重要说明(下列各项说明中涉及的均为线性常微分方程描述的系统)。

1.系统的传递函数是一种数学模型,它表示联系输出变量与输入变量的微分方程的一种运算方法。

2.传递函数是系统本身的一种属性,它与输入量或驱动函数的大小和性质无关。

3.传递函数包含联系输入量与输出量所必需的单位,但是它不提供有关系统物理结构的任何信息(许多物理上完全不同的系统,可以具有相同的传递函数,称之为相似系统)。

4.如果系统的传递函数已知,则可以针对各种不同形式的输入量研究系统的输出或响应,以便掌握系统的性质。

5.如果不知道系统的传递函数,则可通过引入已知输入量并研究系统输出量的实验方法,确定系统的传递函数。系统的传递函数一旦被确定,就能对系统的动态特性进行充分描述,它不同于对系统的物理描述。

6.用传递函数表示的常用连续系统有两种比较常用的数学模型,说明如下

第一种表示方式为:

第二种表示方式也叫零极点增益模型,具体形式为:

这两种模型各有不同的适用范围,可以相互转换,在不同的场合需要用不同的模型。如:在根轨迹分析中,用零极点模型就比较合适。相似系统相似系统这一概念,在实践中是很有用的,因为一种系统可能比另一种系统更容易通过实验来处理。例如,可以通过建造和研究一个与机械系统相似的电模拟系统来代替对机械系统的制造和研究,因为一般来说,电的或电子的系统更容易通过实验进行研究。

表2-1所示为相似系统的相似变量。

表2-1 相似系统中的相似变量

三、典型环节的传递函数的数学模型回目录

1.比例环节

2.惯性环节

3.积分环节

4.微分环节

5.振荡环节

6.延迟环节

自动控制系统是由若干环节组成的,环节具有各种各样的结构和功能。然而本节所讨论的典型环节并不是按照它们的作用原理和结构分类的,而是按照它们的动态特性或数字模型来区分。因为控制系统的运动情况只决定于所有各组成环节的动态特性及连接方式,而与这些环节具体结构和进行的物理过程不直接相关。从这一点出发,组成控制系统的环节可以抽象为几种典型环节,逐个研究和掌握这些典型环节的特性,就不难进一步综合研究整个系统的特性。

1.比例环节

比例环节又称放大环节,其传递函数为

(2-11)

这表明,输出量与输入量成正比,动态关系与静态关系都一样,不失真也不迟延,所以又称为"无惯性环节"或"放大环节"。比例环节的特征参数只有一个,即放大系数K。工程上如无弹性变形的杠杆传动、电子放大器检测仪表、比例式执行机构等都是比例环节的一些实际例子。

2.惯性环节

惯性环节又称非周期环节,其传递函数为

(2-12)

T为惯性环节的时间常数,K为比例系数。

当输入信号为单位阶跃函数时,其环节的输出为

它是一条指数曲线,当时间t=3T~4T时,输出量才接近其稳态值。实际系统中,惯性环节是比较常见的,例如直流电机的励磁回路等。

3.积分环节

积分环节的传递函数为

(2-13)

在单位阶跃输入的作用下,积分环节的输出c(t)为

这表明,只要有一个恒定的输入量作用于积分环节,其输出量就与时间成正比地无限增加。积分环节具有记忆功能,当输入信号突然除去时,输出总要变化下去。在控制系统设计中,常用积分环节来改善系统的稳态性能。

4.微分环节

微分环节的传递函数为

(2-14)

理想微分环节的输出与输入量的变化速度成正比。在阶跃输入作用下的输出响应为一理想脉冲(实际上无法实现),由于微分环节能预示输出信号的变化趋势,所以常用来改善系统的动态特性。

实际上可实现的微分环节都具有一定的惯性,其传递函数如下:

它有一个负极点和一个位于S平面原点的零点。实际微分环节在单位阶跃输入作用下的输出响应为

5.振荡环节

1)

G(s) = = (0

或 G(s) = ,

式中,T为振荡环节的时间常数;K为放大系数;ζ为振荡环节的阻尼比;

两个极点为:

当r(t) = 1, c(t) =1-

,t≥ 0

6.纯滞后(延迟)环节

延迟环节的传递函数为

(2-16)

延迟环节在单位阶跃输入作用下的输出响应为

c(t)=1(t-T)

即输出完全复现输入,只是延迟了T时间。T为延迟环节的特征参数,称为"延迟时间"或"滞后时间"。

以上介绍了六种典型环节,这是控制系统中最见的基本环节。

2.4 框图和系统和传递函数回目录

1、框图

2、绘制系统框图的一般步骤

3、方框图的等效变换

4、控制系统的传递函数

控制系统可以由许多元件组成。为了表明每一个元件在系统中的功能,在控制工程中,常常应用所谓"框图"的概念。方块图是描述控制系统的另一种比

较直观的模型,在控制系统的分析中,用方块图进行处理具有相当明显的优势。

一、框图:

系统框图,是系统中每个元件的功能和信号流号的图解表示。方块图表明了系统中各种元件间的相互关系。方块图优于纯抽象的数学表达式,因为它能够清楚地表明实际系统中的信号流动情况。

