文档库 最新最全的文档下载
当前位置:文档库 › 离散数学的一些公式

离散数学的一些公式

离散数学的一些公式

离散数学公式:

基本公式

,,(),()

:()()(),()()()(),()(),()11,00

0,A A

A A A A A A

A B A B B A

B A A B

C A B C A B C A B C A B C A B A C A B C A B A C A B B A B A B

A A

B A A B A

A A ????∨?∧∧?∧∨?∨∨∨∨∨∧?∧∧?∧∨∧?∧∨∧∧∨?∨∧∨?∨∧??∧??∨???∧∧∨?∨?∨?∧?∨?双重否定律:等幂律:交换律:结合律:()()分配律德摩根律:吸收律:A A 零律:A 同一律:A 11

(()

))()

):)()A A

A A A B

B A B A

A

A A

B A B A

A B

A

A B A

?∧∨??∧??→??∨??→∨→→?→???????→→???∧?∨?∧→?∧→??∧??∨∧?→排中律:A 矛盾律:A 蕴含A B 等值律:等价等值:A B A B)律假言易位律: A B 等价否定等值:A B A B

律归谬论:(A B (A B 推理定律:

①附 加:②化 简:③假言推理:(A B ④拒取式(A B B ⑤析取三段论: B ⑥假言三段论:(A ))))))C A C

C A C

D C D

→?→∧????∧

→→→?→∧∧B (B ⑦等价三段论:(A B )(B ⑧构造性二难: (A B (C (A B

高等数学等价替换公式泰勒公式资料讲解

应用高等数学等价替换公式 1、无穷小量: 设0)x (g lim )x (f lim 0 x x x x ==→→ *1)若0) x (g ) x (f lim x x =→,f (x )是g (x )的 高阶 无穷小 *2)若∞=→) x (g ) x (f lim x x ,f (x )是g (x )的 低阶 无穷小 *3)若c ) x (g ) x (f lim x x =→,f (x )是g (x )的 同阶 无穷小 *4)若1) x (g ) x (f lim x x =→,f (x )是g (x )的 等价 无穷小 *5)若0) x (g ) x (f lim k x x 0 =→,f (x )是g (x )的 k 阶 无穷小 2、等价替换: 若x →x 0,f (x )~ f 1(x ),g (x )~ g 1(x ) 则=→)x (g ) x (f lim x x ) x (g )x (f lim 11x x 0→ 6、常用等价形式: 当f (x )→0时 *1)sinf (x )~ f (x ) *2)arc sinf (x )~ f (x ) *3)tanf (x )~ f (x )

*4)arc tanf (x )~ f (x ) *5)In (1+f (x ))~ f (x ) *6)e f (x )-1~ f (x ) *7)1-cosf (x )~ 2 ) x (f 2 *8)(1+f (x ))α -1~ αf (x ) 二、函数的连续: 1、间断点: *1)第一类间断点:f -(x 0)、f +(x 0)均 存在的 间断点 ⑴跳跃间断点: f -(x 0)≠f +(x 0) ⑵可去间断点: f -(x 0)=f +(x 0) *2)第二类间断点:f -(x 0)、f +(x 0)至少有一个 不存在的 间断点 ⑴无穷间断点: f -(x 0)、f +(x 0)中至少有一个为 ∞ ⑵振荡间断点: f -(x 0)、f +(x 0)中至少有一个 振荡不存在 三、导数: 1、定义:)x (f '= x △) x (f -)x △x (f lim 000 x △+→ 2、导数的常见形式: *1) 0 0x x 0x -x ) x (f -)x (f lim )x (f 0 →=' *2) h ) x (f -)h x (f lim )x (f 000 h +='→