在框图中,通过函数方块,可以将所有的系统变量联系起来。"函数方块"或简称为"方块",是对加到方块上的输入信号的一种运算符号,运算结果以输出量表示。元件的传递函数,通常写进相应的方块中,并以标明信号流向的箭头,将这些方块连接起来。应当指出,信号只能沿箭头方向通过。这样,控制系统的方块图就清楚地表示了它的单向特性。

图2-4表示了一个框图单元。指向方块的箭头表示输入,而从方块出来的箭头则表示输出。在这些箭头上标明了相应的信号。

应当指出,方块输出信号等于输入信号与方块中传递函数的乘积。

用方块图表示系统的优点是:只要依据信号的流向,将各元件的方块连结起来,就能够容易地组成整个系统的方块图,通过方块图,还可以评价每一个元件对系统性能的影响。

总之,方块图比物理系统本身更容易体现系统的函数功能。方块图包含了与系统动态特性有关的信息,但它不包括与系统物理结构有关的信息。因此,许多完全不同和根本无关的系统,可以用同一个方块图来表示。

应当指出,在方块图中没有明显表示出系统的主能源,而且对于一定的系统来说,方块图也不是唯一的。由于分析角度的不同,对于同一个系统,可以画出许多不同的方块图。

二、绘制系统框图的一般步骤

1、写出每一个部件的运动方程(考虑负载效应)

2、根据方程式,进行拉氏变换,写出传递函数。

3、用方框单元表示每个部件。

4、根据信号流向,画出系统框图。

绘制方法:用套画法画出系统结构图

1)找出变量,输入变量,输出变量,中间变量;

2)列写出关系式;

3)一个元件,一个方程,一个关键式,前向必有一个相加(比较),或引出点元件;

4)按照物理定律,一步到位画出框图。

例1 画出下图的结构图

解:1)变量输入U r(s),输出U c(s), U L(s), U R(s), U e(s)

2)列出关系式:

U e(s)=U r(s)-U c(s)

U L(s)=Ue(s)-U R(s)

I(s)=U L(s)/sL

U R(s)=I(s)R(S)

U c(s)=I(S)/SC

3)框图

例2 试绘制下图无源网络的结构图

解:Ue (s)=Ur (s)-Uc (s)

I (s) =Ic (s)+I R1 (s)

例3绘制下列有源网络的结构图

解:I (s)+Ic (s)=0 Ic (s)= -I (s)

三、方框图的等效变换

两类:1).环节的合并

2).信号引出点或相加点的等效移动

变换原则:变换前后的数学关系保持不变。

1)、前向通道的传递函数的乘积保持不变;

2)、回路的传递函数保持不变。

只有当一个方块的输出量不受其后的方块影响时,才能够将它们串联连接。如果在这些元件之间存在着负载效应,就必需将这些元件归并为一个单一的方块。

任意数量串联的、表示无负载效应元件的方块,可以用一个单一的方块代替,它的传递函数,就等于各单独传递函数的乘积。

一个包含着许多反馈回路的复杂的方块图,可以应用方块图的代数法则,经过逐步重新排列和整理而得到简化。

1、环节的合并

环节连接的三种基本形式:串联,并联和反馈。

(1). 环节的串联:

G(s) = G1(s)G2(s)G3(s)推广到n个环节串联:

G(s)=

注意:环节间必须无负载效应

(2). 环节的并联:

G(s) = G1(s) + G2(s) + G3(s)

推广到n个环节并联:

G(s)=

(3). 反馈连接:

在图2-6上,表示了一个闭环系统的方块图。反馈到相加点与输入量进行比较的反馈信号为B(s)=H(s)C(s)。

在图2-6所示系统中,输出量C(s)与输入量R(s)的关系,可推导如下:C(s)=G(s)E(s)

E(s)=R(s)-B(s)=R(s)-H(s)C(s)

从上述方程中消去E(s),得:C(s)=G(s)[R(s)-H(s)C(s)]

于是可得:

(2-17)

2、等效移动

方块图移动一般法则是移动分支点和相加点,交换相加点,减少内反馈回路。

在表2-1中,列举了一些比较常见的方块图代数法则。这些代数法则说明,同一个方程式可以用不同的方法表示。通过重新排列和代换,将方块图简化后,可以使以后的数学分析工作很容易进行。但是应当指出,当方块图得到简化后,新的方块却变得更加复杂了,因为产生了新的极点和零点。