(完整word版)离散数学符号表.doc

《离散数学》符号表 全称量词(任意量词) 存在量词 ├断定符(公式在L 中可证) ╞满足符(公式在 E 上有效,公式在 E 上可满足)┐命题的“非”运算 ∧命题的“合取”(“与”)运算 ∨命题的“析取”(“或”,“可兼或”)运算 →命题的“条件”运算 命题的“双条件”运算的 A B命题A与B等价关系 A B 命题 A 与 B 的蕴涵关系 A 公式 A的对偶公式 wff 合式公式 iff 当且仅当 V 命题的“不可兼或”运算(“异或门” ) ↑命题的“与非” 运算(“与非门”) ↓命题的“或非”运算(“或非门” ) □模态词“必然” ◇模态词“可能” φ空集 ∈属于(不属于) A (·)集合 A 的特征函数 P(A)集合 A 的幂集 A 集合 A 的点数 A A A (A n)集合A的笛卡儿积

R 2 R R ( R n R n 1 ) 关系 R 的“复合” R 阿列夫零 阿列夫 包含 真包含 ∪ 集合的并运算 ∩ 集合的交运算 - (~) 集合的差运算 集合的对称差运算 m m 同余加 m m 同余乘 〡 限制 [ x] R 集合关于关系 R 的等价类 A/ R 集合 A 上关于 R 的商集 R ( A) 集合 A 关于关系 R 的划分 R (A) 集合 A 关于划分 的关系 [a] 元素 a 产生的循环群 [a] R 元素 a 形成的 R 等价类 C r 由相容关系 r 产生的最大相容类 I 环,理想 Z /( n) 模 n 的同余类集合 a b(mod k) a 与 b 模 k 相等 r ( R) 关系 R 的自反闭包 s( R) 关系 R 的对称闭包

离散数学第二章一阶逻辑知识点总结

数理逻辑部分 第2章一阶逻辑 2.1 一阶逻辑基本概念 个体词(个体): 所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示 个体变项:抽象的事物,用x, y, z表示 个体域: 个体变项的取值范围 有限个体域,如{a, b, c}, {1, 2} 无限个体域,如N, Z, R, … 全总个体域: 宇宙间一切事物组成 谓词: 表示个体词性质或相互之间关系的词 谓词常项:F(a):a是人 谓词变项:F(x):x具有性质F 一元谓词: 表示事物的性质 多元谓词(n元谓词, n≥2): 表示事物之间的关系 如L(x,y):x与y有关系L,L(x,y):x≥y,… 0元谓词: 不含个体变项的谓词, 即命题常项或命题变项 量词: 表示数量的词 全称量词?: 表示任意的, 所有的, 一切的等 如?x 表示对个体域中所有的x

存在量词?: 表示存在, 有的, 至少有一个等 如?x表示在个体域中存在x 一阶逻辑中命题符号化 例1 用0元谓词将命题符号化 要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲 在命题逻辑中, 设p:墨西哥位于南美洲 符号化为p, 这是真命题 在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲 符号化为F(a) 例2 在一阶逻辑中将下面命题符号化 (1)人都爱美; (2) 有人用左手写字 分别取(a) D为人类集合, (b) D为全总个体域 . 解:(a) (1) 设G(x):x爱美, 符号化为?x G(x) (2) 设G(x):x用左手写字, 符号化为?x G(x) (b) 设F(x):x为人,G(x):同(a)中

离散数学期末复习

离散数学期末复习 一、选择题 1、下列各选项错误的是 A、??? B、??? C、?∈{?} D、??{?} 2、命题公式(p∧q)→p是 A、矛盾式 B、重言式 C、可满足式 D、等值式 3、如果是R是A上的偏序关系,R-1是R的逆关系,则R∪R-1是 A、等价关系 B、偏序关系 C、全序关系 D、都不是 4、下列句子中那个是假命题? A、是无理数. B、2 + 5=8.

C、x+ 5>3 D、请不要讲话! 5、下列各选项错误的是? A、??? B、??{?} C、?∈{?} D、{?}?? 6、命题公式p→(p∨q∨r)是? A、重言式 B、矛盾式 C、可满足式 D、等值式 7、函数f : N→N, f(x)=x+5,函数f是 A、单射 B、满射 C、双射 D、都不是 8、设D=,则 V={a,b,c,d,e,f},R={ ,,,,},有向图D为 A、强连通 B、单向连通 C、弱连通

D、不连通的 9、关系R1和R2具有反自反性,下面运算后,不能保持自反性的是 A、R1?R2 B、R1-1 C、R1?R2 D、R1-R2 10、连通平面图G有4个结点,3个面,则G有()条边。 A、7 B、6 C、5 D、4 二、填空题 1、将下面命题符号化。设p:天冷,q:小王穿羽绒服。只要天冷,小王就穿羽绒服.符号化为 2、将下面命题符号化,设p:天冷,q:小王穿羽绒服。因为天冷,所以小王穿羽绒服.符号化为 3、将下面命题符号化,设p:天冷,q:小王穿羽绒服。若小王不穿羽绒服,则天不冷.符号化为 4、将下面命题符号化,设p:天冷,q:小王穿羽绒服。只有天冷,小王才穿羽绒服.符号化为

考试必备离散数学概念总结

1.1、单个命题变项和命题常项是合式公式, 称作原子命题公式 2.1、若等价式A?B是重言式,则称A与B等值,记作A?B,并称A?B是等值式 2.2、(1) 文字——命题变项及其否定的总称 2.3、设C1=l∨C1', C2=lc∨C2', C1'和C2'不含l和lc, 称C1∨'C2'为C1和C2(以l和lc为消解 文字)的消解式或消解结果, 记作Res(C1,C2) 2.4、设S是一个合取范式, C1,C2,?,Cn是一个简单析取式序列. 如果对每一个i(1≤i≤n), Ci 是S的一个简单析取式或者是Res(Cj,Ck)(1≤j| x∈A∧y∈B}. 7.2、设A,B为集合, A×B的任何子集所定义的二元关系叫做从A到B的二元关系, 当A=B 时则叫做A上的二元关系.(计数:|A|=n, |A×A|=n^2, 所以A上有2^(n^2)个不同的

离散数学基本公式

、基本等值式 ⑴双重否定律 A A ⑵籍等律 A A A A A V A A ⑶交换律 A A B BA A A V B BV A ⑷结合律 A V (B V C) (A V B) V C A A (B A C) (A A B) A C ⑸分配律 A V (B A C) (A V B) A (A V C) A A (B V C) (A A B) V (A A C) (6)德摩根律(A V B) AA B (A A B) AV B ⑺吸收律 A (8)零律A ⑼同一律 A (10) 排中律 A (11) 矛盾律 A (12) 蕴含等值式A (13) 等价等值式A V (A A B) V1 1 A1 A V A 1 A A 0 B AV B (A A A A A B B) A (B A) A (A V B) A 0 0 V 0 A A A B (AV B) A (A V B) A B (A A B) V ( AA B ) (14) 假言易位ABBA (15) 等价否定等值式ABA B (16)归谬论(A B) A (A B) A 一、推理定律里口编涵式 1.A ( A B) 附加律 2.( A B) A 化简律 3.( A B) A B 假言推理 4.( A B) B A 拒取式 5.( A B) B A 析取三段论 6.( A B) (B C) (A 假言三段论 7.( A B) (B Q (A C) 等价三段论 8.( A B) (C D) (A C) (B D) 构造性二难 (A B) ( A B) B 构造性二难(特殊形式) 9.( A B) (C D) ( B D) ( A Q 破坏性二难 三、量词辖域收缩与扩张 x(A(x) V B) xA(x) VB x(A(x) A B) xA(x) AB x(A(x) —B) xA(x) F x(B t A(x)) B T xA(x) x(A(x) V B) xA(x) VB x(A(x) A B) xA(x) A B x(A(x) —B) xA(x) F x(B t A(x)) B T xA(x) 四、量词分配 x(A(x) A B(x)) xA(x) A xB(x) x(A(x) V B(x)) xA(x) V xB(x) x(A(x) V B(x)) xA(x) V xB(x)