控制数学模型

第二章 控制系统的数学模型 2—1 数字模型 在控制系统的分析和设计中,首先要建立系统的数学模型。 自动控制系统: 相同的数学模型进行描述,研究自动控制系统 其内在共性运动规律。 系统的数学模型,是描述系统内部各物理量之间动态关系的数学表达式。 常用的数学模型有: 数学模型 的建立方法 一般应尽可能采用线性定常数学模型描述控制系统。 如果描述系统的数学模型是线性微分方程,则称该系统为线性系统,若方程中的系数是常数,则称其为线性定常系统。线性系统的最重要特性是可以应用叠加原理,在动态研究中,如果系统在多个输入作用下的输出等于各输入单独作用下的输出和(可加性),而且当输入增大倍数时,输出相应增大同样倍数(均匀性),就满足叠加原理,因而系统可以看成线性系统。如果描述系统的数学模型是非线性微分方程,则相应系统称为非线性系统,其特性是不能应用叠加原理。 建立系统数学模型的主要目的,是为了分析系统的性能。由数学模型求取系统性能指标的主要途径如图2—1所示。由图可见,傅里叶变换和拉普拉斯变换是分析和设计线性定常连续控制系统的主要数学工具。 电气的、 机械的、 液压的 气动的等 微(差)分方程 传递函数(脉冲传递函数研究线性离散系统的数学模型) 经典控制理论 频率特性(在频域中研究线性控制系统的数学模型) 状态空间表达式(现代控制理论研究多输入—多输出控制系统) 结构图和信号流图,数学表达式的数学模型图示型式 解析法:依据系统及元件各变量之间所遵循的物理、化学定律, 列写出各变量之间的数学关系式 实验法:对系统施加典型信号(脉冲、阶跃或正弦),记录系统的时间响应 曲线或频率响应曲线,从而获得系统的传递函数或频率特性。 图2-1 求取性能指标的主要途径

温度控制系统研究背景与现状

温度控制系统研究背景与现状 1 研究背景 (1) 2 国内外现状 (1) 定值开关温度控制法 (1) PID线性温度控制法 (2) 智能温度控制法 (3) 国内外实例 (4) 1 研究背景 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密地与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。自18世纪工业革命以来,工业过程离不开温度控制。温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用,温度是锅炉生产质量的重要指标之一,也是保证锅炉设备安全的重要参数。同时,温度是影响锅炉传热过程和设备效率的主要因素。基于此,运用反馈控制理论对锅炉进行温度控制,满足了工业生产的需求,提高了生产力。 2 国内外现状 温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等。恒值温度控制的目的是使被控对象的温度恒定在某一数值上,且要求其波动幅度(即稳态误差)不能超过某一给定值。从工业温度控制器的发展过程来看,温度控制技术大致可分以下几种: 定值开关温度控制法 所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热源(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通

空调温度控制系统的建模与仿真设计

过程控制工程课程设计 课题名称空调温度控制系统的建模与仿真 学院 专业 班级 学生 学号 时间 6 月13日至 6月19日 指导教师(签字) 2011 年 6 月 19 日

目录 第一章设计题目及要求 (1) 1.1设计背景 (1) 1.2设计任务 (1) 1.3主要参数 (2) 1.3.1恒温室: (2) 1.3.2热水加热器ⅠSR、ⅡSR: (2) 1.3.3电动调节阀: (2) 1.3.4温度测量环节: (2) 1.3.5调节器: (2) 第二章空调温度控制系统的数学模型 (3) 2.1恒温室的微分方程 (3) 2.1.1微分方程的列写 (3) 2.1.2 增量微分方程式的列写 (5) 2.2 热水加热器对象的微分方程 (5) 2.3敏感元件及变送器的特性 (6) 2.3.1敏感元件的微分方程 (7) 2.3.2变送器的特性 (7) 2.3.3敏感元件及变送器特性 (8) 2.4 执行器的特性 (8) 第三章控制系统方案设计 (9) 3.1系统分析 (9) 3.2 单回路控制系统设计 (10) 3.2.1单回路控制系统原理 (10) 3.2.2单回路系统框图 (10) 3.3串级控制系统的设计 (11) 3.3.1串级控制系统原理 (11) 3.3.2串级控制系统框图 (12) 第四章单回路系统调节器参数整定 (13) 5.1.1、PI控制仿真 (16) 5.1.2 PID控制仿真 (17) 5.1.3、PI与PID控制方式比较 (17) 第六章设计小结 (18) 参考文献 (18)

第一章设计题目及要求 1.1设计背景 设计背景为一个集中式空调系统的冬季温度控制环节,简化系统图如附图所示。 系统由空调房间、送风道、送风机、加热设备及调节阀门等组成。为了节约能量,利用一部分室循环风与室外新风混合,二者的比例由空调工艺决定,并假定在整个冬季保持不变。用两个蒸汽盘管加热器1SR、2SR对混合后的空气进行加热,加热后的空气通过送风机送入空调房间。本设计中假设送风量保持不变。 1.2设计任务 设计主要任务是根据所选定的控制方案,建立起控制系统的数学模型,然后用MATLAB对控制系统进行仿真,通过对仿真结果的分析、比较,总结不同的控