(完整word)高等数学等价替换公式

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x Θ .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n Θ .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

数学符号大全

目录 数学符号起源 (1) 数学符号种类 (2) 数学符号读法 (10) 数学符号起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"δ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"3",最早是英国数学家奥屈特1631年提出的;一个是"2",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"3"号象拉丁字母"X",加以反对,而赞成用"2"号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"3"作为乘号。他认为"3"是"+"斜起来写,是另一种表示增加的符号。 平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“ⅳ”表示根号。“ⅳ”是由拉丁字线“r”变,“——”是括线。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

离散数学部分概念和公式总结

离散数学部分概念和公式总结 命题:称能判断真假的陈述句为命题。 命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。 命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。若指定的一组值使A的值为真,则称成真赋值。真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。 命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。 (2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。 (3)若A至少存在一组赋值是成真赋值,则A是可满足式。 主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。 主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。 命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B是等值的,记作A<=>B。 约束变元和自由变元:在合式公式?x A和?x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。 前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。集合的基本运算:并、交、差、相对补和对称差运算。 笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。 二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。特殊关系:(1)、空关系:Φ(2)全域关系:EA={ | x∈A ∧y∈A }= A×A (3)恒等关系:IA={ | x∈A} (4)小于等于关系:LA={| x, y∈A∧x≤y∈A },A ? R (5)整除关系:R? ={| x,y∈ψ∧x ? y} ,ψ是集合族 二元关系的运算:设R是二元关系, (1)R中所有有序对的第一元素构成的集合称为R的定义域dom R = { x |?y(∈R)} (2)R中所有有序对的第二元素构成的集合称为R的值域ranR = {y |?x(∈R)} (3)R的定义域和值域的并集称为R的域fld R= dom R∪ran R 二元关系的性质:自反性,反自反性,对称性,反对称性,传递性。 等价关系:如果集合A上的二元关系R是自反的,对称的和传递的,那么称R是等价关系。设R是A上的等价关系,x , y是A的任意元素,记作x~y。 等价类:设R是A上的等价关系,对任意的?x∈A,令[x]R={ y| y∈A∧x R y },称[x]R 为x关于R的等价类。 偏序关系:设R是集合A上的二元关系,如果R是自反的,反对称的和传递的,那么称R 为A上的偏序,记作≤;称序偶< A ,R >为偏序集合。 函数的性质:设f: A→B, (1)若ran f = B,则称f 是满射(到上)的。

离散数学自学笔记命题公式及其真值表

离散数学自学笔记命题公式及其真值表 我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。 命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。下面我们引入高一级的语言成分——命题公式。 定义1.1 以下三条款规定了命题公式(proposition formula)的意义: (1)命题常元和命题变元是命题公式,也称为原子公式或原子。 (2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。 (3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。 命题公式简称公式,常用大写拉丁字母A,B,C等表示。公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。 例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。 为使公式的表示更为简练,我们作如下约定: (1)公式最外层括号一律可省略。 (2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。 (3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。湖南省自考网:https://www.wendangku.net/doc/a618569001.html,/整理 例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s))) 设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。

离散数学公式

离散数学公式

————————————————————————————————作者: ————————————————————————————————日期: ?

基本等值式 1.双重否定律A?┐┐A 2.幂等律 A ? A∨A,?A ?A∧A 3.交换律?A∨B?B∨A,?A∧B ?B∧A 4.结合律??(A∨B)∨C? A∨(B∨C) ?(A∧B)∧C ? A∧(B∧C) 5.分配律A∨(B∧C)?(A∨B)∧(A∨C)(∨对∧的分配律)??A∧(B∨C)?(A∧B)∨(A∧C) (∧对∨的分配律) 6.德·摩根律?┐(A∨B) ?┐A∧┐B ┐(A∧B)?┐A∨┐B 7.吸收律?A∨(A∧B) ?A,A∧(A∨B) ?A 8.零律?A∨1?1,A∧0 ?0 9.同一律?A∨0 ?A,A∧1?A 10.排中律A∨┐A ?1 11.矛盾律?A∧┐A? 0 12.蕴涵等值式A→B?┐A∨B 13.等价等值式??A?B?(A→B)∧(B→A) 14.假言易位A→B?┐B→┐A 15.等价否定等值式 A?B ?┐A?┐B 16.归谬论(A→B)∧(A→┐B)?┐A 求给定公式范式的步骤 (1)消去联结词→、?(若存在)。 (2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。 推理定律--重言蕴含式 (1)A ?(A∨B) 附加律 (2) (A∧B)? A ?化简律 (3) (A→B)∧A? B ??假言推理 (4) (A→B)∧┐B?┐A 拒取式 (5)(A∨B)∧┐B? A ?析取三段论 (6) (A→B) ∧(B→C)?(A→C) ?假言三段论 (7) (A?B) ∧(B?C) ? (A? C)?等价三段论 (8) (A→B)∧(C→D)∧(A∨C) ?(B∨D) 构造性二难 (A→B)∧(┐A→B)∧(A∨┐A) ?B构造性二难(特殊形式) (9)(A→B)∧(C→D)∧(┐B∨┐D) ?(┐A∨┐C) 破坏性二难

大学高等数学等价无穷小教学总结

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。 碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。

《离散数学》符号表

《离散数学》符号表 ? 全称量词(任意量词) ? 存在量词 ├ 断定符(公式在L 中可证) ╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算 ∧ 命题的“合取”(“与”)运算 ∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算 ? 命题的“双条件”运算的 B A ? 命题A 与 B 等价关系 B A ? 命题A 与B 的蕴涵关系 *A 公式A 的对偶公式 wff 合式公式 iff 当且仅当 V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然” ◇ 模态词“可能” φ 空集 ? 属于(?不属于) A μ(·) 集合A 的特征函数 P (A ) 集合A 的幂集 A 集合A 的点数 n A A A ??? (n A ) 集合A 的笛卡儿积

R R R =2 )(1R R R n n -= 关系R 的“复合” 0? 阿列夫零 ? 阿列夫 ? 包含 ? 真包含 ∪ 集合的并运算 ∩ 集合的交运算 - (~) 集合的差运算 ⊕ 集合的对称差运算 m + m 同余加 m ? m 同余乘 〡 限制 R x ][ 集合关于关系R 的等价类 A /R 集合A 上关于R 的商集 )(A R π 集合A 关于关系R 的划分 )(A R π 集合A 关于划分π的关系 ][a 元素a 产生的循环群 R a ][ 元素a 形成的R 等价类 r C 由相容关系r 产生的最大相容类 I 环,理想 )/(n Z 模n 的同余类集合 )(mod k b a ≡ a 与 b 模k 相等 )(R r 关系R 的自反闭包 )(R s 关系R 的对称闭包

离散数学课程总结

离散数学课程总结 姓名: 学号: 班级:级计科系软件工程()班 近年来,计算机科学与技术有了飞速发展,在生产与生活的各个领域都发挥着越来越重要的作用。离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程。 一、课程总结 本书的主要内容有数理逻辑、集合论、代数结构、组合数学、图论以及初等数论六部分,而我们主要学习的有第一部分数理逻辑、第二部分集合论以及第五部分图论,第三部分代数结构也学习了一部分。第一部分:数理逻辑 数理逻辑是研究推理的数学分支,推理有一些列的陈述句组成。在数理逻辑中,主要学习了命题逻辑的基本概念、命题逻辑的等值演