控制系统的数学模型资料

控制系统的数学模型 在控制系统的分析和设计中,首先要建立系统的数学模型。自动控制系统的组成可以是电气的、机械的、液压的或气动的,然而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研究自动控制系统,可以摆脱各种不同类型的外部特征,研究其内在的共性运动规律。 通过本章的学习,我们要掌握三种数学模型:微分方程、传递函数、动态结构图的建立方法。熟练掌握自动控制系统传递函数的求取方法。 §2—1 列写微分方程的一般方法 微分方程是描述控制系统动态性能的一种数学模型。建立系统或元件微分方程的一般步骤如下: (1) 根据实际工作情况,确定系统和各元件的输入量和输出量; (2) 根据物理或化学定律,列写系统各组成元件的原始方程; (3) 在可能条件下,对各元件的原始方程进行适当简化,略去一些次要因素或进行线 性化处理; (4) 消去中间变量,得出描述输出量和输入量(包括干扰)关系的微分方程,即元件 的微分方程; (5) 对求出的系统微分方程标准化。即将与输出有关的各项放在等号左侧;而将与输 入有关的各项置于等号右侧,等号左右侧各项均按降幂形式排列。 例:列写下图所示RC 网络的微分方程。 解:1、明确输入、输出量 输入量:RC 网络的电压u r ; 输出量:u c 2、建立输入、输出量的动态联系 根据电路理论的基尔霍夫电压定律,任意时刻,网络的输入电压等于各支路的电压降和,即 u u c r Ri += (1) dt d C i u c = ………(2)(i 为网络电流,是一个中间变量) 3、消除中间变量 -+ -

将(2)式代入(1)式得 u u u c c r dt d RC += 4、系统的微分方程的标准化 u u u r c c dt d RC =+ 例2:列写下图所示RLC 网络的微分方程。(零初始条件) 解:1、明确输入、输出量 输入量:u i ; 输出量:u c 2、列写个组件的原始方程 ??? ? ? ???? ==++=) 3()2() 1( dt d C i dt di L iR u u u u u c L c L i (i 为网络电流,是一个中间变量) 3、消除中间变量 将(3)分别代入(1)、(2)则得 ??? ? ?? ? =++=) 5() 4(22 t u d u u u u u d LC dt d RC c L c L c i 将(5)代入(4)则得 u t u d u u c c c i d LC dt d RC ++=2 2 4、系统的微分方程的标准化 u u u t u d i c c c dt d RC d LC =+++2 2 即为所求的微分方程 例3:列写下图所示RL 网络的微分方程。(零初始条件) 1、明确输入、输出量 输入量:u r ; + - c + -

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

发酵温度控制系统的数学模型及仿真

2 发酵罐温度控制系统的数学模型 发酵罐温度控制系统实验平台是以一个7L 发酵罐为主体,罐壁设置有冷却套,相应的设立测温点和调节阀,通过阀门调节冷却套内冷却液的流量来实现对发酵罐内温度的控制,发酵罐示意图如图1所示。 图1 发酵罐示意图 在白酒发酵的过程中,发酵罐内由于酵母的作用,在发酵过程中会产生生化反应热,热量的逐渐释放导致发酵温度逐渐上升。在整个发酵过程中,发酵温度必须根据具体的生产工艺进行严格控制,罐内温度通过控制冷却夹套内的冷却水的流量进行降温,整套系统没有外部加热措施。罐内发酵反应热有一部分使罐内温度升高,一部分热量散失到罐壁和冷媒中,在此不考虑发酵体与罐壁之间的热量传递,罐内的热平衡方程为: ? =-Tdt mC Q Q 21 (2-1) 式中 1Q :发酵过程产生的热量;2Q :发酵过程散失的热量;m :反应物质量 C :发酵罐内反应物的比热容;T 发酵罐温度。 公式1-1可以写成: ? =?Tdt MC Q (2-2) 式中 21Q Q Q -=? 对公式1-2求拉普拉斯变换得: s m C T Q S S )()(=? (2-3) 即可由罐内的热平衡方程式可以得到发酵罐内的传递函数为: m C s Q T G S S S 1 ) ()()(= ?= (2-4) 考虑到在实际的过程中的干扰因素,所以被控对象的数学模型中添加一个滞后环节。因此,用一阶惯性加纯滞后环节来表示,其传递函数为 mCs e Q T G s S S S τ-= ?= ) ()()( (2-5)

3 模糊预测控制器的设计及仿真结果 针对发酵罐中发酵对象大时滞、大时变、严格的非线性、多变量耦合等特点。采用了将模糊控制与预测控制结合的方法,利用模糊建模方法建立对象预测模型。将设定值与预测输入值之间的预测误差值及预测误差值的变化率作为模糊控制器的输入,模糊控制器再根据模糊规则来推理得到控制量,通过执行机构控制被控对象。其结构图如图2所示。 图2模糊控制系统结构图 3.1预测控制部分 预测控制算法与动态矩阵控制算法类似, 主要通过预测模型,利用系统的输入输出数据预测未来时刻系统输出,作为糊控制器的输入。 3.1.1预测模型 假设被控对象基于阶跃响应的预测模型向量为T N a a a a ],...,,[21=,N 为建模时域。则在k 时刻对系统施加一个控制增量Δu(k)时,即可算出在其作用下未来时刻N 个输出值的向量形式: )()()(k u a k y k y po m ??+= (3-1) 式中)(k y po 为k 时刻未加Δu(k)时的初始预测值,)(k y m 为k 时刻在Δu(k)作用下的模型预测值。 3.1.2在线校正 当k 时刻对系统施加控制u(k)时,利用预测模型即可得出未来时刻的输出预测值 )(k y m 。但是,由于实际存在的模型时变、非线性、环境干扰等因素的影响,预测值会偏离 实际值,故在k+l 时刻要利用系统的实际输出y (k+1)进行在线校正: )]|1()1([)()(k k y k y h k y k y m m p +-++= (3-2) 式中h 为N 维误差校正向量,这里取0.11=h ,9.0=i h ,i=2,3...,N 。)(k y p 为校正后的预测值,经过移位后即可作为k+1时刻的初始预测值,用向量形式可表示为: )()1(k y S k y p po ?=+ (3-3) 式中S 为位移阵。