算、命题逻辑的推理理论、一阶逻辑基本概念、一阶逻辑等值演算与推理。 1.在命题逻辑的基本概念中学习了命题的真值及真值表、命题与联 结词、命题及其分类、联结词与复合命题、命题公式及其赋值。2.在命题逻辑的等值演算中主要学习了等值式与基本的等值式模式、 等值演算与置换规则、析取范式与合取范式,极大值和极小值,主析取范式与主合取范式、联结词完备集。 3.在命题逻辑的推理理论中主要学习了推理的正确与错误、推理的 形式结构、判断推理正确的方法、推理定律;自然推理系统P、形式系统的定义与分类、自然推理系统P,在P中构造证明:直接证明法、附加前提证明法、归谬法。 4.在一阶逻辑基本概念中主要学习了一阶逻辑命题符号化、个体词、 谓词、量词、一阶逻辑公式及其解释、一阶语言、合式公式及合式公式的解释、永真式、矛盾式、可满足式。 5.在一阶逻辑等值演算与推理中主要学习了一阶逻辑等值式与基本 等值式、置换规则、换名规则、代替规则、前束范式、自然推理系统N及其推理规则。 第二部分:集合论 在集合论中,主要学习了集合代数、二元关系和函数。 1.在集合代数中,学习了集合的基本概念:属于、包含、空集、元 集、幂集、全集;集合的基本运算:并、交、补相对、对称差等; 集合恒等式:集合运算的主要算律、恒等式的证明方法。

离散数学公式

基本等值式 1.双重否定律 A ?┐┐A 2.幂等律 A ? A∨A, A ? A∧A 3.交换律A∨B ? B∨A, A∧B ? B∧A 4.结合律(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C) 5.分配律A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律) A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律) 6.德·摩根律┐(A∨B) ?┐A∧┐B ┐(A∧B) ?┐A∨┐B 7.吸收律 A∨(A∧B) ? A,A∧(A∨B) ? A 8.零律A∨1 ? 1,A∧0 ? 0 9.同一律A∨0 ? A,A∧1 ? A 10.排中律A∨┐A ? 1 11.矛盾律A∧┐A ? 0 12.蕴涵等值式A→B ?┐A∨B 13.等价等值式A?B ? (A→B)∧(B→A) 14.假言易位A→B ?┐B→┐A 15.等价否定等值式 A?B ?┐A?┐B 16.归谬论(A→B)∧(A→┐B) ?┐A 求给定公式范式的步骤 (1)消去联结词→、?(若存在)。 (2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。 推理定律--重言蕴含式 (1) A T (A∨B) 附加律 (2) (A∧B) T A 化简律 (3) (A→B)∧A T B 假言推理 (4) (A→B)∧┐B T┐A 拒取式 (5) (A∨B)∧┐B T A 析取三段论 (6) (A→B) ∧(B→C) T (A→C) 假言三段论 (7) (A?B) ∧(B?C) T (A ? C) 等价三段论 (8) (A→B)∧(C→D)∧(A∨C) T(B∨D) 构造性二难 (A→B)∧(┐A→B)∧(A∨┐A) T B 构造性二难(特殊形式) (9)(A→B)∧(C→D)∧(┐B∨┐D) T(┐A∨┐C)破坏性二难

离散数学符号大全

├断定符(公式在L中可证) ╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算 ∧命题的“合取”(“与”)运算 ∨命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算 A<=>B 命题A 与B 等价关系 A=>B 命题A与B的蕴涵关系 A* 公式A 的对偶公式 wff 合式公式 iff 当且仅当 ↑ 命题的“与非” 运算(“与非门” ) ↓ 命题的“或非”运算(“或非门” ) □模态词“必然” ◇模态词“可能” φ 空集 ∈属于(??不属于) P(A)集合A的幂集 |A| 集合A的点数 R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合” ∪集合的并运算 ∩集合的交运算