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统部状态变量描述的数学模型称为状态空间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要因素。 ⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述对象运动规律的原始微分方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得出无因次的、能够描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y 为输出变量, x为输入变量,表示y(t) 的n 阶导数,表示x(t) 的 m阶导数。对于一般实际的物理系统,。 假定初始条件为零,对上式的等号两边进行拉氏变换,得 式中Y(s)是y(t) 的拉氏变换, X(s)是x(t) 的拉氏变换,于是可得传递函数:

温度控制系统设计文献综述

基于单片机的温度控制 系统设计文献综述 前言 随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且,很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具

有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的多片微机应用系统。 1.陈岩《基于ARM 的远程控制温控系统的设计》一个基于ARM的远程控制系统的设计.该系统以无线寻呼网络接收POCSAG编码的控制命令字,同时利用DIMF信号发送器将要反馈的数据通过公用电话网络以DTMF编码传送回去,从而实现了一个功能完整的远程控制系统,弥补了以往远程控制系统的不足同。 2.金凯鹏胡即明《基于模糊PID 算法远程温度控制系统的实现》针对实时温度控制对象,算法远程温度控制系统是一套远程控制系统,并结合了模糊PID控制算法,利用其电路组成和设计原理,实现了对远程温度系统的监视和控制功能.采集端主要实现温度采集、数码显示、温度设定、无线编码发射、加热开关控制等功能;监控部分主要实现无线解码接收、温度显示、报警等功能模块.本系统实现了实时控制与无线传输结合. 3.王晓员《基于单片机多点温度控制的硬件构建设计》针对目前许多塑料反应炉温度控制不准确的现状,进行了基于MCS-51系列单片机多点温度控制的硬件构建的设计.采用数字化温度传感器DS18820,TLC2543型号的12位开关电容运次逼近模数A/D转换器.成本低、可靠性高 4.王芳《利用单片机实现温度智能控制》温度控制系统是

(完整版)控制系统数字仿真题库

控制系统数字仿真题库 一、填空题 1. 定义一个系统时,首先要确定系统的边界;边界确定了系统的范围,边界以外对系统的作用称为系统的输入,系统对边界以为环境的作用称为系统的输出。2.系统的三大要素为:实体、属性和活动。 3.人们描述系统的常见术语为:实体、属性、事件和活动。 4.人们经常把系统分成四类,它们分别为:连续系统、离散系统、采样数据系统和离散-连续系统。 5、根据系统的属性可以将系统分成两大类:工程系统和非工程系统。 6.根据描述方法不同,离散系统可以分为:离散时间系统和离散事件系统。7. 系统是指相互联系又相互作用的实体的有机组合。 8.根据模型的表达形式,模型可以分为物理模型和数学模型二大类,其中数学模型根据数学表达形式的不同可分为二种,分别为:静态模型和动态模型。 9、采用一定比例按照真实系统的样子制作的模型称为物理模型,用数学表达式来描述 系统内在规律的模型称为数学模型。 10.静态模型的数学表达形式一般是代数方程和逻辑关系表达式等,而动态模型的数学表达形式一般是微分方程和差分方程。 11.系统模型根据描述变量的函数关系可以分类为线性模型和非线性模型。12 仿真模型的校核是指检验数字仿真模型和数学模型是否一致。 13.仿真模型的验证是指检验数字仿真模型和实际系统是否一致。 14.计算机仿真的三个要素为:系统、模型与计算机。 15.系统仿真的三个基本活动是系统建模、仿真建模和仿真试验。 16.系统仿真根据模型种类的不同可分为:物理仿真、数学仿真和数学-物理混合仿真。17.根据仿真应用目的的不同,人们经常把计算机仿真应用分为四类,分别为: 系统分析、系统设计、理论验证和人员训练。18.计算机仿真是指将模型在计算机上进行实验的过程。 19. 仿真依据的基本原则是:相似原理。 20. 连续系统仿真中常见的一对矛盾为计算速度和计算精度。 21.保持器是一种将离散时间信号恢复成连续信号的装置。 22.零阶保持器能较好地再现阶跃信号。 23. 一阶保持器能较好地再现斜坡信号。 24. 二阶龙格-库塔法的局部截断误差为O()。 25.三阶隐式阿达姆斯算法的截断误差为:O()。 26.四阶龙格-库塔法的局部截断误差为O()。 27.根据计算稳定性对步长h是否有限制,数值积分算法可以分为二类,分别是:条

温度控制系统的设计与仿真

: 远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 、 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: " 2013 年 2 月 28 日

) 摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB &

( 目录 1单片机在炉温控制系统中的运用 (6) 1、1系统的基本工作原理 (6) 2温控系统控制算法设计 (7) 温度控制算法的比较 (7) 数字PID算法 (11) 、 3 结论 (21) 致谢 (22) 参考文献 (23) [

基于模糊PID算法的电阻炉温度控制系统设计

基于模糊PID算法的电阻炉温度控制系统设计引言 电加热炉是典型工业过程控制对象,其温度控制具有升温单向性,大惯性,纯滞后,时变性等特点,很难用数学方法建立精确的模型和确定参数。而PID控制因其成熟,容易实现,并具有可消除稳态误差的优点,在大多数情况下可以满足系统性能要求,但其性能取决于参数的整定情况。且快速性和超调量之间存在矛盾,使其不一定满足快速升温、超调小的技术要求。模糊控制在快速性和保持较小的超调量方面有着自身的优势,但其理论并不完善,算法复杂,控制过程会存在稳态误差。 将模糊控制算法引入传统的加热炉控制系统构成智能模糊控制系统,利用模糊控制规则自适应在线修改PID参数,构成模糊自整定:PID控制系统,借此提高其控制效果。基于PID控制算法,以ADUC845单片机为主体,构成一个能处理较复杂数据和控制功能的智能控制器,使其既可作为独立的单片机控制系统,又可与微机配合构成两级控制系统。该控制器控制精度高,具有较高的灵活性和可靠性。 2 温度控制系统硬件设计 该系统设计的硬件设计主要由单片机主控、前向通道、后向通道、人机接口和接口扩展等模块组成,如图l所示。由图1可见,以内含C52兼容单片机的ADUC845为控制核心.配有640 KB的非易失RAM数据存储器、外扩键盘输人、320x240点阵的图形液晶显示器进行汉字、图形、曲线和数据显示,超温报警装置等外围电路;预留微型打印机接口,可以现场打印输出结果;预留RS232接口,能和PC机联机,将现场检测的数据传输至PC机来进一步处理、显示、打印和存档。

电阻炉的温度先由热电偶温度传感器检测并转换成微弱的电压信号,温度变送器将此弱信号进行非线性校正及电压放大后,由单片机内部A/D转换器将其转换成数字量。此数字量经数字滤波、误差校正、标度变换、线性拟合、查表等处理后。一方面将炉窑温度经人机面板上的LCD显示:另一方面将该温度值与被控制值(由键盘输入的设定温度值)比较,根据其偏差值的大小,提供给控制算法进行运算,最后输出移相控制脉冲,放大后触发可控硅导通(即控制电阻炉平均功率)。达到控制电炉温度的目的。如果实际测得的温度值超过了该系统所要求的温度范围,单片机就向报警装置发出指令,系统进行报警。 2.1 系统主控模块 系统主控模块电路如图2所示,它主要由CPU及数据存储器,晶体振荡器、复位电路、图形液晶显示器(LCD)及控制电路、微型打印机接口控制电路、实时日历时钟,热电偶信号处理电路等构成。这里,该系统设计可测量3点温度。传感器选择K型(镍铬-镍硅)热电偶,可用于从室温到1 200°C的温度测量,测量范围宽,精度高。在温度测量范围内K型热电偶的输出热电势只有0~45.119 mV,为了和ADUC845的A /D转换器相匹配,采用ACl226和1B51作为信号调理电路,由AC1226、1B51构成热电偶冷端温度补偿及信号调理器电路。当热端距测温仪表较远时,需利用热电偶匹配导线将冷端延长。CD4051为多路模拟开关,由ABC控制接通,当5~3接通时,输入接地,UO输出UOmin,用于零点校准;当4~3接通时,单片机1.25 V稳定参考电压Uref,再经电阻R1、R2分压,得到毫伏级参考输入电压,UO输出UOmax,用于增益校准;当2~3、1~3、12~3分别分时接通时,依次输入3个热电偶正常测温所得变换电压,UO从而输出3个温度点所对应的电压UOA,UOB,UOC。在HI端与+UISO端之间串上一只220 MΩ上拉电阻,一旦热电偶开路,HI端即被偏置为+UISO,迫使1B51的输出电压超量程,由此判定热电偶已开路。多路模拟开关和测量数据采集过程在单片机协调下工作,每次数据采集都进行自动判断和校准阁。 2.2 控制输出驱动电路 对温度的控制是通过可控硅调功器电路实现,如图3所示。双向可控硅管和硅碳棒串接在交流220 V、50 Hz交流市电回路中,图3中只给出了A相。移相触发脉冲由ADUC845用软件在P1.3引脚上产生的,零同步脉冲同步后,经光耦合管和驱动器输出送到可控硅的控制极。过零同步脉冲由过零触发电路产生,利用同步变压器和电压比较器LM311组成正弦交流电的正半波过零检测电路,它在交流电每一个正半周的