- (~)集合的差运算 〡限制 [X](右下角R) 集合关于关系R的等价类 A/ R 集合A上关于R的商集 [a] 元素a 产生的循环群 I (i大写) 环,理想 Z/(n) 模n的同余类集合 r(R) 关系R的自反闭包 s(R) 关系的对称闭包 CP 命题演绎的定理(CP 规则) EG 存在推广规则(存在量词引入规则) ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则) R 关系 r 相容关系 R○S 关系与关系的复合 domf 函数的定义域(前域) ranf 函数的值域 f:X→Y f是X到Y的函数 GCD(x,y) x,y最大公约数 LCM(x,y) x,y最小公倍数

aH(Ha) H 关于a的左(右)陪集 Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合 d(u,v) 点u与点v间的距离 d(v) 点v的度数 G=(V,E) 点集为V,边集为E的图 W(G) 图G的连通分支数 k(G) 图G的点连通度 △(G) 图G的最大点度 A(G) 图G的邻接矩阵 P(G) 图G的可达矩阵 M(G) 图G的关联矩阵 C 复数集 N 自然数集(包含0在内) N* 正自然数集 P 素数集 Q 有理数集 R 实数集 Z 整数集 Set 集范畴 Top 拓扑空间范畴 Ab 交换群范畴

(完整word版)离散数学必备知识点总结.docx

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项 (m) 之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为 0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项 时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R 的顺序依次写; 6.真值表中值为 1 的项为极小项,值为0 的项为极大项; 7.n 个变元共有2n个极小项或极大项,这2n为(0~ 2n -1)刚好为化简完 后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法 (=>) :真值表法;分析法 (假定前键为真推出后键 为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P 规则, T 规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n 个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含→,存在量词用合取 ^;

3.既有存在又有全称量,先消存在量,再消全称量; 第四章集合 1.N ,表示自然数集, 1,2,3 ??,不包括 0; 2.基:集合 A 中不同元素的个数, |A|; 3.集:定集合 A,以集合 A 的所有子集元素成的集合,P(A) ; 4.若集合 A 有 n 个元素,集 P(A) 有2 n个元素, |P(A)|= 2| A| = 2 n; 5.集合的分划: (等价关系 ) ①每一个分划都是由集合 A 的几个子集构成的集合; ② 几个子集相交空,相并全(A); 6.集合的分划与覆盖的比: 分划:每个元素均出且出一次在子集中; 覆盖:只要求每个元素都出,没有要求只出一次; 第五章关系 1.若集合 A 有 m 个元素,集合 B 有 n 个元素,笛卡 A×B 的基数mn, A 到 B 上可以定2mn种不同的关系; 2.若集合 A 有 n 个元素, |A ×A|= n2,A 上有2n2个不同的关系; 3.全关系的性:自反性,称性,性; 空关系的性:反自反性,反称性,性;