空调温度控制系统的数学模型教程文件

空调温度控制系统的 数学模型

空调温度控制系统的数学模型 一、 恒温室的微分方程 为了研究上的方便,把图所示的恒温室看成一个单容对象,在建立数学模型,暂不考虑纯滞后。 1. 微分方程的列写 根据能量守恒定律,单位时间内进入恒温室的能量减去单位时间内由恒温室流出的能量等于恒温室中能量蓄存的变化率。即 ,????????=+?? ? ? ????????? 恒温室内蓄每小时进入室内每小时室内设备照热量的变化率的空气的热量明和人体的散热量 ??????-+?? ? ?? ?????每小时从事内排每小时室内向出的空气的热量室外的传热量 上述关系的数学表达式是: 111()()c a b n a d C Gc q Gc dt αθθθθθγ -=+-+ (2-1) 式中 1C —恒温室的容量系数(包括室内空气的蓄热和设备与维护结构表层的蓄热) (千卡/ C ? ); a θ—室内空气温度,回风温度(C ?); G —送风量(公斤/小时); 1c —空气的比热(千卡/公斤 ); c θ —送风温度(C ?); n q —室内散热量(千卡/小时);

b θ—室外空气温度(C ?); γ—恒温室围护结构的热阻(小时 C ?/千卡)。 将式(2—1)整理为: 111111111n b a c a q d Gc C dt Gc Gc Gc θθθγθγγγ ++=++++ 11111n a q Gc Gc Gc γθγ??+ ? ?=+ ?+ ??? (2-2) 或 11()a a c f d T K dt θθθθ+=+ (2-3) 式中 111T R C = —恒温室的时间常数(小时)。 111 1R Gc γ =+ —为恒温室的热阻(小时 /千卡) 1 111 Gc K Gc γ =+ —恒温室的放大系数(/C C ?); 1b n f q Gc θγ θ+ = —室内外干扰量换算成送风温度的变化(C ?)。 式(2—3)就是恒温室温度的数学模型。式中 和 是恒温的输入参数,或称输入量;而 是恒温室的输入参数或称被调量。输入参数是引起被调量变化的因素,其中起调节作用,而起干扰作用。输入量只输出量的信号联系成为通 道。干扰量至被调量的信号联系成为干扰通道 。调节量至被调量的信号联系成为调节通道。 如果式中是f θ个常量,即0f f θθ=,则有

温度控制系统的设计与仿真..

远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: 2013 年 2 月 28 日

摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB

目录 1单片机在炉温控制系统中的运用 (3) 1、1系统的基本工作原理 (3) 2温控系统控制算法设计 (3) 2.1温度控制算法的比较 (3) 2.2数字PID算法 (6) 3 结论................................................ 错误!未定义书签。致谢 (17) 参考文献 (18)

自动控制1用matlab建立系统数学模型

黄淮学院电子科学与工程系 自动控制原理课程验证性实验报告 实验名称 用MATLAB 建立系统数学模型 实验时间 2012 年10月11日 学生姓名 实验地点 同组人员 专业班级 1、实验目的 1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 3)掌握使用MATLAB 命令化简模型基本连接的方法。 4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 2、实验主要仪器设备和材料: MATLAB 软件 3、实验内容和原理:(1)控制系统模型的建立 控制系统常用的数学模型有四种:传递函数模型(tf 对象)、零极点增益模型(zpk 对象)、结构框图模型和状态空间模型(ss 对象)。经典控制理论中数学模型一般使用前三种模型,状态空间模型属于现代控制理论范畴。 1)传递函数模型(也称为多项式模型)。连续系统的传递函数模型为 101101() ()() m m m n n n b s b s b num s G s n m a s a s a den s --++ += =≥++ +, 在MATLAB 中用分子、分母多项式系数按s 的降幂次序构成两个向量: 0101[] []m n num b b b den a a a ==,,,,,,,。 用函数tf( )来建立控制系统的传递函数模型,用函数printsys( )来输出控制系统的函数,其命令调用格式为 ()int ()sys tf num den pr sys num den =,,, Tips :对于已知的多项式模型传递函数,其分子、分母多项式系数两个向量可分别用 .{1}sys num 与.{1}sys den 命令求出。这在MATLAB 程序设计中非常有用。 2)零极点增益模型。零极点模型是传递函数模型的另一种表现形式,其原理是分别对原传递函数的分子、分母进行因式分解,以获得系统的零点和极点的表示形式。 1212()()() ()()()() m n K s z s z s z G s s p s p s p ---= ---,式中,K 为系统增益;12m z z z , ,为系统零点;12m p p p ,,为系统极点。在MATLAB 中,用向量z p k ,,构成矢量组[]z p k ,,表示系统。

温度控制系统设计

课程设计任务书 学生姓名:专业班级:自动化 指导教师:周申培工作单位:自动化学院 题目: 温度控制系统设计 初始条件: 被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。可控硅控制器输入为0~5伏时对应电炉温度0-300℃,温度传感器测量值对应也为0~5伏,对象的特性为积分加惯性系统,惯性时间常数为T1=40秒。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.设计温度控制系统的计算机硬件系统,画出框图; 2.编写积分分离PID算法程序,从键盘接受Kp、Ti、Td、T及β的值; 3.计算机仿真被控对象,编写仿真程序; 4.通过数据分析Td改变时对系统超调量的影响。 5. 撰写设计说明书。课程设计说明书应包括:设计任务及要求;方案比较及认证;系统滤波原理、硬件原理,电路图,采用器件的功能说明;软件思想,流程,源程序;调试记录及结果分析;参考资料;附录:芯片资料,程序清单;总结。 时间安排: 6月29日—7月1日查阅和准备相关技术资料,完成整体方案设计 7月2日—7月3日完成硬件设计 7月6日—7月7日编写调试程序 7月8日—7月9日撰写课程设计说明书 7月10日提交课程设计说明书、图纸、电子文档 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统设计 1 设计方案 温度控制系统的硬件设计框图如图1所示.用热电偶来检测炉的温度,将炉温转变成毫伏级的电压信号,经温度变送器放大并转换成电流信号。由电阻网络讲电流信号变成电压信号,送入A/D 转换器,通过采样和模数转换,所检测到的电压信号和炉温给定值的电压信号都转换成数质量送入单片机进行比较,其差值即为实际炉温和给定炉温的偏差,以单片机为核心的数字PID 控制器对偏差按照给定的方法运算,运算结果送DAC0832转换成模拟电压,经功率放大器放大后送入晶闸管调压器,触发晶闸管并改变其导通角的大小,从而控制电阻炉的加温电压,起到炉温调节的作用。 图1 温度控制系统方框图 2 系统数学模型的建立 温度控制系统是一个由数字和模拟两部分组成,经过D/A 和A/D 转换器相互转换而成的混合系统。与电阻炉的惯性时间常数相比,晶闸管调压器、温度传感器、功率放大器等环节简化为比例环节。由初始条件可知电阻炉可用一个积分环节和一个惯性环节来近似,这样可得被控对象的传递函数为: ) 1(1)(1s T s K s G c +*= K 为各环节的比例系数的乘积,1T 为电阻炉的时间常数,经查资料可得:K ≈1.16

第二章控制系统的数学模型

第二章控制系统的数学模型 1.本章的教学要求 1)使学生了解控制系统建立数学模型的方法和步骤; 2)使学生掌握传递函数的定义、性质及传递函数的求取方法; 3)掌握典型环节及其传递函数; 4)掌握用方框图等效变换的基本法则求系统传递函数的方法。 2.本章讲授的重点 本章讲授的重点是传递函数的定义、性质;用方框图等效变换的基本法则求系统传递函数的方法。 3.本章的教学安排 本课程预计讲授10个学时

第一讲 2.1 线性系统的微分方程 1.主要内容: 本讲介绍数学模型定义、特点、种类;主要介绍控制系统最基本的数学模型——微分方程,通过举例说明列写物理系统微分方程的基本方法和步骤。 2.讲授方法及讲授重点: 本讲首先给出数学模型定义,说明为什么建立数学模型;介绍建立数学模型的依据;介绍数学模型特点,重点说明相似系统的概念、模拟的概念,由此引出今后研究控制系统问题都是在典型数学模型基础上进行的;介绍数学模型种类,说明本课程主要介绍微分方程、传递函数、频率特性形式数学模型。 其次,本讲主要以电气系统为例介绍列写物理系统微分方程的方法和步骤,通过例题的详细讲解,使学生了解微分方程是描述控制系统动态性能的数学模型,熟悉在分析具体的物理系统过程中,要综合应用所学过的物理、力学、机械等学科的知识。 3.教学手段: Powerpoint课件与黑板讲授相结合。 4.注意事项: 在讲授本讲时,应说明列写物理系统微分方程的依据是系统本身的物理特性,本课程主要讲授物理系统微分方程列写的方法和步骤。 5.课时安排:1学时。 6.作业:p47 2-1 7.思考题:复习拉普拉斯(Laplace)变换

反馈控制系统的数学模型与设计工具

反馈控制系统的数学模型及设计工具 反馈系统的数学模型在系统分析和设计中起着很重要的作用,基于系统的数学模型,就可以用比较系统的方法对之进行分析,同时,一些系统的方法也是基于数学模型的,这就使得控制系统的模型问题显得十分重要。 1数学模型的表示方法 线性时不变(LTI)系统模型包括传递函数模型( tf ),零极点增益模型( zpk ),状态空间模型( ss )和频率响应数据模型 ( frd ) 传递函数模型 线性系统的传递函数模型可以表示成复数变量s 的有理函数式: n n n n n m m m m a s a s a s a s b s b s b s b s G +++++++++=---+-122111121)( 调用格式: G =tf (num, den) 其中][num 121+=m m b b b b ,]1[den 121n n a a a a -= 分别是传递函数分子和分母多项式的系数向量,按照s 的降幂排列.返回值G 是一个tf 对象,该对象包含了传递函数的分子和分母信息。 例1 一个传递函数模型 5 43232)(2342++++++=s s s s s s s G 可以由下面命令输入到MATLAB 工作空间去. >> num=[1 2 3];den=[1 2 3 4 5];G=tf(num,den) Transfer function: s^2 + 2 s + 3 ---------------------------------- s^4 + 2 s^3 + 3 s^2 + 4 s + 5 对于传递函数的分母或分子有多项式相乘的情况, MATLAB 提供了求两个向量的卷积函数—conv( )函数求多项式相乘来解决分母或分子多项式的输入。conv( )函数允许任意地多层嵌套,从而表示复杂的计算.应该注意括号要匹配,否则会得出错误的信息与结果。 例2 一个较复杂传递函数模型 ) 432)(6()1()3)(2(2)(2342+++++++=s s s s s s s s G 该传递函数模型可以通过下面的语句输入到MATLAB 工作空间去。 >> num=2*conv([1 2],[1 3]); den=conv(conv(conv([1 1],[1 1]),[1 6]),[1 2 3 4]);

相关文档