离散数学考试题详细答案

离散数学考试题(后附详细答案) 一、命题符号化(共6小题,每小题3分,共计18分) 1.用命题逻辑把下列命题符号化 a)假如上午不下雨,我去瞧电影,否则就在家里读书或瞧报。 设P表示命题“上午下雨”,Q表示命题“我去瞧电影”,R表示命题“在家里读书”,S表示命题“在家瞧报”,命题符号化为:(?P?Q)∧(P?R∨S) b)我今天进城,除非下雨。 设P表示命题“我今天进城”,Q表示命题“天下雨”,命题符号化为:?Q→P或?P→Q c)仅当您走,我将留下。 设P表示命题“您走”,Q表示命题“我留下”,命题符号化为: Q→P 2.用谓词逻辑把下列命题符号化 a)有些实数不就是有理数 设R(x)表示“x就是实数”,Q(x)表示“x就是有理数”,命题符号化为: ?x(R(x) ∧?Q(x)) 或??x(R(x) →Q(x)) b)对于所有非零实数x,总存在y使得xy=1。 设R(x)表示“x就是实数”,E(x,y)表示“x=y”,f(x,y)=xy, 命题符号化为: ?x(R(x) ∧?E(x,0) →?y(R(y) ∧E(f(x,y),1)))) c) f 就是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b、 设F(f)表示“f就是从A到B的函数”, A(x)表示“x∈A”, B(x)表示“x∈B”,E(x,y)表示“x=y”, 命题符号化为:F(f)??a(A(a)→?b(B(b) ∧ E(f(a),b) ∧?c(S(c) ∧ E(f(a),c) →E(a,b)))) 二、简答题(共6道题,共32分) 1.求命题公式(P→(Q→R))?(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋 值。(5分) (P→(Q→R))?(R→(Q→P))?(?P∨?Q∨R)?(P∨?Q∨?R) ?((?P∨?Q∨R)→(P∨?Q∨?R)) ∧ ((P∨?Q∨?R) →(?P∨?Q∨R))、 ?((P∧Q∧?R)∨ (P∨?Q∨?R)) ∧ ((?P∧Q∧R) ∨(?P∨?Q∨R)) ?(P∨?Q∨?R) ∧(?P∨?Q∨R) 这就是主合取范式 公式的所有成真赋值为000,001,010,100,101,111,故主析取范式为 (?P∧?Q∧?R)∨(?P∧?Q∧R)∨(?P∧Q∧?R)∨(P∧?Q∧?R)∨(P∧?Q∧R)∨(P∧Q∧R) 2.设个体域为{1,2,3},求下列命题的真值(4分) a)?x?y(x+y=4) b)?y?x (x+y=4) a) T b) F 3.求?x(F(x)→G(x))→(?xF(x)→?xG(x))的前束范式。(4分) ?x(F(x)→G(x))→(?xF(x)→?xG(x)) ??x(F(x)→G(x))→(?yF(y)→?zG(z))??x(F(x)→G(x))→?y?z(F(y)→G(z)) ??x?y?z((F(x)→G(x))→ (F(y)→G(z))) 4.判断下面命题的真假,并说明原因。(每小题2分,共4分) a)(A?B)-C=(A-B) ?(A-C) b)若f就是从集合A到集合B的入射函数,则|A|≤|B| a) 真命题。因为(A?B)-C=(A?B)?~C=(A?~C)?(B?~C)=(A-C)?(B-C) b) 真命题。因为如果f就是从集合A到集合B的入射函数,则|ranf|=|A|,且ranf?B,故命题 成立。

离散数学总结

离散数学总结 班级:学号:姓名: 临近期末各科课程已经结束,随之而来就是总结各科学习总结和对这门学科的建议。《离散数学》这门课程当然也不会例外了。经过一个学期的学习我发现《离散数学》是一门理论性非常强的课程,而且知识点非常多,定义和定理以及定律是数之不尽。 《离散数学》顾名思义就是一门数学,它是数学众多领域中的一个小分支,即使是一个小小的分支,但是它的内容也非常之多,同时也非常抽象。自认我的数学成绩还是不错的,但是面对《离散数学》我就头痛,书本里面很多知识点我都是似懂非懂地。但鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。因此我也很无奈,只好硬着头皮去学好它了。 离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。 《离散数学》的特点是: 1、知识点集中,概念和定理多。《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。 2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法等),同一个题也可能有几种方法。但是《离散数学》证明题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法,再者要善于总结。 在学习《离散数学》的过程中,我明白了理解概念是至关重要的。只有概念明确,才有可能将离散数学学好。但是初学者往往不能够将概念与现实世界中的事物联系起来,这是学好离散数学的基础,因此也是初学者面临的一个困难。只有克服它,你才能有可能学好《离散数学》。 学完这门课后,我总结到了,如果你想学得更好——你可以在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。而且必须及时复习和总结。 《离散数学》是一门数学科,大家都知道学数学就是要大量做数学,因此《离散数学》也不会例外。学习数学不仅限于学习数学知识,更重要的还在于学习数学的思维方法。这一点非常重要。 课程虽然是上完了,但是老师你的教学方法独特而新颖,思想开化而先进,是个容易沟通的老师。有你带着我们学习《离散数学》就是我们不想学好,我想也是很难吧!就我来说每次上课时在我快要与“周公”会面之际,你突然一个笑话和雷人的语录,我和“周公”迫不得已就分开了。当我再次看到周公时,耳边

相关文档